Skip to main content
Log in

Magnetophotothermal interaction in a rotating solid cylinder of semiconductor silicone material with time dependent heat flow

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A mathematical model linking thermoelasticity to photothermal experiments is proposed with the consideration of the photothermal effect. The system equations for coupled plasma, heat conduction with phase-lags (PLs), and motion equations are introduced and solved by using the Laplace transform technique. The photothermal, thermal, and elastic waves in a rotating solid cylinder of semiconductor material are analyzed with the proposed model. The cylinder surface is constrained and subjected to a time-dependent pulse heat flux. The sensitivity of the physical fields for the angular velocity, PLs, and thermal vibration parameters is investigated. In addition, the effects of the effective parameters on the physical quantities are graphically illustrated and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

λ, μ :

Lamé constants

α t :

thermal expansion coefficient

C e :

specific heat

γ :

thermal coupling parameter

T 0 :

environmental temperature

θ :

temperature increment

T :

absolute temperature

u :

displacement vector

e :

cubical dilatation

σ ij :

stress tensor

e ij :

strain tensor

δ ij :

Kronecker’s delta function

n 0 :

equilibrium carrier concentration

H :

magnetic field

h :

induced magnetic field

d n :

diffusion coupling parameter

K :

thermal conductivity

ρ :

material density

Ω :

angular velocity vector

t :

time

E :

induced electric field

N :

carrier density

τ q :

phase-lag (PL) of heat flux

τ θ :

PL of temperature

E g :

semiconducting energy gap

δ n :

electronic deformation coefficient

D E :

diffusion coefficient

q :

heat flux

κ :

thermal activation coupling parameter

τ 1 :

lifetime of photogenerated electron

J :

current density

μ 0 :

magnetic permeability.

References

  1. BRILMYER, G. H. and BARD, A. J. Application of photothermal spectroscopy to in-situ studies of films on metals and electrodes. Analytical Chemistry, 52, 685–691 (1980)

    Article  Google Scholar 

  2. BIALKOWSKI, S. E. Photothermal Spectroscopy Methods for Chemical Analysis, John Wiley and Sons, New York (1996)

    Book  Google Scholar 

  3. ROSENCWAIG, A. Review of Progress in Quantitative Non-destructive Evaluation, Plenum, New York (1990)

    Google Scholar 

  4. GORDON, P., LEITE, R. C. C., MOORE, R. S., PORTO, S. P. S., and WHINNERY, J. R. Long-transient effects in lasers with inserted liquid samples. Journal of Applied Physics, 36, 3–8 (1964)

    Article  Google Scholar 

  5. KREUZER, L. B. Ultralow gas concentration infrared absorption spectroscopy. Journal of Applied Physics, 42, 2934–2943 (1971)

    Article  Google Scholar 

  6. SONG, Y., TODOROVIC, D. M., CRETIN, B., VAIRAC, P., XU, J., and BAI, J. Bending of semiconducting cantilevers under photothermal excitation. International Journal of Thermophysics, 35, 305–319 (2014)

    Article  Google Scholar 

  7. SONG, Y., BAI, J., and REN, Z. Reflection of plane waves in a semiconducting medium under photothermal theory. International Journal of Thermophysics, 33, 1270–1287 (2012)

    Article  Google Scholar 

  8. HOBINY, A. and ABBAS, I. A. GN model on photothermal interactions in a two-dimension semiconductor half space. Results in Physics, 15, 102588 (2019)

    Article  Google Scholar 

  9. LOTFY, K., KHAMIS, A. K., EL-BARY, A. A., and AHMED, M. H. Thomson and rotation effects during photothermal excitation process in magnetic semiconductor medium using variable thermal conductivity. Applied Mathematics and Mechanics (English Edition), 41(6), 909–926 (2020) https://doi.org/10.1007/s10483-020-2613-9

    Article  Google Scholar 

  10. SAEED, T. and ABBAS, I. A. Analysis of thermal responses in a two-dimensional porous medium caused by pulse heat flux. Applied Mathematics and Mechanics (English Edition), 41(6), 927–938 (2020) https://doi.org/10.1007/s10483-020-2612-8

    Article  Google Scholar 

  11. MANDELIS, A., NESTOROS, M., and CHRISTOFIDES, C. Thermo-electronic wave coupling in laser photothermal theory of semiconductors at elevated temperature. Optics Engineering, 36, 459–468 (1997)

    Article  Google Scholar 

  12. ABOUELREGAL, A. E. Modified fractional photothermoelastic model for a rotating semiconductor half-space subjected to a magnetic field. Silicon (2020) https://doi.org/10.1007/s12633-020-00380-x

  13. BIOT, M. A. Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics, 27, 240–253 (1956)

    Article  MathSciNet  Google Scholar 

  14. LORD, H. and SHULMAN, Y. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, 15, 299–309 (1967)

    Article  Google Scholar 

  15. GREEN, A. E. and LINDSAY, K. A. Thermoelasticity. Journal of Elasticity, 2, 1–7 (1972)

    Article  Google Scholar 

  16. GREEN, A. E. and NAGHDI, P. M. A reexamination of the basic results of themomechanics. Proceedings of the Royal Society of London A, 432, 171–194 (1991)

    Google Scholar 

  17. GREEN, A. E. and NAGHDI, P. M. On undamped heat waves in an elastic solid. Journal of Thermal Stresses, 15, 252–264 (1992)

    Article  MathSciNet  Google Scholar 

  18. GREEN, A. E. and NAGHDI, P. M. Thermoelasticity without energy dissipation. Journal of Elasticity, 31, 189–208 (1993)

    Article  MathSciNet  Google Scholar 

  19. TZOU, D. Y. A unified field approach for heat conduction from macro to micro scales. ASME Journal of Heat Transfer, 117, 8–16 (1995)

    Article  Google Scholar 

  20. WAGNER, R. E. and MANDELIS, A. Nonlinear photothermal modulated optical reflectance and photocurrent phenomena in crystalline semiconductors: I, theoretical. Semiconductor Science and Technology, 11, 289–299 (1996)

    Article  Google Scholar 

  21. WAGNER, R. E. and MANDELIS, A. Nonlinear photothermal modulated optical reflectance and photocurrent phenomena in crystalline semiconductors: II, experimental. Semiconductor Science and Technology, 11, 300–307 (1996)

    Article  Google Scholar 

  22. NESTOROS, M., FORGET, B. C., CHRISTOFIDES, C., and SEAS, A. Photothermal reflection versustemperature: quantitative analysis. Physical Review B, 51, 14115–14123 (1995)

    Article  Google Scholar 

  23. HOBINY, A. and ABBAS, I. A. A study on photothermal waves in an unbounded semiconductor medium with cylindrical cavity. Mechanics of Time-Dependent Materials, 21, 61–72 (2017)

    Article  Google Scholar 

  24. SCHOENBERG, M. and CENSOR, D. Elastic waves in rotating media. Quarterly of Applied Mathematics, 31, 115–125 (1973)

    Article  Google Scholar 

  25. SONG, Y. Q., BAI, J. T., and REN, Z. Y. Study on the reflection of photothermal waves in a semiconducting medium under generalized thermoelastic theory. Acta Mechanica, 223, 1545–1557 (2012)

    Article  MathSciNet  Google Scholar 

  26. KUMAR, R. and CHAWLA, V. Fundamental solution for the plane problemin magnetothermoelastic diffusion media. Computational Methods in Science and Technology (CMST), 19, 195–207 (2013)

    Article  Google Scholar 

  27. OTHMAN, M. I. A. and ABOUELREGAL, A. E. Magnetothermoelstic analysis for an infinite solid cylinder with variable thermal conductivity due to harmonically varying heat. Microsystem Technologies, 23, 5635–5644 (2017)

    Article  Google Scholar 

  28. ZENKOUR, A. M. and ABOUELREGAL, A. E. Effect of temperature dependency on constrained orthotropic unbounded body with a cylindrical cavity due to pulse heat flux. Journal of Thermal Science and Technology, 10, 15–055 (2015)

    Article  Google Scholar 

  29. HONIG, G. and HIRDES, U. A method for the numerical inversion of Laplace transform. Journal of Computational and Applied Mathematics, 10, 113–132 (1984)

    Article  MathSciNet  Google Scholar 

  30. TZOU, D. Y. Macro- to Micro-scale Heat Transfer. The Lagging Behavior, Taylor and Francis, Washington, D. C. (1996)

    Google Scholar 

  31. AHMED, E. A. A., ABOU-DINA, M. S., and GHALEB, A. F. Plane wave propagation in a piezo-thermoelastic rotating medium within the dual-phase-lag model. Microsystem Technology, 26, 969–979 (2020)

    Article  Google Scholar 

  32. OTHMAN, M. I. A., ELMAKLIZI, Y. D., and AHMED, E. A. A. Influence of magnetic field on generalized piezo-thermoelastic rotating medium with two relaxation times. Microsystem Technologies, 23, 5599–5612 (2017)

    Article  Google Scholar 

  33. CHOUDHURY, M., BASU, U., and BHATTACHARYYA, R. K. On wave propagation in a rotating random micropolar generalized thermoelastic medium. Journal of Thermal Stresses, 43, 225–246 (2020)

    Article  Google Scholar 

  34. ZENKOUR, A. M. and ABOUELREGAL, A. E. The fractional effects of a two-temperature generalized thermoelastic semi-infinite solid induced by pulsed laser heating. Archives of Mechanics, 67, 53–73 (2015)

    MathSciNet  Google Scholar 

  35. ABOUELREGAL, A. E. and ZENKOUR, A. M. A generalized thermoelastic medium subjected to pulsed laser heating via a two-temperature model. Journal of Theoretical and Applied Mechanics, 57, 631–639 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Abouelregal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouelregal, A.E. Magnetophotothermal interaction in a rotating solid cylinder of semiconductor silicone material with time dependent heat flow. Appl. Math. Mech.-Engl. Ed. 42, 39–52 (2021). https://doi.org/10.1007/s10483-021-2682-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-021-2682-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation