Skip to main content
Log in

Clean numerical simulation: a new strategy to obtain reliable solutions of chaotic dynamic systems

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

It is well-known that chaotic dynamic systems, e.g., three-body system and turbulent flow, have sensitive dependence on the initial conditions (SDIC). Unfortunately, numerical noises, i.e., truncation error and round-off error, always exist in practice. Thus, due to the SDIC, the long-term accurate prediction of chaotic dynamic systems is practically impossible. In this paper, a new strategy for chaotic dynamic systems, i.e., the clean numerical simulation (CNS), is briefly described, and applied to a few Hamiltonian chaotic systems. With negligible numerical noises, the CNS can provide convergent (reliable) chaotic trajectories in a long enough interval of time. This is very important for Hamiltonian systems, and thus should have many applications in various fields. It is found that the traditional numerical methods in double precision cannot give not only reliable trajectories but also reliable Fourier power spectra and autocorrelation functions (ACFs). In addition, even the statistic properties of chaotic systems cannot be correctly obtained by means of traditional numerical algorithms in double precision, as long as these statistics are time-dependent. The CNS results strongly suggest that one had better to be very careful on the direct numerical simulation (DNS) results of statistically unsteady turbulent flows, although DNS results often agree well with experimental data when the turbulent flow is in a statistical stationary state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. POINCARÉ, J. H. Sur le problème des trois corps et les équations de la dynamique. Divergence des séries de M. Lindstedt. Acta Mathematica, 13, 1–270 (1890)

    MATH  Google Scholar 

  2. LORENZ, E. N. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20, 130–141 (1963)

    Article  MATH  Google Scholar 

  3. LORENZ, E. N. Computational chaos-a prelude to computational instability. Physica D, 15, 299–317 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. LORENZ, E. N. Computational periodicity as observed in a simple system. Tellus A, 58, 549–559 (2006)

    Article  Google Scholar 

  5. LI, J. P., ZENG, Q. C., and CHOU, J. F. Computational uncertainty principle in nonlinear ordinary differential equations (II): theoretical analysis. Science in China (Series E), 44, 55–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. TEIXEIRA, J., REYNOLDS, C., and JUDD, K. Time step sensitivity of nonlinear atmospheric models: numerical convergence, truncation error growth, and ensemble design. Journal of the Atmospheric Sciences, 64, 175–188 (2007)

    Article  Google Scholar 

  7. QIN, S. J. and LIAO, S. J. Influence of round-off errors on the reliability of numerical simulations of chaotic dynamic systems. Journal of Applied Nonlinear Dynamics (accepted) (Preprint arXiv:1707.04720)

  8. YAO, L. and HUGHES, D. Comment on “computational periodicity as observed in a simple system” by Edward N. Lorenz (2006). Tellus A, 60, 803–805 (2008)

    Article  Google Scholar 

  9. LORENZ, E. N. Reply to comment by L. S. Yao and D. Hughes. Tellus A, 60, 806–807 (2008)

    Article  Google Scholar 

  10. ALBERS, T. and RADONS, G. Weak ergodicity breaking and aging of chaotic transport in Hamiltonian systems. Physical Review Letters, 113, 184101 (2014)

    Article  Google Scholar 

  11. HUYNH, H. N., NGUYEN, T. P. T., and CHEW, L. Y. Numerical simulation and geometrical analysis on the onset of chaos in a system of two coupled pendulums. Communications in Nonlinear Science and Numerical Simulation, 18, 291–307 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. LEE, M. and MOSER, R. D. Direct numerical simulation of turbulent channel flow up to to Re τ ≈ 5200. Journal of Fluid Mechanics, 774, 395–415 (2015)

    Article  Google Scholar 

  13. WANG, J. C., LI, Q. X., and E, W.N. Study of the instability of the Poiseuille flow using a thermodynamic formalism. Proceedings of the National Academy of Sciences, 112, 9518–9523 (2015)

    Article  Google Scholar 

  14. AVILA, K., MOXEY, D., de LOZAR, A., AVILA, M., BARKLEY, D., and HOF, B. The onset of turbulence in pipe flow. Science, 333, 192–196 (2011)

    Article  Google Scholar 

  15. DEIKE, L., FUSTER, D., BERHANU, M., and FALCON, E. Direct numerical simulations of capillary wave turbulence. Physical Review Letters, 112, 234501 (2014)

    Article  Google Scholar 

  16. KIM, J., MOIN, P., and MOSER, R. Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  17. YEE, H., TORCZYNSKI, J., MORTON, S., VISBAL, M., and SWEBY, P. On spurious behavior of CFD simulations. International Journal for Numerical Methods in Fluids, 30, 675–711 (1999)

    Article  MATH  Google Scholar 

  18. WANG, L. P. and ROSA, B. A spurious evolution of turbulence originated from round-off error in pseudo-spectral simulation. Computers and Fluids, 38, 1943–1949 (2009)

    Article  MATH  Google Scholar 

  19. YEE, H. C., SWEBY, P. K., and GRIFFITHS, D. F. Dynamical approach study of spurious steadystate numerical solutions of nonlinear differential equations, I: the dynamics of time discretization and its implications for algorithm development in computational fluid dynamics. Journal of Computational Physics, 97, 249–310 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. YEE, H. C. and SWEBY, P. K. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations, II: Global asymptotic behavior of time discretizations. International Journal of Computational Fluid Dynamics, 4, 219–283 (1995)

    Article  Google Scholar 

  21. KRYS’KO, V. A., AWREJCEWICZ, J., and BRUK, V. M. On the solution of a coupled thermomechanical problem for non-homogeneous Timoshenko-type shells. Journal of Mathematical Analysis and Applications, 273, 409–416 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. AWREJCEWICZ, J. and KRYSKO, V. A. Nonlinear coupled problems in dynamics of shells. International Journal of Engineering Science, 41, 587–607 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. AWREJCEWICZ, J., KRYSKO, V. A., and KRYSKO, A. V. Complex parametric vibrations of flexible rectangular plates. Meccanica, 39, 221–244 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. AWREJCEWICZ, J., KRYSKO, A. V., ZHIGALOV, M. V., SALTYKOVA, O. A., and KRYSKO, V. A. Chaotic vibrations in flexible multi-layered Bernoulli-Euler and Timoshenko type beams. Latin American Journal of Solids and Structures, 5, 319–363 (2008)

    Google Scholar 

  25. AWREJCEWICZ, J., KRYSKO, A. V., KUTEPOV, I. E., ZAGNIBORODA, N. A., DOBRIYAN, V., and KRYSKO, V. A. Chaotic dynamics of flexible Euler-Bernoulli beams. Chaos, 34, 043130 (2014)

    MathSciNet  MATH  Google Scholar 

  26. KRYSKO, A. V., AWREJCEWICZ, J., SALTYKOVA, O. A., ZHIGALOV, M. V., and KRYSKO, V. A. Investigations of chaotic dynamics of multi-layer beams using taking into account rotational inertial effects. Communications in Nonlinear Science and Numerical Simulation, 19, 2568–2589 (2014)

    Article  MathSciNet  Google Scholar 

  27. AWREJCEWICZ, J., KRYSKO, V. A. J., PAPKOVA, I. V., KRYLOV, E. Y., and KRYSKO, A. V. Spatio-temporal non-linear dynamics and chaos in plates and shells. Nonlinear Studies, 21, 313–327 (2004)

    MathSciNet  MATH  Google Scholar 

  28. AWREJCEWICZ, J., KRYSKO, A. V., ZAGNIBORODA, N. A., DOBRIYAN, V. V., and KRYSKO, V. A. On the general theory of chaotic dynamic of flexible curvilinear Euler-Bernoulli beams. Nonlinear Dynamics, 85, 2729–2748 (2016)

    Article  MATH  Google Scholar 

  29. AWREJCEWICZ, J., KRYSKO, A. V., PAPKOVA, I. V., ZAKHAROV, V. M., EROFEEV, N. P., KRYLOVA, E. Y., MROZOWSKI, J., and KRYSKO, V. A. Chaotic dynamics of flexible beams driven by external white noise. Mechanical Systems and Signal Processing, 79, 225–253 (2016)

    Article  Google Scholar 

  30. AWREJCEWICZ, J., KRYSKO, A. V., EROFEEV, N. P., DOBRIYAN, V., BARULINA, M. A., and KRYSKO, V. A. Quantifying chaos by various computational methods, part 1: simple systems. Entropy, 20, 175 (2018)

    Article  MathSciNet  Google Scholar 

  31. AWREJCEWICZ, J., KRYSKO, A. V., EROFEEV, N. P., DOBRIYAN, V., BARULINA, M. A., and KRYSKO, V. A. Quantifying chaos by various computational methods, part 2: vibrations of the Bernoulli-Euler beam subjected to periodic and colored noise. Entropy, 20, 170 (2018)

    Article  Google Scholar 

  32. LIAO, S. J. On the reliability of computed chaotic solutions of non-linear differential equations. Tellus A, 61, 550–564 (2009)

    Article  Google Scholar 

  33. WANG, P. F., LI, J. P., and LI, Q. Computational uncertainty and the application of a high-performance multiple precision scheme to obtaining the correct reference solution of Lorenz equations. Numerical Algorithms, 59, 147–159 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. LIAO, S. J. Physical limit of prediction for chaotic motion of three-body problem. Communications in Nonlinear Science and Numerical Simulation, 19, 601–616 (2014)

    Article  MathSciNet  Google Scholar 

  35. LIAO, S. J. and WANG, P. F. On the mathematically reliable long-term simulation of chaotic solutions of Lorenz equation in the interval [0, 10 000]. Science China: Physics, Mechanics and Astronomy, 57, 330–335 (2014)

    Article  Google Scholar 

  36. LIAO, S. J. Can we obtain a reliable convergent chaotic solution in any given finite interval of time? International Journal of Bifurcation and Chaos, 24, 1450119 (2014)

    Article  MATH  Google Scholar 

  37. LI, X. M. and LIAO, S. J. On the stability of the three classes of Newtonian three-body planar periodic orbits. Science China: Physics, Mechanics and Astronomy, 57, 2121–2126 (2014)

    Google Scholar 

  38. LIAO, S. J. and LI, X. M. On the inherent self-excited macroscopic randomness of chaotic three-body systems. International Journal of Bifurcation and Chaos, 25, 1530023 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. LIN, Z. L., WANG, L. P., and LIAO, S. J. On the origin of intrinsic randomness of Rayleigh-Bénard turbulence. Science China: Physics, Mechanics and Astronomy, 60, 014712 (2017)

    Google Scholar 

  40. LI, X. M. and LIAO, S. J. More than six hundred new families of Newtonian periodic planar collisionless three-body orbits. Science China: Physics, Mechanics and Astronomy, 60, 129511 (2017)

    Google Scholar 

  41. LIAO, S. J. On the clean numerical simulation (CNS) of chaotic dynamic systems. Journal of Hydrodynamics, 29, 729–747 (2017)

    Article  Google Scholar 

  42. LI, X. M., JING, Y. P., and LIAO, S. J. Over a thousand new periodic orbits of planar three-body system with unequal mass. Publications of the Astronomical Society of Japan, 70, 64 (2018)

    Google Scholar 

  43. BARTON, D., WILLERS, I. M., and ZAHAR, R. V. M. The automatic solution of systems of ordinary differential equations by the method of Taylor series. The Computer Journal, 14, 243–248 (1971)

    Article  MATH  Google Scholar 

  44. CORLISS, G. and LOWERY, D. Choosing a stepsize for Taylor series methods for solving ODEs. Journal of Computational and Applied Mathematics, 3, 251–256 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  45. CORLISS, G. and CHANG, Y. F. Solving ordinary differential equations using Taylor series. ACM Transactions on Mathematical Software, 8, 114–144 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  46. JORBA, A. and ZOU, M. R. A software package for the numerical integration of ODEs by means of high-order Taylor methods. Experimental Mathematics, 14, 99–117 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. BARRIO, R., BLESA, F., and LARA, M. VSVO formulation of the Taylor method for the numerical solution of ODEs. Computers and Mathematics with Applications, 50, 93–111 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. PORTILHO, O. MP—a multiple precision package. Computer Physics Communications, 59, 345–358 (1990)

    Article  Google Scholar 

  49. SUN, B. Kepler’s third law of n-body periodic orbits in a Newtonian gravitation field. Science China: Physics, Mechanics and Astronomy, 61, 054721 (2018)

    Google Scholar 

  50. FRISCH, A., MARK, M., AIKAWA, K., FERLAINO, F., BOHN, J. L., MAKRIDES, C., PETROV, A., and KOTOCHIGOVA, S. Quantum chaos in ultracold collisions of gas-phase erbium atoms. nature, 507, 475–479 (2014)

    Article  Google Scholar 

  51. SUSSMAN, G. J. and WISDOM, J. Chaotic evolution of the solar system. Science, 257, 56–62 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  52. MCLACHLAN, R. I., MODIN, K., and VERDIER, O. Symplectic integrators for spin systems. Physical Review E, 89, 061301 (2014)

    Article  MATH  Google Scholar 

  53. LASKAR, J. and ROBUTEL, P. High order symplectic integrators for perturbed Hamiltonian systems. Celestial Mechanics and Dynamical Astronomy, 80, 39–62 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. QIN, H. and GUAN, X. Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields. Physical Review Letters, 100, 035006 (2008)

    Article  Google Scholar 

  55. FARRÉS, A., LASKAR, J., BLANES, S., CASAS, F., MAKAZAGA, J., and MURUA, A. High precision symplectic integrators for the solar system. Celestial Mechanics and Dynamical Astronomy, 116, 141–174 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  56. FOREST, E. and RUTH, R. D. Fourth-order symplectic integration. Physica D: Nonlinear Phenomena, 43, 105–117 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  57. YOSHIDA, H. Construction of higher order symplectic integrators. Physics Letters A, 150, 262–268 (1990)

    Article  MathSciNet  Google Scholar 

  58. HÉNON, M. and HEILES, C. The applicability of the third integral of motion: some numerical experiments. The Astronomical Journal, 69, 73–79 (1964)

    Article  MathSciNet  Google Scholar 

  59. SPROTT, J. C. Elegant Chaos: Algebraically Simple Chaotic Flows, World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  60. LIAO, S. J. On the numerical simulation of propagation of micro-level inherent uncertainty for chaotic dynamic systems. Chaos, Solitons & Fractals, 47, 1–12 (2013)

    Article  MathSciNet  Google Scholar 

  61. SALTZMAN, B. Finite amplitude free convection as an initial value problem-I. Journal of the Atmospheric Sciences, 19, 329–341 (1962)

    Article  Google Scholar 

Download references

Acknowledgement

We thank the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijun Liao.

Additional information

Project supported by the National Natural Science Foundation of China (No. 91752104)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liao, S. Clean numerical simulation: a new strategy to obtain reliable solutions of chaotic dynamic systems. Appl. Math. Mech.-Engl. Ed. 39, 1529–1546 (2018). https://doi.org/10.1007/s10483-018-2383-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2383-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation