Skip to main content
Log in

Effects of mechanical boundary conditions on thermal shock resistance of ultra-high temperature ceramics

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The effects of mechanical boundary conditions, often encountered in thermalstructural engineering, on the thermal shock resistance (TSR) of ultra-high temperature ceramics (UHTCs) are studied by investigating the TSR of a UHTC plate with various types of constraints under the first, second, and third type of thermal boundary conditions. The TSR of UHTCs is strongly dependent on the heat transfer modes and severity of the thermal environments. Constraining the displacement of the lower surface in the thickness direction can significantly decrease the TSR of the UHTC plate, which is subject to the thermal shock at the upper surface. In contrast, the TSR of the UHTC plate with simply supported edges or clamped edges around the lower surface is much better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loehman, R., Corral, E., Dumm, H. P., Kotula, P., and Tandon, R. Ultra High Temperature Ceramics for Hypersonic Vehicle Applications, Sandia Corporation, Albuquerque, 1–46 (2006)

    Google Scholar 

  2. Opeka, M. M., Talmy, I. G., Wuchina, E. J., Zaykoski, J. A., and Causey, S. J. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. Journal of the European Ceramic Society, 19(13–14), 2405–2414 (1999)

    Article  Google Scholar 

  3. Levine, S. R., Opila, E. J., Halbig, M. C., Kiser, J. D., Singh, M., and Salem, J. A. Evaluation of ultra-high temperature ceramics for aeropropulsion use. Journal of the European Ceramic Society, 22(14-15), 2757–2767 (2002)

    Article  Google Scholar 

  4. Fahrenholtz, W. G., Hilmas, G. E., Talmy, I. G., and Zaykoski, J. A. Refractory diborides of zirconium and hafnium. Journal of the American Ceramic Society, 90(5), 1347–1364 (2007)

    Article  Google Scholar 

  5. Guo, S. Q., Kagawa, Y., and Nishimura, T. Mechanical behavior of two-step hot-pressed ZrB2-based composites with ZrSi2. Journal of the European Ceramic Society, 29(4), 787–794 (2009)

    Article  Google Scholar 

  6. Cheng, T. B., Li, W. G., and Fang, D. N. Thermal shock resistance of ultra-high-temperature ceramics under aerodynamic thermal environments. AIAA Journal, 51(4), 840–848 (2013)

    Article  Google Scholar 

  7. Cheng, T. B., Li, W. G., Zhang, C. Z., and Fang, D. N. Unified thermal shock resistance of ultrahigh temperature ceramics under different thermal environments. Journal of Thermal Stresses, 37(1), 14–33 (2014)

    Article  Google Scholar 

  8. Cheng, T. B., Li, W. G., Lu, W., Shi, Y. S., and Fang, D. N. Thermal shock resistance of ultrahigh-temperature ceramic thermal protection system. Journal of Spacecraft and Rockets, 51(3), 986–990 (2014)

    Article  Google Scholar 

  9. Cheng, C. M. Resistance to thermal shock. Journal of the American Rocket Society, 21(6), 147–153 (1951)

    Article  Google Scholar 

  10. Kingery, W. D. Factors affecting thermal stress resistance of ceramic materials. Journal of the American Ceramic Society, 38(1), 3–15 (1955)

    Article  Google Scholar 

  11. Hasselman, D. P. H. Elastic energy at fracture and surface energy as design criteria for thermal shock. Journal of the American Ceramic Society, 46(11), 535–540 (1963)

    Article  Google Scholar 

  12. Hasselman, D. P. H. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. Journal of the American Ceramic Society, 52(11), 600–604 (1969)

    Article  Google Scholar 

  13. Wang, H. and Singh, R. N. Thermal shock behaviour of ceramics and ceramic composites. International Materials Reviews, 39(6), 228–244 (1994)

    Article  Google Scholar 

  14. Li, W. G., Cheng, T. B., Zhang, R. B., and Fang, D. N. Properties and appropriate conditions of stress reduction factor and thermal shock resistance parameters for ceramics. Applied Mathematics and Mechanics (English Edition), 33(11), 1351–1360 (2012) DOI 10.1007/s10483-012-1627-x

    Article  Google Scholar 

  15. Collin, M. and Rowcliffe, D. Analysis and prediction of thermal shock in brittle materials. Acta Materialia, 48(8), 1655–1665 (2000)

    Article  Google Scholar 

  16. Zhang, X. H., Xu, L., Du, S. Y., Han, W. B., Han, J. C., and Liu, C. Y. Thermal shock behavior of SiC-whisker-reinforced diboride ultrahigh-temperature ceramics. Scripta Materialia, 59(1), 55–58 (2008)

    Article  Google Scholar 

  17. Liang, J., Wang, C., Wang, Y., Jing, L., and Luan, X. The influence of surface heat transfer conditions on thermal shock behavior of ZrB2-SiC-AlN ceramic composites. Scripta Materialia, 61(6), 656–659 (2009)

    Article  Google Scholar 

  18. Song, F., Meng, S. H., Xu, X. H., and Shao, Y. F. Enhanced thermal shock resistance of ceramics through biomimetically inspired nanofins. Physical Review Letters, 104(12), 125502 (2010)

    Article  Google Scholar 

  19. Sato, S., Sato, K., Imamura, Y., and Kon, J. I. Determination of the thermal shock resistance of graphite by arc discharge heating. Carbon, 13(4), 309–316 (1975)

    Article  Google Scholar 

  20. Schubert, C., Bahr, H. A., and Weiss, H. J. Crack propagation and thermal shock damage in graphite disks heated by moving electron beam. Carbon, 24(1), 21–28 (1986)

    Article  Google Scholar 

  21. Schneider, G. A. and Petzow, G. Thermal shock testing of ceramics — a new testing method. Journal of the American Ceramic Society, 74(1), 98–102 (1991)

    Article  Google Scholar 

  22. Meng, S. H., Qi, F., Chen, H. B., Wang, Z., and Bai, G. H. The repeated thermal shock behaviors of a ZrB2-SiC composite heated by electric resistance method. International Journal of Refractory Metals and Hard Materials, 29(1), 44–48 (2011)

    Article  Google Scholar 

  23. Yang, L., Zhou, Y. C., and Lu, C. Damage evolution and rupture time prediction in thermal barrier coatings subjected to cyclic heating and cooling: an acoustic emission method. Acta Materialia, 59(17), 6519–6529 (2011)

    Article  Google Scholar 

  24. Zhang, R. B., Chen, G. Q., and Han, W. B. Synthesis, mechanical and physical properties of bulk Zr2Al4C5 ceramic. Materials Chemistry and Physics, 119(1–2), 261–265 (2010)

    Article  Google Scholar 

  25. Han, J. C. and Wang, B. L. Thermal shock resistance of ceramics with temperature-dependent material properties at elevated temperature. Acta Materialia, 59(4), 1373–1382 (2011)

    Article  Google Scholar 

  26. Han, J. C. and Wang, B. L. Thermal shock resistance enhancement of functionally graded materials by multiple cracking. Acta Materialia, 54(4), 963–973 (2006)

    Article  Google Scholar 

  27. Chang, D. M. and Wang, B. L. Transient thermal fracture and crack growth behavior in brittle media based on non-Fourier heat conduction. Engineering Fracture Mechanics, 94, 29–36 (2012)

    Article  Google Scholar 

  28. Dassault Systemes Simulia Corporation. Heat transfer and thermal-stress analysis. Abaqus Analysis User’s Manual, Dassault Systemes Simulia Corporation, Providence (2012)

    Google Scholar 

  29. Li, W. G., Wang, R. Z., Li, D. Y., and Fang, D. N. A model of temperature-dependent Young’s modulus for ultrahigh temperature ceramics. Physics Research International, 2011, 791545 (2011)

    Article  Google Scholar 

  30. Li, W. G., Yang, F., and Fang, D. N. The temperature-dependent fracture strength model for ultra-high temperature ceramics. Acta Mechanica Sinica, 26(2), 235–239 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Li.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11472066 and 11172336), the Chongqing Natural Science Foundation (No. cstc2013jcyjA50018), the Program for New Century Excellent Talents in University (No. ncet-13-0634), and the Fundamental Research Funds for the Central Universities (Nos. CDJZR13240021 and CDJZR14328801)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, T., Li, W., Shi, Y. et al. Effects of mechanical boundary conditions on thermal shock resistance of ultra-high temperature ceramics. Appl. Math. Mech.-Engl. Ed. 36, 201–210 (2015). https://doi.org/10.1007/s10483-015-1909-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-1909-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation