Skip to main content

Advertisement

Log in

Limit cycle oscillation suppression of 2-DOF airfoil using nonlinear energy sink

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a novel mechanical attachment, i.e., nonlinear energy sink (NES), for suppressing the limit cycle oscillation (LCO) of an airfoil. The dynamic responses of a two-degree-of-freedom (2-DOF) airfoil coupled with an NES are studied with the harmonic balance method. Different structure parameters of the NES, i.e., mass ratio between the NES and airfoil, NES offset, NES damping, and nonlinear stiffness in the NES, are chosen for studying the effect of the LCO suppression on an aeroelastic system with a supercritical Hopf bifurcation or subcritical Hopf bifurcation, respectively. The results show that the structural parameters of the NES have different influence on the supercritical Hopf bifurcation system and the subcritical Hopf bifurcation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, B. H. K., Price, S. J., and Wong, Y. S. Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos. Progress in Aerospace Sciences, 35(3), 205–334 (1999)

    Article  Google Scholar 

  2. Dowell, E., John, E., and Thomas, S. Nonlinear aeroelasticity. Journal of Aircraft, 40(5), 857–874 (2003)

    Article  Google Scholar 

  3. Woolston, D. S., Runyan, H. L., and Andrews, R. E. An investigation of effects of certain types of structural nonlinearities on wing and control surface flutter. Journal of Aeronautical Sciences, 24, 57–63 (1957)

    Article  Google Scholar 

  4. Woolston, D. S., Runyan, H. L., and Byrdsong, T. A. Some Effects of System Nonlinearities in the Problem of Aircraft Flutter, NACA TN-3539, Washington, D. C. (1955)

    Google Scholar 

  5. Lee, B. H. K., Jiang, L. Y., and Wong, Y. S. Flutter of an airfoil with a cubic restoring force. Journal of Fluids and Structures, 13(1), 75–101 (1999)

    Article  Google Scholar 

  6. Chen, Y. M. and Liu, J. K. Supercritical as well as subcritical Hopf bifurcation in nonlinear flutter systems. Applied Mathematics and Mechanics (English Edition), 29(2), 181–187 (2008) DOI 10.1007/s10483-008-0207-x

    Article  MATH  Google Scholar 

  7. Librescu, L., Chiocchia, G., and Marzocca, P. Implications of cubic physical/aerodynamic nonlinearities on the character of the flutter instability boundary. International Journal of Non-Linear Mechanics, 38(2), 173–199 (2003)

    Article  MATH  Google Scholar 

  8. Ding, Q. and Wang, D. L. The flutter of an airfoil with cubic structural and aerodynamic nonlinearities. Aerospace Science and Technology, 10(5), 427–434 (2006)

    Article  MATH  Google Scholar 

  9. Guo, H. and Chen, Y. Supercritical and subcritical Hopf bifurcation and limit cycle oscillations of an airfoil with cubic nonlinearity in supersonic/hypersonic flow. Nonlinear Dynamics, 67(4), 2637–2649 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ko, J., Strganac, T. W., and Kurdila, A. J. Adaptive linearization for the control of a typical wing section with structural nonlinearity. Nonlinear Dynamics, 19(3), 289–301 (1999)

    Article  Google Scholar 

  11. Ko, J., Kurdila, A. J., and Strganac, T. W. Nonlinear control of a prototypical wing section with torsional nonlinearity. Journal of Guidance, Control, and Dynamics, 20(6), 1181–1189 (1997)

    Article  MATH  Google Scholar 

  12. Block, J. J. and Strganac, T. W. Applied active control for a nonlinear aeroelastic structure. Journal of Guidance, Control, and Dynamics, 21(6), 838–845 (1998)

    Article  Google Scholar 

  13. Platanitis, G. and Strganac, T. W. Control of a nonlinear wing section using leading- and trailingedge surfaces. Journal of Guidance, Control, and Dynamics, 27(1), 52–58 (2004)

    Article  Google Scholar 

  14. Lee, Y. S., Kerschen, G., McFarland, D. M., Hill, W. J., Nichkawde, C., Strganac, T.W., Bergman, L. A., and Vakakis, A. F. Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 2: experiments. AIAA Journal, 25(10), 2391–2400 (2007)

    Article  Google Scholar 

  15. Lee, Y. S., Kerschen, G., Vakakis, A. F., Panagopoulos, P., Bergman, L., and McFarland, D. M. Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment. Physica D, 204(1–2), 41–69 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lee, Y. S., Vakakis, A. F., Bergman, L. A., McFarland, D. M., and Kerschen, G. Suppressing aeroelastic instability using broadband passive targeted energy transfers, part I: theory. AIAA Journal, 45(3), 693–711 (2007)

    Article  Google Scholar 

  17. Lee, Y. S., Vakakis, A. F., Bergman, L. A., McFarland, D. M., and Kerschen, G. Enhancing the robustness of aeroelastic instability suppression using multi-degree-of-freedom nonlinear energy sinks. AIAA Journal, 46(6), 1371–1394 (2008)

    Article  Google Scholar 

  18. Lee, Y. S., Vakakis, A. F., Bergman, L. A., McFarland, D. M., and Kerschen, G. Triggering mechanisms of limit cycle oscillations due to aeroelastic instability. Journal of Fluids and Structures, 21(5–7), 485–529 (2005)

    Article  MATH  Google Scholar 

  19. Thomas, J. P., Dowell, E. H., and Hall, K. C. Nonlinear inviscid aerodynamic effects on transonic divergence, flutter, and limit-cycle oscillations. AIAA Journal, 40(4), 638–646 (2002)

    Article  Google Scholar 

  20. Fung, Y. C. An Introduction to the Theory of Aeroelasticity, Dover, New York (1993)

    Google Scholar 

  21. Lee, B. H. K., Liu, L., and Chung, K. W. Airfoil motion in subsonic flow with strong cubic nonlinear restoring forces. Journal of Sound and Vibration, 281(3–5), 699–717 (2005)

    Article  Google Scholar 

  22. Liu, L. and Dowell, E. H. The secondary bifurcation of an aeroelastic airfoil motion: effect of high harmonics. Nonlinear Dynamics, 37(1), 31–49 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, L. and Dowell, E. H. Harmonic balance approach for an airfoil with a freeplay control surface. AIAA Journal, 43(4), 802–815 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu-lun Guo  (郭虎伦).

Additional information

Project supported by the National Natural Science Foundation of China (No. 11172199) and the Key Program of Tianjin Natural Science Foundation of China (No. 11JCZDJC25400)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Hl., Chen, Ys. & Yang, Tz. Limit cycle oscillation suppression of 2-DOF airfoil using nonlinear energy sink. Appl. Math. Mech.-Engl. Ed. 34, 1277–1290 (2013). https://doi.org/10.1007/s10483-013-1744-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-013-1744-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation