Skip to main content
Log in

Effects of three-phase-lag on two-temperature generalized thermoelasticity for infinite medium with spherical cavity

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The thermoelastic interaction for the three-phase-lag (TPL) heat equation in an isotropic infinite elastic body with a spherical cavity is studied by two-temperature generalized thermoelasticity theory (2TT). The heat conduction equation in the theory of TPL is a hyperbolic partial differential equation with a fourth-order derivative with respect to time. The medium is assumed to be initially quiescent. By the Laplace transformation, the fundamental equations are expressed in the form of a vector-matrix differential equation, which is solved by a state-space approach. The general solution obtained is applied to a specific problem, when the boundary of the cavity is subjected to the thermal loading (the thermal shock and the ramp-type heating) and the mechanical loading. The inversion of the Laplace transform is carried out by the Fourier series expansion techniques. The numerical values of the physical quantity are computed for the copper like material. Significant dissimilarities between two models (the two-temperature Green-Naghdi theory with energy dissipation (2TGN-III) and two-temperature TPL model (2T3phase)) are shown graphically. The effects of two-temperature and ramping parameters are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gurtin, M. E. and Williams, W. O. On the Clausius-Duhem inequality. Zeitschrift für Angewandte Mathematik und Physik, 7, 626–633 (1966)

    Article  Google Scholar 

  2. Gurtin, M. E. and Williams, W. O. An axiomatic foundation for continuum thermodynamics. Archieve for Rational Mechanics and Analysis, 26, 83–117 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, P. J. and Gurtin, M. E. On a theory of heat conduction involving two temperatures. Zeitschrift für Angewandte Mathematik und Physik, 19, 614–627 (1968)

    Article  MATH  Google Scholar 

  4. Chen, P. J., Gurtin, M. E., and Williams, W. O. A note on non-simple heat conduction. Zeitschrift für Angewandte Mathematik und Physik, 19, 969–970 (1968)

    Article  Google Scholar 

  5. Chen, P. J., Gurtin, M. E., and Williams, W. O. On the thermodynamics of non-simple elastic materials with two temperatures. Zeitschrift für Angewandte Mathematik und Physik, 20, 107–112 (1969)

    Article  MATH  Google Scholar 

  6. Warren, W. E. and Chen, P. J. Wave propagation in two temperatures theory of thermoelasticity. Acta Mechanica, 16, 83–117 (1973)

    Article  Google Scholar 

  7. Lesan, D. On the thermodynamics of non-simple elastic materials with two temperatures. Journal of Applied Mathematics and Physics, 21, 583–591 (1970)

    Article  Google Scholar 

  8. Puri, P. and Jordan, P. M. On the propagation of harmonic plane waves under the two-temperature theory. International Journal of Engineering Sciences, 44, 1113–1126 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Quintanilla, R. On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures. Acta Mechanica, 168, 61–73 (2004)

    Article  MATH  Google Scholar 

  10. Lord, H. and Shulman, Y. A generalized dynamical theory of thermoelasticity. Journal of Mechanics and Physics of Solids, 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  11. Ignaczak, J. Uniqueness in generalized thermoelasticity. Journal of Thermal Stresses, 2, 171–175 (1979)

    Article  Google Scholar 

  12. Ignaczak, J. A note on uniqueness in thermoelasticity with one relaxation time. Journal of Thermal Stresses, 5, 257–263 (1982)

    Article  MathSciNet  Google Scholar 

  13. Dhaliwal, R. S. and Sherief, H. Generalized thermoelasticity for anisotropic media. Quarterly of Applied Mathematics, 33, 1–8 (1980)

    Article  MathSciNet  Google Scholar 

  14. Sherief, H. On uniqueness and stability in generalized thermoelasticity. Quarterly of Applied Mathematics, 45, 773–778 (1987)

    MathSciNet  Google Scholar 

  15. Ackerman, C. C., Bertman, B., Fairbank, H. A., and Guyer, R. A. Second sound in solid helium. Physical Review Letter, 16, 789–791 (1966)

    Article  Google Scholar 

  16. Ackerman, C. C. and Guyer, R. A. Temperature pulses in dielectric solids. Annals of Physics, 50, 128–185 (1968)

    Article  Google Scholar 

  17. Ackerman, C. C. and Overton, Jr., W. C. Second sound in solid helium-3. Physical Review Letter, 22, 764–766 (1969)

    Article  Google Scholar 

  18. Von Gutfeld, R. J. and Nethercot, Jr., A. H. Temperature dependent of heat pulse propagation in sapphire. Physical Review Letter, 17, 868–871 (1966)

    Article  Google Scholar 

  19. Guyer, R. A. and Krumhansi, J. A. Solution of the linearized phonon Boltzmann equation. Physical Review, 148(2), 766–778 (1966)

    Article  Google Scholar 

  20. Taylor, B., Marris, H. J., and Elbaum, C. Phonon focusing in solids. Physical Review Letter, 23, 416–419 (1969)

    Article  Google Scholar 

  21. Rogers, S. J. Transport of heat and approach to second sound in some isotropically pure Alkali-Halide crystals. Physical Review B, 3, 1440–1457 (1971)

    Article  Google Scholar 

  22. Jackson, H. E. and Walker, C. T. Thermal conductivity, second sound and phonon-phonon interactions in NaF. Physical Review B, 3, 1428–1439 (1971)

    Article  Google Scholar 

  23. Jackson, H. E., Walker, C. T., and McNelly, T. F. Second sound in NaF. Physical Review Letter, 25, 26–28 (1970)

    Article  Google Scholar 

  24. Green, A. E. and Lindsay, K. A. Thermoelasticity. Journal of Elasticity, 2, 1–7 (1972)

    Article  MATH  Google Scholar 

  25. Ghosh, M. K. and Kanoria, M. Analysis of thermoelastic response in a functionally graded spherically isotropic hollow sphere based on Green-Lindsay theory. Acta Mechanica, 207, 51–67 (2009)

    Article  MATH  Google Scholar 

  26. Hetnarski, R. B. and Ignaczak, J. Generalized thermoelasticity: closed form solutions. Journal of Thermal Stresses, 16, 473–498 (1993)

    Article  MathSciNet  Google Scholar 

  27. Hetnarski, R. B. and Ignaczak, J. Generalized thermoelasticity: response of semi-space to a short laser pulse. Journal of Thermal Stresses, 17, 377–396 (1994)

    Article  MathSciNet  Google Scholar 

  28. Green, A. E. and Naghdi, P. M. A reexamination of the basic results of thermomechanics. Proceedings of the Royal Society of London Series A, 432, 171–194 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Green, A. E. and Naghdi, P. M. On undamped heat waves in an elastic solid. Journal of Thermal Stresses, 15, 252–264 (1992)

    Article  MathSciNet  Google Scholar 

  30. Green, A. E. and Naghdi, P. M. Thermoelasticity without energy dissipation. Journal of Elasticity, 31, 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bagri, A. and Eslami, M. R. Generalized coupled thermoelasticity of disks based on Lord-Shulman model. Journal of Thermal Stresses, 27, 691–704 (2004)

    Article  Google Scholar 

  32. Kar, A. and Kanoria, M. Thermoelastic interaction with energy dissipation in an infinitely extended thin plate containing a circular hole. Far East Journal of Applied Mathematics, 24, 201–217 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Kar, A. and Kanoria, M. Thermoelastic interaction with energy dissipation in an unbounded body with a spherical hole. International Journal of Solids and Structures, 44, 2961–2971 (2007)

    Article  MATH  Google Scholar 

  34. Kar, A. and Kanoria, M. Thermoelastic interaction with energy dissipation in a transversely isotropic thin circular disc. European Journal of Mechanics A/Solids, 26, 969–981 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Das, N. C. and Lahiri, A. Thermoelastic interactions due to prescribed pressure inside a spherical cavity in an unbounded medium. International Journal of Pure and Applied Mathematics, 31, 19–32 (2000)

    MATH  Google Scholar 

  36. Roychoudhuri, S. K. and Dutta, P. S. Thermoelastic interaction without energy dissipation in an infinite solid with distributed periodically varying heat sources. International Journal of Solids and Structures, 42, 4192–4203 (2005)

    Article  MATH  Google Scholar 

  37. Roychoudhuri, S. K. and Bandyopadhyay, N. Thermoelastic wave propagation in a rotating elastic medium without energy dissipation. International Journal of Mathematics and Mathematical Sciences, 1, 99–107 (2004)

    MathSciNet  Google Scholar 

  38. Ghosh, M. K. and Kanoria, M. Generalized thermoelastic problem of a spherically isotropic elastic medium containing a spherical cavity. Journal of Thermal Stresses, 31, 665–679 (2008)

    Article  Google Scholar 

  39. Tzou, D. Y. A unified field approach for heat conduction from macro to micro scales. ASME Journal of Heat Transfer, 117, 8–16 (1995)

    Article  Google Scholar 

  40. Chandrasekharaiah, D. S. Hyperbolic thermoelasticity: a review of recent literature. Applied Mechanics Review, 51, 705–729 (1998)

    Article  Google Scholar 

  41. Roychoudhuri, S. K. One-dimensional thermoelastic waves in elastic half-space with dual-phase-lag effects. Journal of Mechanics of Materials and Structures, 2, 489–503 (2007)

    Article  Google Scholar 

  42. Roychoudhuri, S. K. On a thermoelastic three-phase-lag model. Journal of Thermal Stresses, 30, 231–238 (2007)

    Article  Google Scholar 

  43. Kar, A. and Kanoria, M. Generalized thermoelastic functionally graded orthotropic hollow sphere under thermal shock with three-phase-lag effect. European Journal of Mechanics A/Solids, 28, 757–767 (2009)

    Article  MATH  Google Scholar 

  44. Kar, A. and Kanoria, M. Generalized thermo-visco-elastic problem of a spherical shell with threephase-lag effect. Applied Mathematics and Modelling, 33, 3287–3298 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Quintanilla, R. and Racke, R. A note on stability in three-phase-lag heat conduction. International Journal of Heat and Mass Transfer, 51, 24–29 (2008)

    Article  MATH  Google Scholar 

  46. Quintanilla, R. Spatial behaviour of solutions of the three-phase-lag heat equation. Applied Mathematics and Computation, 213, 153–162 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Youssef, H. M. Theory of two-temperature generalized thermoelasticity. IMA Journal of Applied Mathematics, 71, 1–8 (2006)

    Article  MathSciNet  Google Scholar 

  48. Youssef, H. M. and Al-Harby, A. H. State-space approach of two-temperature generalized thermoelasticity of infinite body with a spherical cavity subjected to different type thermal loading. Archives of Applied Mechanics, 77, 675–687 (2007)

    Article  MATH  Google Scholar 

  49. Youssef, H. M. and Al-Lehaibi, E. A. State-space approach of two-temperature generalized thermoelasticity of one-dimensional problem. International Journal of Solids and Structures, 44, 1550–1562 (2007)

    Article  MATH  Google Scholar 

  50. Youssef, H. M. Two-dimensional problem of a two-temperature genearlized thermoelastic halfspace subjected to a ramp-type heating. Computational Mathematics and Modeling, 19(2), 201–216 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kumar, R., Prasad, R., and Mukhopadhyay, S. Variational and reciprocal principles in twotemperature generalized thermoelasticity. Thermal Stresses, 33, 161–171 (2010)

    Article  Google Scholar 

  52. Magane, A. and Quintanilla, R. Uniqueness and growth of solutions in two-temperature generalized thermoelastic theories. Journal of Mathematics and Mechanics of Solids, 14, 622–634 (2009)

    Article  Google Scholar 

  53. Kumar, R. and Mukhopadhyay, S. Effects of three-phase-lags on generalized thermoelasticity for an infinite medium with a cylindrical cavity. Journal of Thermal Stresses, 32, 1149–1165 (2009)

    Article  Google Scholar 

  54. Youssef, H. M. and El-Bary, A. A. Two-temperature generalized thermoelasticity with variable thermal conductivity. Journal of Thermal Stresses, 33, 187–201 (2010)

    Article  Google Scholar 

  55. Bahar, L. Y. and Hetnarski, R. B. State space approach to thermoelasticity. Proceedings of 6th Canadian Congress of Applied Mechanics, University of British Columbia, Vancouver, Canada, 17–18 (1977)

    Google Scholar 

  56. Bahar, L. Y. and Hetnarski, R. B. Transfer matrix approach to thermoelasticity. Proceedings of 15th Midwest Mechanical Conference, University of Illinois at Chicago, Chicago, 161–163 (1977)

  57. Bahar, L. Y. and Hetnarski, R. B. State space approach to thermoelasticity. Journal of Thermal Stresses, 1, 135–145 (1978)

    Article  Google Scholar 

  58. Anwar, M. and Sherief, H. State space approach to generalized thermoelasticity. Journal of Thermal Stresses, 11, 353–365 (1988)

    Article  Google Scholar 

  59. El-Maghraby, N. M. and Youssef, H. M. State space approach to generalized thermoelastic problem with thermomechanical shock. Journal of Applied Mathematics and Computation, 156, 577–586 (2004)

    Article  MATH  Google Scholar 

  60. Honig, G. and Hirdes, U. A method for the numerical inversion of Laplace transform. Journal of Computational and Applied Mathematics, 10, 113–132 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kanoria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banik, S., Kanoria, M. Effects of three-phase-lag on two-temperature generalized thermoelasticity for infinite medium with spherical cavity. Appl. Math. Mech.-Engl. Ed. 33, 483–498 (2012). https://doi.org/10.1007/s10483-012-1565-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1565-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation