Skip to main content
Log in

Exact solution to peristaltic transport of power-law fluid in asymmetric channel with compliant walls

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Effects of compliant wall properties on the peristaltic flow of a non-Newtonian fluid in an asymmetric channel are investigated. The rheological characteristics are characterized by the constitutive equations of a power-law fluid. Long wavelength and low Reynolds number approximations are adopted in the presentation of mathematical developments. Exact solutions are established for the stream function and velocity. The streamlines pattern and trapping are given due attention. Salient features of the key parameters entering into the present flow are displayed and important conclusions are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

V :

velocity

u, v :

velocity components in x, and y-directions, respectively

T :

Cauchy stress tensor

S :

extra stress tensor

D :

symmetric part of velocity gradient

A 1 :

first Rivlin-Ericksen tensor

L :

gradient of velocity

L T :

transpose of the gradient of velocity

C :

coefficient of viscous damping

B :

flexural rigidity of the plate

a 1 :

amplitude of the wave along the upper channel wall

a 2 :

amplitude of the wave along the lower channel wall

t :

time

x :

spatial coordinate along the channel walls

y :

spatial coordinate normal the channel walls

m :

power-law exponent

−pI :

indeterminate part of the stress

c :

wave speed

k :

spring stiffness coefficient

p :

pressure

d 1 :

upper half channel width

d 2 :

lower half channel width

a :

dimensionless amplitude ratio of the wave along upper wall

b :

dimensionless amplitude ratio of the wave along lower wall

E 1 :

dimensionless number corresponding to the plate mass per unit area

E 2 :

dimensionless number corresponding to the coefficient of viscous damping

E 3 :

dimensionless number corresponding to the flexural rigidity of the plate

E 4 :

dimensionless number corresponding to the elastic tension in the membrane

E 5 :

dimensionless number corresponding to the spring stiffness coefficient

h :

channel width ratio

\( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{m} \) :

plate mass per unit area

Re :

Reynolds number

η 1 :

vertical displacement corresponding to the upper wall

η 2 :

vertical displacement corresponding to the lower wall

μ :

dynamic viscosity

μ app :

apparent viscosity

ν :

kinematic viscosity

ψ:

stream function

ρ :

fluid density

δ :

dimensionless wave number

θ :

phase difference

τ :

elastic tension in the membrane

λ :

wave length

References

  1. Shapiro, A. H., Jaffrin, M. Y., and Weinberg, S. L. Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech. 37, 799–825 (1969)

    Article  Google Scholar 

  2. Fung, Y. C. and Yih, C. S. Peristaltic transport. Trans. ASME J. Appl. Mech. 35, 669–675 (1968)

    MATH  Google Scholar 

  3. Fetecau, C., Fetecau, C., Khan, M., and Vieru, D. Decay of a potential vortex in a generalized Oldroyd-B fluid. Appl. Math. Comput. 205, 497–506 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hayat, T., Fetecau, C., and Sajid, M. On MHD transient flow of a Maxwell fluid in a porous medium and rotating frame. Phys. Lett. A 372, 1639–1644 (2008)

    Article  Google Scholar 

  5. Hayat, T., Wang, Y., Siddiqui, A. M., and Hutter, K. Peristaltic motion of Johnson-Segalman fluid in a planar channel. Math. Prob. Eng. 1, 1–23 (2003)

    Article  MathSciNet  Google Scholar 

  6. Hayat, T., Wang, Y., Hutter, K., Asghar, S., and Siddiqui, A. M. Peristaltic transport of an Oldroyd-B fluid in a planar channel. Math. Prob. Eng. 4, 347–376 (2004)

    Article  MathSciNet  Google Scholar 

  7. Hayat, T., Khan, M., Asghar, S., and Siddiqui, A. M. A mathematical model of peristalsis in tubes through a porous medium. J. Porous Media 9, 55–67 (2006)

    Article  Google Scholar 

  8. Hayat, T., Mahomed, F. M., and Asghar, S. Peristaltic flow of a magnetohydrodynamic Johnson-Segalman fluid. Nonlinear Dynamics 40, 375–385 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hayat, T., Khan, M., Siddiqui, A. M., and Asghar, S. Non-linear peristaltic flow of a non-Newtonian fluid under effect of a magnetic field in a planar channel. Comm. Nonlinear Sci. Numer. Simul. 12, 910–919 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mekheimer, K. S. and Elmaboud, Y. A. The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: application of an endoscope. Phys. Lett. A 372, 1657–1659 (2008)

    Article  Google Scholar 

  11. Mekheimer, K. S. Peristaltic transport of a couple-stress fluid in a uniform and non-uniform channels. Biorheology 39, 755–765 (2002)

    Google Scholar 

  12. Mekheimer, K. S. Peristaltic flow of blood under effect of a magnetic field in non-uniform channels. Appl. Math. Comput. 153, 763–777 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Elshahed, M. and Haroun, M. H. Peristaltic transport of Johnson-Segalman fluid under effect of a magnetic field. Math. Prob. Eng. 6, 663–667 (2005)

    Article  MathSciNet  Google Scholar 

  14. Akgul, M. B. and Pakdemirli, M. Analytic and numerical solutions of electro-osmotically driven flow of a third grade fluid between micro-parallel plates. International Journal of Non-Linear Mechanics 43, 985–992 (2008)

    Article  Google Scholar 

  15. Raju, K. K. and Devanathan, R. Peristaltic motion of a non-Newtonian, part-I. Rheol. Acta 11, 170–178 (1972)

    Article  MATH  Google Scholar 

  16. Radhakrishnamacharya, G. Long wave length approximation to peristaltic motion of power law fluid. Rheol. Acta 21, 30–35 (1982)

    Article  MATH  Google Scholar 

  17. Lew, H. S., Fung, Y. C., and Lowenstein, C. B. Peristaltic carrying and mixing of chyme in the small intestine (an analysis of a mathematical model of peristaltic of the small intestine). J. Biomech. 4, 297–315 (1971)

    Article  Google Scholar 

  18. Misra, J. C. and Pandey, S. K. A mathematical model for oesophageal swallowing of a food bolus. Math. Comput. Model 33, 997–1009 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Srivastava, L. M. and Srivastava, V. P. Peristaltic transport of power-law fluid: application to the ductus of efferentes of the reproductive tract. Rheol. Acta 27, 428–433 (1988)

    Article  Google Scholar 

  20. Mishra, M. and Rao, A. R. Peristaltic transport of a Newtonian fluid in an asymmetric channel. Z. Angew. Math. Phys. 54, 532–550 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ali, N., Hayat, T., and Asghar, S. Peristaltic flow of a Maxwell fluid in a channel with compliant walls. Chaos, Solitons and Fractals 39, 407–416 (2009)

    Article  MathSciNet  Google Scholar 

  22. Hayat, T., Javed, M., and Ali, N. MHD peristaltic transport of a Jeffrey fluid in a channel with compliant walls and porous space. Trans. Porous Media 74, 259–274 (2008)

    Article  MathSciNet  Google Scholar 

  23. Srinivas, S. and Kothandapani, M. The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls. Appl. Math. Comput. 213, 197–208 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hayat, T., Javed, M., and Asghar, S. MHD peristaltic motion of Johnson-Segalman fluid in a channel with compliant walls. Phys. Lett. A 372, 5026–5036 (2008)

    Article  Google Scholar 

  25. Kothandapani, M. and Srinivas, S. On the influence of wall properties in the MHD peristaltic transport with heat transfer and porous medium. Phys. Lett. A 372, 4586–4591 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Javed.

Additional information

Communicated by Chuan-jing LU

Project supported by the Higher Education Commission (HEC) of Pakistan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayat, T., Javed, M. Exact solution to peristaltic transport of power-law fluid in asymmetric channel with compliant walls. Appl. Math. Mech.-Engl. Ed. 31, 1231–1240 (2010). https://doi.org/10.1007/s10483-010-1356-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-010-1356-7

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation