Skip to main content
Log in

Deformation of metallic single-walled carbon nanotubes in electric field based on elastic theory

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The electromechanical properties of metallic single-walled carbon nanotubes (SWCNTs) in the electric field are demonstrated with a column shell model in this paper. A hemisphere model is introduced to determine the charge distribution and the local electric field in SWCNTs. By treating the SWCNT as an elastic column shell, the analytical solutions of the charged SWCNT’s axial strain and the radial strain are obtained. SWCNTs with a larger aspect ratio show greater deformation. The greatest radial deformation appears at the end of the tube. The significant axial strain can be induced in CNTs with a large length (around 100 nm) even though the applied electric field is not strong enough. When SWCNTs are fixed at both ends, the radius of SWCNTs becomes small along the axial position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M. Exceptional high Young’s modulus observed for individual carbon nanotubes. Nature 381(20), 678–680 (1996)

    Article  Google Scholar 

  2. Lu, J. P. Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79(7), 1297–1300 (1997)

    Article  Google Scholar 

  3. Hamada, N., Sawada, S., and Oshiyama, A. New one-dimensional conductors: graphitic microtubules. Phys. Rev. Lett. 68(10), 1579–1581 (1992)

    Article  Google Scholar 

  4. White, C. T., Robertson, D. H., and Mintmire, J. W. Energy gaps in “metallic” single-walled carbon nanotubes. Clusters and Nanostructured Materials (eds. Jena, P. and Behera, S.), Nova, New York, 231–237 (1996)

    Google Scholar 

  5. Blase, X., Benedict, L. X., Shirley, E. L., and Louie, S. G. Hybridization effects and metallicity in small radius carbon nanotubes. Phys. Rev. Lett. 72(21), 1878–1881 (1994)

    Article  Google Scholar 

  6. Kane, C. L. and Mele, E. J. Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 78(10), 1932–1935 (1997)

    Article  Google Scholar 

  7. Baughman, R. H., Zakhidov, A. A., and de Heer, W. A. Carbon nanotubes-the route toward applications. Science 297(5582), 787–792 (2002)

    Article  Google Scholar 

  8. Bonard, J. M., Dean, K. A., Coll, B. F., and Klinke, C. Field emission of individual carbon nanotubes in the scanning electron microscope. Phys. Rev. Lett. 89(19), 197602 (2002)

    Article  Google Scholar 

  9. Zheng, X., Chen, G. H., Deng, S. Z., and Xu, N. S. Quantum-mechanical investigation of fieldemission mechanism of a micrometer-long single-walled carbon nanotube. Phys. Rev. Lett. 92(10), 106803 (2004)

    Article  Google Scholar 

  10. Keblinski, P., Nayak, S. K., Zapol, P., and Ajayan, P. M. Charge distribution and stability of charged carbon nanotubes. Phys. Rev. Lett. 89(25), 255503 (2002)

    Article  Google Scholar 

  11. Sun, G. Y., Kurti, J., Kertesz, M., and Baughman, R. H. Dimensional changes as a function of charge injection in single-walled carbon nanotubes. JACS 124(50), 15076–15080 (2002)

    Article  Google Scholar 

  12. Guo, Y. F. and Guo, W. L. Mechanical and electrostatic properties of carbon nanotubes under tensile loading and electric field. J. Phys. D: Appl. Phys. 36(7), 805–811 (2003)

    Article  Google Scholar 

  13. Guo, W. L. and Guo, Y. F. Giant axial electrostrictive deformation in carbon nanotubes. Phys. Rev. Lett. 91(11), 115501 (2003)

    Article  Google Scholar 

  14. Li, C. Y. and Chou, T. W. Charge-induced strains in single-walled carbon nanotubes. Nanotechnology 17(18), 4624–4628 (2006)

    Article  Google Scholar 

  15. Li, C. Y. and Chou, T.W. Theoretical studies on the charge-induced failure of single-walled carbon nanotubes. Carbon 45(5), 922–930 (2007)

    Article  Google Scholar 

  16. Kokkorakis, G. C., Modinos, A., and Xanthankis, J. P. Local electric field at the emitting surface of a carbon nanotube. J. Appl. Phys. 91(7), 4580–4584 (2001)

    Article  Google Scholar 

  17. Tans, S. J., Devoret, M. H., Dai, H. J., Thess, A., Smalley, R. E., Geerligs, L. J., and Dekker, C. Individual single-walled carbon nanotubes as quantum wires. Nature 386(6624), 474–477 (1997)

    Article  Google Scholar 

  18. Snow, E. S., Perkins, F. K., Houser, E. J., Badescu, S. C., and Reinecke, T. L. Chemical detection with a single-walled carbon nanotube capacitor. Science 307(5717), 1942–1945 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-ming Guo  (郭兴明).

Additional information

Contributed by Xing-ming GUO

Project supported by the National Natural Science Foundation of China (Nos. 10972128 and 10472061), the Ph. D. Programs Foundation of Ministry of Education of China (No. 20060280015), and the Shanghai Leading Academic Discipline Project (No. S30106)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, Wl., Guo, Xm. Deformation of metallic single-walled carbon nanotubes in electric field based on elastic theory. Appl. Math. Mech.-Engl. Ed. 31, 271–278 (2010). https://doi.org/10.1007/s10483-010-0301-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-010-0301-9

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation