Skip to main content
Log in

Nanoparticle coagulation in a planar jet via moment method

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Large eddy simulations of nanoparticle coagulation in an incompressible planar jet were performed. The particle is described using a moment method to approximate the particle general dynamics equations. The time-averaged results based on 3000 time steps for every case were obtained to explore the influence of the Schmidt number and the Damkohler number on the nanoparticle dynamics. The results show that the changes of Schmidt number have the influence on the number concentration of nanoparticles only when the particle diameter is less than 1 nm for the fixed gas parameters. The number concentration of particles for small particles decreases more rapidly along the flow direction, and the nanoparticles with larger Schmidt number have a narrower distribution along the transverse direction. The smaller nanoparticles coagulate and disperse easily, grow rapidly hence show a stronger polydispersity. The smaller coagulation time scale can enhance the particle collision and coagulation. Frequented collision and coagulation bring a great increase in particle size. The large the Damkohler number is, the higher the particle polydispersity is.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu M Z, Lin J Z, Chen L H. Large eddy simulation of a planar jet flow with nanoparticle coagulation[J]. Acta Mechanica Sinica, 2006, 22(4):293–300.

    Article  Google Scholar 

  2. Miller S E, Garrick S C. Nanoparticle coagulation in a planar jet[J]. Aerosol Sci Technol, 2004, 38(1):79–89.

    Article  Google Scholar 

  3. Garrick S C, Lehtinen K E J, Zachariah M R. Nanoparticle coagulation via a Navier-Stokes/nodal methodology: evolution of the particle field[J]. J Aerosol Sci, 2006, 37(5):555–576.

    Article  Google Scholar 

  4. Lin J Z, Chan T L, Liu S, Zhou K, Zhou Y, Lee S C. Effects of coherent structures on nanoparticle coagulation and dispersion in a round jet[J]. Int J Nonlinear Sci Numer Simul, 2007, 8(1):45–54.

    Google Scholar 

  5. Smoluchowski V. Versuch einer mathematischen theorie der Koagulationskinetik kollider losungen[J]. Z Phys Chem, 1917, 92:129–168.

    Google Scholar 

  6. Frenklach M. Dynamics of discrete distribution for smoluchowski coagulation model[J]. J Colloid Interface Sci, 1985, 108(1):237–242.

    Article  Google Scholar 

  7. Hulbert H M, Katz S. Some problems in particle technology: a statistical mechanical formulation[J]. Chem Eng Sci, 1964, 19(8):555–574.

    Article  Google Scholar 

  8. Smith E J, Jordan L M. Mathematical and graphical interpretation of the lognormal law for particle size distribution analysis[J]. J Colloid Interface Sci, 1964, 19(6):549–559.

    Google Scholar 

  9. Frenklach M, Harris S J. Aerosol dynamics modeling using the method of moments[J]. J Colloid Interface Sci, 1987, 118(11):252–261.

    Article  Google Scholar 

  10. Friedlander S K. Dynamics of aerosol formation by chemical reaction[J]. Ann NY Acad Sci, 1983, 404(1):354–364.

    Article  MathSciNet  Google Scholar 

  11. Pratsinis S E. Simultaneous nucleation, condensation, and coagulation in aerosol reactor[J]. J Colloid Interface Sci, 1988, 124(2):416–427.

    Article  Google Scholar 

  12. McGraw R. Description of aerosol dynamics by the quadrature method of moments[J]. Aerosol Sci Technol, 1997, 27(2):255–265.

    Article  Google Scholar 

  13. Settumba N, Garrick S C. Direct numerical simulation of nanoparticle coagulation in a temporal mixing layer via a moment method[J]. J Aerosol Sci, 2003, 34(1):149–167.

    Article  Google Scholar 

  14. Talukdar S S, Swihart M T. Aerosol dynamics modeling of silicon nanoparticle formation during silane pyrolysis: a comparison of three solution methods[J]. J Aerosol Sci, 2004, 35(7):889–908.

    Article  Google Scholar 

  15. Diemer R B, Olson J H. A moment methodology for coagulation and breakage problems: Part 1—analytical solution of the steady-state population balance[J]. Chem Eng Sci, 2002, 57(12):2193–2209.

    Article  Google Scholar 

  16. Pratsinis S E, Kim K S. Particle coagulation, diffusion and thermophoresis in laminar tube flows[J]. J Aerosol Sci, 1989, 20(1):101–111.

    Article  Google Scholar 

  17. Pyykonen J, Jokiniemi J. Computational fluid dynamics based sectional aerosol modeling schemes[J]. J Aerosol Sci, 2000, 31(5):531–550.

    Article  Google Scholar 

  18. Terry D A, McGraw R, Rangel R H. Method of moments solution for a laminar flow aerosol reactor model[J]. Aerosol Sci Technol, 2001, 34(4):353–362.

    Article  Google Scholar 

  19. Smagorinsky J. General circulation experiments with the primitive equation[J]. Mon Weather Rev, 1963, 91(3):99–164.

    Article  Google Scholar 

  20. Lilly D K. A proposed modification of the Germano subgrid scale closure method[J]. Phys Fluids A, 1992, 4(3):633–635.

    Article  MathSciNet  Google Scholar 

  21. Friedlander S K. Smoke, dust and haze: fundamentals of aerosol behavior[M]. New York: Wiley Publication, 1977.

    Google Scholar 

  22. Suh S M, Zachariah M R, Girshick S L. Modeling particle formation during low-pressure silane oxidation: Detailed chemical kinetics and aerosol dynamics[J]. J Vac Sci Technol A, 2001, 19(3):940–951.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Jian-zhong  (林建忠).

Additional information

Contributed by LIN Jian-zhong

Project supported by the Major Basic Research Special Foundation of the Ministry of Science and Technology of China (No. 2005CCA06900)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Mz., Lin, Jz. & Chen, Lh. Nanoparticle coagulation in a planar jet via moment method. Appl. Math. Mech.-Engl. Ed. 28, 1445–1453 (2007). https://doi.org/10.1007/s10483-007-1104-8

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-007-1104-8

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation