Skip to main content
Log in

One-order closed model of fluctuating particle coagulation term in the Reynolds averaged general dynamic equation for nanoparticles

  • Research
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The effect of fluctuating coagulation on particle distribution in multiphase turbulence of nanoparticles was studied based on the Reynolds averaged equation of turbulence flow and the general dynamic equation of particles. A one-order closed model was proposed to relate the fluctuating coagulation term to the average particle size distribution function for closing the particle equation. The proposed model and equations were applied to a turbulent jet flow using the k-ε turbulent model and the Taylor-series expansion moment method. The results showed that there is a difference in the values of particle number density M0, geometric average diameter dpg and geometric standard deviation σg of particle diameter with and without considering fluctuating coagulation. Larger Damkohler number leads to smaller M0, higher particle polydispersity M2, larger dpg and σg. Along the x direction of the flow, M0 decreases, while M2, dpg and σg increase. From the centerline to the outer edge of the jet, M0, M2 and dpg decrease, while σg increases first and then decreases. Finally, the further research that can be carried out has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Friedlander SK (2000) Smoke, dust and haze: fundamentals of aerosol behavior. Wiley press, New york

    Google Scholar 

  2. Saffman PG, Turner JS (1956) On the collision of drops in turbulent clouds. J Fluid Mech 1(1):16–30

    Article  Google Scholar 

  3. Delichatsios MA, Probstein RF (1975) Coagulation in turbulent flow: theory and experiment. J Colloid Interface Sci 51(3):394–405

    Article  Google Scholar 

  4. Sundaram S, Collins LR (1977) Collision statistics in an isotropic particle-laden turbulent suspension. 1. Direct numerical simulations. J Fluid Mech 335:75–109

    Article  Google Scholar 

  5. Wang LP, Wexler AS, Zhou Y (1998) On the collision rate of small particles in isotropic turbulence. I Zero-inertia case Phys Fluids 10(1):266–276

    CAS  Google Scholar 

  6. Reade WC, Collins LR (2000) A numerical study of the particle size distribution of an aerosol undergoing turbulent coagulation. J Fluid Mech 415:45–64

    Article  CAS  Google Scholar 

  7. Guichard R, Taniere A, Belut E, Rimbert N (2014) Simulation of nanoparticle coagulation under Brownian motion and turbulence in a differential-algebraic framework: developments and applications. Int J Multiphase Flow 64:73–84

    Article  CAS  Google Scholar 

  8. Finke J, Niemann S, Richter C, Gothsch T, Kwade A, Buttgenbach S, Muller-Goymann CC (2014) Multiple orifices in customized microsystem high-pressure emulsification: The impact of design and counter pressure on homogenization efficiency. Chem Eng J 248:107–121

    Article  CAS  Google Scholar 

  9. Chen WC, Cheng WT (2016) Numerical simulation on forced convective heat transfer of titanium dioxide/water nanofluid in the cooling stave of blast furnace. Int Commun Heat Mass Transf 71:208–215

    Article  CAS  Google Scholar 

  10. Karsch M, Kronenburg A (2023) Modelling nanoparticle agglomeration in the transition regime: A comparison between detailed Langevin Dynamics and population balance calculations. J Aerosol Sci 173:106228

    Article  CAS  Google Scholar 

  11. Patra P, Roy A (2022) Brownian coagulation of like-charged aerosol particles. Physical Review Fluids 7(6):064308

    Article  Google Scholar 

  12. Yang H, Hogan CJ (2017) Collision rate coefficient for charged dust grains in the presence of linear shear. Phys Rev E 96(3):032911

    Article  PubMed  Google Scholar 

  13. Levin LM, Sedunov YS (1966) Gravitational coagulation of charged cloud drops in turbulent flow. Pure Appl Geophys 64(1):185–196

    Article  Google Scholar 

  14. Soos M, Marchisio DL, Sefcik J (2013) Assessment of gel formation in colloidal dispersions during mixing in turbulent jets. AIChE J 59(12):4567–4581

    Article  CAS  Google Scholar 

  15. Cifuentes L, Wlokas I, Wollny P, Kempf A (2023) Turbulence effects on the formation and growth of nano-particles in three-dimensional premixed and non-premixed flames. Appl Energy Combust Sci 16:100210

    Google Scholar 

  16. Anand S, Mayya YS (2015) Coagulation in a spatially inhomogeneous plume: Formation of bimodal size distribution. J Aerosol Sci 84:9–13

    Article  CAS  Google Scholar 

  17. Papini A, Flandoli F, Huang RJ (2023) Turbulence enhancement of coagulation: The role of eddy diffusion in velocity. Physica D-nonlinear Phenomena 448:133726

    Article  Google Scholar 

  18. Zhao Y, Kato S, Zhao JN (2016) Numerical investigation of Brownian, gradient, and turbulent coagulation under moving vehicle conditions in an underground garage. J Disper Sci Technol 372(2):258–269

    Article  Google Scholar 

  19. Zatevakhin MA, Ignatyev AA, Govorkova VA (2015) Numerical simulation of Brownian coagulation under turbulent mixing conditions. IZV Atmos Ccean Phy 51(2):148–155

    Article  Google Scholar 

  20. Chan TL, Liu SY, Yue Y (2018) Nanoparticle formation and growth in turbulent flows using the bimodal TEMOM. Powder Technol 323:507–517

    Article  CAS  Google Scholar 

  21. Settumba N, Garrick SC (2003) Direct numerical simulation of nanoparticle coagulation in a temporal mixing layer via a moment method. J Aerosol Sci 34(2):149–167

    Article  CAS  Google Scholar 

  22. Miller SE, Garrick SC (2004) Nanoparticle coagulation in a planar jet. Aerosol Sci Technol 38(1):79–89

    Article  CAS  Google Scholar 

  23. Garrick SC, Lehtinen KEJ, Zachariah MR (2006) Nanoparticle coagulation via a Navier–Stokes/Nodal methodology: evolution of the particle field. J Aerosol Sci 37(5):555–576

    Article  CAS  Google Scholar 

  24. Garrick SC (2011) Effects of turbulent fluctuations on nanoparticle coagulation in shear flows. Aerosol Sci Technol 45(10):1272–1285

    Article  CAS  Google Scholar 

  25. Ma HY, Yu MZ, Jin HH (2020) A study of the evolution of nanoparticle dynamics in a homogeneous isotropic turbulence flow via a DNS-TEMOM method. J Hydrodyn 32(6):1091–1099

    Article  Google Scholar 

  26. Cifuentes L, Sellmann J, Wlokas I, Kempf A (2020) Direct numerical simulations of nanoparticle formation in premixed and non-premixed flame-vortex interactions. Phys Fluids 32(9):093605

    Article  CAS  Google Scholar 

  27. Schwarzer HC, Schwertfirm F, Manhart M, Schmid HJ, Peukert W (2006) Predictive simulation of nanoparticle precipitation based on the population balance equation. Chem Eng Sci 61(1):167–181

    Article  CAS  Google Scholar 

  28. Das S, Garrick SC (2010) The effects of turbulence on nanoparticle growth in turbulent reacting jets. Phys Fluids 22(10):103303

    Article  Google Scholar 

  29. Rigopoulos S (2007) PDF method for population balance in turbulent reactive flow. Chem Eng Sci 62(23):6865–6878

    Article  CAS  Google Scholar 

  30. Warshaw M (1967) Cloud droplet coalescence: statistical foundations and a one-dimensional sedimentation model. J Atmos Sci 24(3):278–286

    Article  Google Scholar 

  31. Levin LM, Sedunov YS (1968) The theoretical model of the drop spectrum formation process in clouds. Pure Appl Geophys 69(1):320–335

    Article  Google Scholar 

  32. Loeffler J, Das S, Garrick SC (2011) Large eddy simulation of titanium dioxide nanoparticle formation and growth in turbulent jets. Aerosol Sci Technol 45(5):616–628

    Article  CAS  Google Scholar 

  33. Tsagkaridis M, Rigopoulos S, Papadakis G (2022) Analysis of turbulent coagulation in a jet with discretised population balance and DNS. J Fluid Mech 937:A25

    Article  CAS  Google Scholar 

  34. Drossinos Y, Housiadas C (2006) Aerosol flows. In Multiphase Flow Handbook (ed. C.T. Crowe), 6–1–6–58. CRC Press

  35. Spalding DB (1971) Concentration fluctuations in a round turbulent free jet. Chem Eng Sci 26(1):95–107

    Article  CAS  Google Scholar 

  36. Elghobashi S, Pun W, Spalding D (1977) Concentration fluctuations in isothermal turbulent confined coaxial jets. Chem Eng Sci 32(2):161–166

    Article  CAS  Google Scholar 

  37. Yang H (2023). On the hydrodynamics and heat transfer characteristics of nanoparticle multiphase flow. Doctoral Dissertation, Zhejiang University, China

  38. Pratsinis SE (1988) Simultaneous nucleation, condensation and coagulation in aerosol reactors. J Colloid Interface Sci 124:416–427

    Article  CAS  Google Scholar 

  39. Marchisio DL, Fox RO (2005) Solution of population balance equations using the direct quadrature method of moments. J Aerosol Sci 36:43–73

    Article  CAS  Google Scholar 

  40. Barrett JC, Jheeta JS (1996) Improving the accuracy of the moments method for solving the aerosol general dynamic equation. J Aerosol Sci 27:1135–1142

    Article  Google Scholar 

  41. Frenklach M (2002) Method of moments with interpolative closure. Chem Eng Sci 57:2229–2239

    Article  CAS  Google Scholar 

  42. Yu MZ, Lin JZ, Chan TL (2008) A new moment method for solving the coagulation equation for particles in Brownian motion. Aerosol Sci Technol 42:705–713

    Article  CAS  Google Scholar 

  43. Yu MZ, Lin JZ (2010) Binary homogeneous nucleation and growth of water-sulfuric acid nanoparticles using a TEMOM model. Int J Heat Mass Tran 53(4):635–644

    Article  CAS  Google Scholar 

  44. Yu MZ, Lin JZ, Jin HH, Jiang Y (2011) The verification of the Taylor-expansion moment method for the nanoparticle coagulation in the entire size regime due to Brownian motion. J Nanopart Res 13(5):2007–2020

    Article  CAS  Google Scholar 

  45. Yu MZ, Liu YY, Lin JZ, Seipenbusch M (2015) Generalized TEMOM scheme for solving the population balance equation. Aerosol Sci Technol 49:1021–1036

    Article  CAS  Google Scholar 

  46. Xie ML, Wang LP (2013) Asymptotic solution of population balance equation based on TEMOM model. Chem Eng Sci 94:79–83

    Article  Google Scholar 

  47. Klein M, Sadiki A, Janicka J (2003) Investigation of the influence of the Reynolds number on a plane jet using direct numerical simulation. Int J Heat Fluid Flow 24(6):785–794

    Article  Google Scholar 

  48. Ribault C, Le Sarkar S, Stanley SAS (1999) Large eddy simulation of a plane jet. Phys Fluids 11(10):3069–3083

    Article  Google Scholar 

  49. Gutmark E, Wygnanski I (1976) Planar turbulent jet. J Fluid Mech 73(10):465–495

    Article  Google Scholar 

  50. Ramaprian B, Chandrasekhara M (1985) LDA measurements in plane turbulent jets. J Fluid Eng-T ASME 107(2):264–271

    Article  Google Scholar 

  51. Davies A, Keffer J, Baines W (1975) Spread of a heated plane turbulent jet. Phys Fluids 18(7):770–775

    Article  Google Scholar 

  52. Jenkins P, Goldschm VW (1973) Mean temperature and velocity in a plane turbulent jet. J Fluid Eng-T ASME 95(4):581–584

    Article  Google Scholar 

  53. Heskesta G (1965) Hot-wire measurements in a plane turbulent jet. Int J Appl Mech 32(4):721–734

    Article  Google Scholar 

  54. Lee K, Chen H, Gieseke J (1984) Log-normally preserving size distribution for Brownian coagulation in the free-molecule regime. Aerosol Sci Technol 3(1):53–62

    Article  CAS  Google Scholar 

  55. Chen Z, Lin JZ, Yu MZ (2013) Asymptotic behavior of the Taylor-expansion method of moments for solving a coagulation equation for Brownian particles. Particuology 14:124–129

    Article  Google Scholar 

Download references

Funding

This work was supported financially by the National Natural Science Foundation of China (Grant No. 12132015, 12332015).

Author information

Authors and Affiliations

Authors

Contributions

Wenqian Lin: Methodology (equal); Writing–original draft; Resources. Hailin Yang: Methodology (equal); Software. Jianzhong Lin: Supervision; review & editing.

Corresponding author

Correspondence to Jianzhong Lin.

Ethics declarations

Ethics approval and consent to participate

No applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W., Yang, H. & Lin, J. One-order closed model of fluctuating particle coagulation term in the Reynolds averaged general dynamic equation for nanoparticles. J Nanopart Res 26, 111 (2024). https://doi.org/10.1007/s11051-024-06020-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-06020-4

Keywords

Navigation