Skip to main content
Log in

Ciceribacter sichuanensis sp. nov., a plant growth promoting rhizobacterium isolated from root nodules of soybean in Sichuan, China

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The fast-growing rhizobia-like strains S101T and S153, isolated from root nodules of soybean (Glycine max) in Sichuan, People’s Republic of China, underwent characterization using a polyphasic taxonomy approach. The strains exhibited growth at 20–40 °C (optimum, 28 °C), pH 4.0–10.0 (optimum, pH 7.0) and up to 2.0% (w/v) NaCl (optimum, 0.01%) on Yeast Mannitol Agar plates. The 16S rRNA gene of strain S101T showed 98.4% sequence similarity to the closest type strain, Ciceribacter daejeonense L61T. Major cellular fatty acids in strain S101T included summed feature 8 (C18:1ω7c and/or C18:1ω6c) and C19:0 cyclo ω8c. The predominant quinone was ubiquinone-10. The polar lipids of strain S101T included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethyl ethanolamine, phosphatidyl ethanolamine, amino phospholipid, unidentified phosphoglycolipid and unidentified amino-containing lipids. The DNA G + C contents of S101T and S153 were 61.1 and 61.3 mol%, respectively. Digital DNA–DNA hybridization relatedness and average nucleotide identity values between S101T and C. daejeonense L61T were 46.2% and 91.4–92.2%, respectively. In addition, strain S101T promoted the growth of soybean and carried nitrogen fixation genes in its genome, hinting at potential applications in sustainable agriculture. We propose that strains S101T and S153 represent a novel species, named Ciceribacter sichuanensis sp. nov., with strain S101T as the type strain (= CGMCC 1.61309 T = JCM 35649 T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adedeji AA, Häggblom MM, Babalola OO (2020) Sustainable agriculture in Africa: plant growth promoting rhizobacteria (PGPR) to the rescue. Sci Afr 9:e00492

    Google Scholar 

  • Cappuccino JG, Sherman N (2010) A laboratory manual, international edn. Addison-Wesley

    Google Scholar 

  • Chen W, Yan G, Li J (1988) Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredi be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–397

    Article  Google Scholar 

  • Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466

    Article  CAS  PubMed  Google Scholar 

  • Cowan ST, Steel KJ (1974) Manual for the identification of medical bacteria. Cambridge University Press, Cambridge

    Google Scholar 

  • de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E et al (2019) Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 69:1852–1863

    Article  PubMed  Google Scholar 

  • Deng T, Chen X, Zhang Q, Zhong Y, Guo J et al (2017) Ciceribacter thiooxidans sp. nov., a novel nitrate-reducing thiosulfate-oxidizing bacterium isolated from sulfide-rich anoxic sediment. Int J Syst Evol Microbiol 67(11): 4710–4715

  • Deng T, Qian Y, Chen X, Yang X and Xu M (2020) Ciceribacter ferrooxidans sp. nov. a nitrate-reducing fe (II)-oxidizing bacterium isolated from ferrous ion-rich sediment. J Microbiol 58(5): 350–356

  • Dong XZ, Cai MY (2001) Determination of biochemical properties. In manual for the systematic identification of general bacteria. Beijing: Science Press. pp 370–398 (In Chinese)

  • Emms DM, Kelly S (2019) OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol 20:238

    Article  PubMed  PubMed Central  Google Scholar 

  • Fasusi OA, Cruz C, Babalola OO (2021) Agricultural sustainability: microbial biofertilizers in rhizosphere management. Agriculture 11(2):163

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting Pseudomonas. Can J Microbiol 41:533–536

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5: 355–377

  • Hungria M, Chueire LMO, MegÍas M, Lamrabet Y, Probanza A et al (2006) Genetic diversity of indigenous tropical fast-growing rhizobia isolated from soybean nodules. Plant Soil 288:343–356

    Article  CAS  Google Scholar 

  • Hunter WJ, Kuykendall LD, Manter DK (2007) Rhizobium selenireducens sp. nov.: a selenite-reducing alpha-Proteobacteria isolated from a bioreactor. Curr Microbiol 55(5): 455–460

  • Jha CK, Saraf M (2015) Plant growth promoting rhizobacteria (PGPR): a review. E3. J Agric Res Develop 5:108–119

    Google Scholar 

  • Kaiya S, Rubaba O, Yoshida N, Yamada T, Hiraishi A (2012) Characterization of Rhizobium naphthalenivorans sp. nov. with special emphasis on aromatic compound degradation and multilocus sequence analysis of housekeeping genes. J Gen Appl Microbiol 58(3): 211–224

  • Kathiravan R, Jegan S, Ganga V, Prabavathy VR, Tushar L et al (2013) Ciceribacter lividus gen. nov., sp. nov., isolated from rhizosphere soil of chick pea (Cicer arietinum L.). Int J Syst Evol Microbiol 63:4484–4488

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Diksha, Sindhu SS, Kumar R (2022) Biofertilizers: an ecofriendly technology for nutrient recycling and environmental sustainability. CRMICR. https:// doi. org/ 10. 1016/j. crmicr. 2021. 100094

  • Kuzmanović N, Fagorzi C, Mengoni A, Lassalle F, DiCenzo GC (2022) Taxonomy of Rhizobiaceae revisited: proposal of a new framework for genus delimitation. Int J Syst Evol Microbiol 72:005243

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li QQ, Wang ET, Chang YL, Zhang YZ, Zhang YM et al (2011) Ensifer sojae sp. nov., isolated from root nodules of Glycine max grown in saline-alkaline soils. Int J Syst Evol Microbiol 61:1981–1988

    Article  CAS  PubMed  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Minnikin DE, Abdolrahimzadeh H (1971) Thin-layer chromatography of bacterial lipids on sodium acetate-impregnated silica gel. J Chromatogr 63(2):452–454

    Article  CAS  PubMed  Google Scholar 

  • Minnikin DE, O’donnell AG, Goodfellow M, Alderson G, Athalye M, et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 2(5):233–241

    Article  CAS  Google Scholar 

  • Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C et al (2014) Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 37:208–215

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K (2015) Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 38:84–90

    Article  PubMed  Google Scholar 

  • Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al (2018) UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:281–285

    Article  Google Scholar 

  • Nadeem SM, Shaharoona B, Arshad M, Crowley DE (2012) Population density and functional diversity of plant growth promoting rhizobacteria associated with avocado trees in saline soils. Appl Soil Ecol 62:147–154

    Article  Google Scholar 

  • Quan ZX, Bae HS, Baek JH, Chen WF, Im WT et al (2005) Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. Int J Syst Evol Microbiol 55(Pt 6): 2543–2549

  • Rahi P, Khairnar M, Hagir A, Narayan A, Jain KR et al (2021) Peteryoungia gen. nov. with four new species combinations and description of Peteryoungia desertarenae sp. nov. and taxonomic revision of the genus Ciceribacter based on phylogenomics of Rhizobiaceae. Arch Microbiol 203(6): 3591–3604

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI technical note 101. MIDI Inc, Newark, DE

    Google Scholar 

  • Siddiqi MZ, Choi GM, Im WT (2018) Ciceribacter azotifigens sp. nov., a nitrogen-fixing bacterium isolated from activated sludge. Int J Syst Evol Microbiol 68(2): 482–486

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swift R, Denton MD, Melino VJ (2019) Plant probiotics for nutrient acquisition by agriculturally important grasses: A comprehensive review of the science and the application. Annu Plant Rev 2:1–47

    Google Scholar 

  • Tamaoka J (1986) Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 123:251–256

    Article  CAS  PubMed  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of the root-nodule bacteria. Blackwell Scientific, Oxford

    Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woffelman C (1994) DNAMAN for Windows, version 2.6. Lynon Biosoft. Institute of Molecular Plant Sciences, Leiden University, the Netherlands

  • Xu L, Ge C, Cui Z, Li J, Fan H (1995) Bradyrhizobium liaoningense sp. nov, isolated from the root nodules of soybeans. Int J Syst Bacteriol 45:706–711

    Article  CAS  PubMed  Google Scholar 

  • Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286

    Article  CAS  PubMed  Google Scholar 

  • Zhang JJ, Yang X, Guo C, de Lajudie P, Singh RP et al (2017) Mesorhizobium muleiense and Mesorhizobium gsp. nov. are symbionts of Cicer arietinum L. in alkaline soils of Gansu. Northwest China Plant Soil 410:103–112

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank Prof. (Emeritus) Aharon Oren (The Hebrew University of Jerusalem, Jerusalem 9190401, Israel) for the suggestion about species epithet.

Funding

This work was supported by the National Key Research and Development Program of China (2022YFD1901402), the Science and Technology Program of Sichuan Province (2023NSFSC0138, 2022ZHXC0007) and the Agricultural Science and Technology Innovation Program (CAAS-ZDRW202308).

Author information

Authors and Affiliations

Authors

Contributions

KX and YC conceived and designed the experiments. KX supervised the experiments. YC, YZ, KX, XZ and JZ contributed to discussion of the results, and writing and revising the manuscript. YZ, YQ, LW and MY performed the experiments and analyzed data. XZ, QC and LZ participated in collecting the closely related type strains from China Agricultural University. Revisions and editing: PP. All authors contributed to writing the article.

Corresponding authors

Correspondence to Xiaoxia Zhang or Kaiwei Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2750 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, Y., Penttinen, P. et al. Ciceribacter sichuanensis sp. nov., a plant growth promoting rhizobacterium isolated from root nodules of soybean in Sichuan, China. Antonie van Leeuwenhoek 117, 46 (2024). https://doi.org/10.1007/s10482-024-01941-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10482-024-01941-5

Keywords

Navigation