Skip to main content
Log in

Microvirga splendida sp. nov., bacteria isolated from soil

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Two bacterial strains, BT325T and BT690, were isolated from soil samples collected in Korea. Both strains were Gram stain-negative, short rod-shaped, and formed light-pink colored colonies. The 16S rRNA sequence similarity of strains BT325T and BT690 shared a sequence similarity of 99.7%. Both strains shared the highest 16S rRNA gene similarity of 98.6% with Microvirga arabica SV2184PT, followed by Microvirga ossetica V5/3 M T (98.5% and 98.2%, respectively), Microvirga soli R491T (98.3% and 98.2%, respectively), Microvirga aerilata (98.2% and 98.08%, respectively), Microvirga makkahensis (98.08% and 97.8%, respectively). Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain BT325T and BT690 were positioned in a distinct lineage within the family Methylobacteriaceae (order Rhizobiales, class Alphaproteobacteria). The genome size of strain BT325T was 5,200,315 bp and the genomic DNA G + C content was 64.3 mol%. The sole respiratory quinone of strain BT325T was Q-10 and the predominant cellular fatty acids were summed feature 3 (C16:1 ω7c/C16:1 ω6c) and summed feature 8 (C18:1 ω7c/C18:1 ω6c). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and phosphatidylcholine. Polyphasic taxonomic analysis of biochemical, chemotaxonomic, and phylogenetic analyses suggested that strains BT325T represents a novel bacterial species within the genus Microvirga, for which the name Microvirga splendida is proposed. The type strain of Microvirga splendida is BT325T (= KCTC 72406 T = NBRC 114847 T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

R2A:

Reasoner’s 2A

KACC:

Korean agricultural culture collection

NA:

Nutrient agar

LBA:

Laked Blood Agar

TSA:

Tryptic Soy Agar

MAC:

MacConkey

PGAP:

Prokaryotic genome annotation pipeline

ANI:

Average nucleotide identity

DDH:

In silico DNA–DNA hybridization

NJ:

Neighbor-joining

ML:

Maximum–likelihood

MP:

Maximum–parsimony

HPLC:

High performance lipid chromatography

TLC:

Thin layer chromatography

FAME:

Fatty acid methyl esters

MIS:

Microbial identification system

CDS:

Coding genes

DPG:

Diphosphatidylglycerol

PG:

Phosphatidylglycerol

PE:

Phosphatidylethanolamine

PC:

Phosphatidylcholine

L:

Unidentified polar lipid

AL:

Unidentified aminolipid

References

  • Ardley JK, Parker MA, De Meyer SE, Trengove RD, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Willems A, Howieson JG (2012) Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 62:2579–2588

    Article  CAS  Google Scholar 

  • Cappuccino JG, Sherman N (2002) Microbiology—a laboratory manual, 6th edn. Pearson Education, Inc., Benjamin Cummings, California

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469

    Article  CAS  Google Scholar 

  • Kanso S, Patel BKC (2003) Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 53:401–406

    Article  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Komagata K, Suzuki K (1988) 4 Lipid and cell-wall analysis in bacterial systematics. Method Microbiol 19:161–207

    Article  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 102:2567–2572

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  Google Scholar 

  • Lee I, Kim YO, Park CJ (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103

    Article  CAS  Google Scholar 

  • Li J, Gao R, Chen Y, Xue D, Han J, Wang J, Dai Q, Lin M, Ke X, Zhang W (2020) Isolation and Identification of Microvirga thermotolerans HR1, a novel thermo-tolerant bacterium, and comparative genomics among Microvirga species. Microorganisms 8:101

    Article  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence–based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

    Article  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 2:233–241

    Article  CAS  Google Scholar 

  • Msaddak A, Rejili M, Durán D, Mars M, Palacios JM, Ruiz-Argüeso T, Rey L, Imperial J (2019) Microvirga tunisiensis sp. nov., a root nodule symbiotic bacterium isolated from Lupinus micranthus and L. luteus grown in Northern Tunisia. Syst Appl Microbiol 42:126015

    Article  Google Scholar 

  • Na SI, Kim YO, Yoon SH, Ha SM, Baek I, Chun J (2018) UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285

    Article  CAS  Google Scholar 

  • Safronova VI, Kuznetsova IG, Sazanova AL, Belimov AA, Andronov EE, Chirak ER, Osledkin YS, Onishchuk OP, Kurchak ON, Shaposhnikov AI, Willems A, Tikhonovich IA (2017) Microvirga ossetica sp. nov., a species of rhizobia isolated from root nodules of the legume species Vicia alpestris Steven. Int J Syst Evol Microbiol 67:94–100

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE: MIDI Inc

  • Smibert RM, Krieg NR (1981) General characterization. Manual of methods for general bacteriology. American Society for Microbiology, Washington DC, pp 409–442

    Google Scholar 

  • Tatusova T, DiCuccio M, Badretdin A et al (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624

    Article  CAS  Google Scholar 

  • Veyisoglu A, Tatar D, Saygin H, Inan K, Cetin D, Guven K, Tuncer M, Sahin N (2016) Microvirga makkahensis sp. nov. and Microvirga arabica sp. nov. isolated from sandy arid soil. Antonie Van Leeuwenhoek 109:287–296

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pellerier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  Google Scholar 

  • Weon HY, Kwon SW, Son JA, Jo EH, Kim SJ, Kim YS, Kim BY, Ka JO (2010) Description of Microvirga aerophila sp. nov. and Microvirga aerilata sp. nov. isolated from air reclassification of Balneimonas flocculans Takeda et al. 2004 as Microvirga flocculans comb. Nov. and emended description of the genus Microvirga. Int J Syst Evol Microbiol 60:2596–2600

    Article  CAS  Google Scholar 

  • Zhang XJ, Zhang J, Yao Q, Feng GD, Zhu HH (2019) Microvirga flavescens sp. nov., a novel bacterium isolated from forest soil and emended description of the genus Microvirga. Int J Syst Evol Microbiol 69:667–671

    Article  CAS  Google Scholar 

  • Zhu L, Ping W, Zhang S, Chen Y, Zhang Y, Zhang J (2021) Description and genome analysis of Microvirga antarctica sp. nov., a novel pink-pigmented psychrotolerant bacterium isolated from Antarctic soil. Antonie Van Leeuwenhoek 114:2219–2228

    Article  CAS  Google Scholar 

  • Zilli JE, Passos SR, Leite J, Xavier GR, Rumjaneck NG, Simoes-Araujo JL (2015) Draft genome sequence of Microvirga vignae strain BR 3299T, a novel symbiotic nitrogen-fixing alphaproteobacterium isolated from a Brazilian semiarid region. Genome Announc 3:e00700-e715

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Aharon Oren (The Hebrew University of Jerusalem, Israel) for helping with the etymology.

Funding

This work was supported by a research grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202002203), by a research grant from Seoul Women’s University (2022-0320), and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1G1A110144).

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed in this work.

Corresponding authors

Correspondence to Jaewoo Bai or Myung Kyum Kim.

Ethics declarations

Conflict of interest

All authors certify that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The GenBank accession numbers for the 16S rRNA gene sequences of strains BT325T and BT690 are MT795758 and MW463443, respectively. The whole-genome sequences of strain BT325T have been deposited into DDBJ/EMBL/GenBank under the accession number JAELXT000000000.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 647 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Y., Maeng, S., Damdintogtokh, T. et al. Microvirga splendida sp. nov., bacteria isolated from soil. Antonie van Leeuwenhoek 115, 741–747 (2022). https://doi.org/10.1007/s10482-022-01715-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-022-01715-x

Keywords

Navigation