Skip to main content
Log in

Crateriforma spongiae sp. nov., isolated from a marine sponge and emended description of the genus “Crateriforma”

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A Gram-stain-negative, aerobic, pear to oval shaped, rosette forming bacterium with crateriform structures well distributed on the cell surface designated as strain JC647T was isolated from a sponge specimen belonging to the genus Spongia. Strain JC647T reproduces through budding. Strain JC647T shared highest 16S rRNA gene sequence identity of 99.9% with “Crateriforma conspicua” Mal65T (not a valid species name). The genome size of strain JC647T is 6.9 Mb with a G + C content of 57.8 mol %. For the resolution of the phylogenetic congruence of the novel strain, the phylogeny was also constructed with the sequences of ninety-two housekeeping genes. Based on the phylogenetic analyses, low dDDH value (51.0%), low gANI (93.2%), low AAI (94.9%) results, chemotaxonomic characteristics and differential physiological properties, strain JC647T is recognized as a new species of the genus “Crateriforma”, for which we propose the name Crateriforma spongiae sp. nov. The type species is JC647T (= KCTC 72176T = NBRC 114068T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NCBI:

National Centre for Biotechnology Information

gANI:

Genome Average Nucleotide Identity

AAI:

Average Amino Acid Identity

dDDH:

Digital DNA–DNA Hybridization

POCP:

Percentage Of Conserved Proteins

HPLC:

High-Pressure Liquid Chromatography

KCTC:

Korean Collection for Type Cultures

NBRC:

Biological Resource Centre, NITE

References

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75

    Article  Google Scholar 

  • Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondoso J, Harder J, Lage OM (2013) rpoB gene as a novel molecular marker to infer phylogeny in Planctomycetales. Antonie Van Leeuwenhoek 104:477–488

    Article  PubMed  Google Scholar 

  • Bondoso J, Albuquerque L, Nobre MF, Lobo-da-Cunha A, da Costa MS, Lage OM (2015) Roseimaritima ulvae gen. nov., sp. nov. and Rubripirellula obstinate gen. nov., sp. nov. two novel planctomycetes isolated from the epiphytic community ofmacroalgae. Syst Appl Microbiol 37:8–15

    Article  Google Scholar 

  • Cai HY, Yan ZS, Wang AJ, Krumholz LR, Jiang HL (2013) Analysis of the attached microbial community on mucilaginous cyanobacterial aggregates in the eutrophic lake taihu reveals the importance of planctomycetes. Microb Ecol 66:73–83

    Article  PubMed  Google Scholar 

  • Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466

    Article  CAS  PubMed  Google Scholar 

  • Darzi Y, Letunic I, Bork P, Yamada T (2018) iPath3. 0: interactive pathways explorer v3. Nucleic Acids Res 46:W510–W513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dedysh SN, Kulichevskaya IS, Beletsky AV, Ivanova AA, Rijpstra WIC, Damsté JSS, Ravin NV (2020) Lacipirellula parvula gen. nov., sp. nov., representing a lineage of planctomycetes widespread in low-oxygen habitats, description of the family Lacipirellulaceae fam. nov. and proposal of the orders Pirellulales ord. nov., Gemmatalesord. nov. and Isosphaerales ord. nov. Syst Appl Microbiol  43:126050

    Article  PubMed  PubMed Central  Google Scholar 

  • DeLong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934

    Article  Google Scholar 

  • Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–1426

    Article  CAS  PubMed  Google Scholar 

  • Graca AP, Calisto R, Lage OM (2016) Planctomycetes as novel source of bioactive molecules. Front Microbiol 7:1241

    Article  PubMed  PubMed Central  Google Scholar 

  • Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Mering C, Bork P (2017) Fast genome-wide functional annotation through orthology assignment by egg NOG-mapper. Mol Biol Evol 34:115–2122

    Article  Google Scholar 

  • Imhoff JF (1984) Quinones of phototrophic purple bacteria. FEMS Microbiol Lett 25:85–89

    Article  CAS  Google Scholar 

  • Izumi H, Sagulenko E, Webb RI, Fuerst JA (2013) Isolation and diversity of planctomycetes from the sponge Niphates sp., seawater, and sediment of Moreton Bay. Australia. Antonie van Leeuwenhoek 104:533–546

    Article  CAS  PubMed  Google Scholar 

  • Jeske O, Schüler M, Schumann P, Schneider A, Boedeker C, Jogler M, Bollschweiler D, Rohde M, Mayer C, Engelhardt H, Spring S, Jogler C (2015) Planctomycetes do possess a peptidoglycan cell wall. Nat Commun 6:7116

    Article  CAS  PubMed  Google Scholar 

  • Kaboré OD, Godreuil S, Drancourt M (2020) Planctomycetes as host-associated bacteria: a perspective that holds promise for their future isolations, by mimicking their native environmental niches in clinical microbiology laboratories. Front Cell Infect Microbiol 10:729

    Article  Google Scholar 

  • Kallscheuer N, Jeske O, Sandargo B, Boedeker C, Wiegand S, Bartling P, Jogler M, Rohde M, Petersen J, Medema MH, Surup F, Jogler C (2020) The planctomycete Stieleriamaiorica Mal15T employs stieleriacines to alter the species composition in marine biofilms. Commun Biol 3:303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kates M (1972) Isolation, analysis and identification of lipids. Tech Lipidol, pp 268–618

  • Köhler T, Stingl U, Meuser K, Brune A (2008) Novel lineages of Planctomycetes densely colonize the alkaline gut of soil-feeding termites (Cubitermes spp.). Environ Microbiol 10:1260–1270

    Article  PubMed  Google Scholar 

  • Kohn T, Wiegand S, Boedeker C, Rast P, Heuer A, Jetten MSM, Schüler M, Becker S, Rohde C, Müller RW, Brümmer F (2020) Planctopirus ephydatiae, a novel Planctomycete isolated from a freshwater sponge. Syst Appl Microbiol 43:126022

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Gaurav K, Jagadeshwari U, Sasikala Ch, Ramana Ch (2020a) Roseimaritima sediminicola sp. nov., a new member of Planctomycetaceae isolated from Chilika lagoon. Int J Syst Evol Microbiol 70:2616–2623

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Gaurav K, Sreya PK, Shabbir A, Jagadeshwari U, Sasikala Ch, Ramana C (2020b) Gimesia chilikensis sp. nov., a haloalkali-tolerant planctomycete isolated from Chilika lagoon and emended description of the genus Gimesia. Int J Syst Evol Microbiol 70:3647–3655

    Article  CAS  PubMed  Google Scholar 

  • Lage OM, Bondoso J (2014) Planctomycetes and macroalgae, a striking association. Front Microbiol 5:267

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo C, Rodriguez-r LM, Konstantinidis KT (2014) MyTaxa: an advanced Taxonomicclassifier for genomic and metagenomic sequences. Nucleic Acids Res 42:e73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier-Kolthoff JP, Klenk HP, Göker M (2014) Taxonomic use of DNA G + C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64:352–356

    Article  CAS  PubMed  Google Scholar 

  • Na SI, Kim YO, Yoon SH, Ha SM, Baek I, Chun J (2018) UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285

    Article  CAS  PubMed  Google Scholar 

  • Najafi A, Moradinasab M, Nabipour I (2018) First record of microbiomes of sponges collected from the Persian Gulf, using tag pyrosequencing. Front Microbiol 9:1500

    Article  PubMed  PubMed Central  Google Scholar 

  • Oren A, Duker S, Ritter S (1996) The polar lipid composition of Walsby’s square bacterium. FEMS Microbiol Lett 138:135–140

    Article  CAS  Google Scholar 

  • Peeters SH, Wiegand S, Kallscheuer N, Jogler M, Heuer A, Jetten MS, Rast P, Boedeker C, Rohde M, Jogler C (2020) Three marine strains constitute the novel genus and species Crateriforma conspicua in the phylum Planctomycetes. Antonie Van Leeuwenhoek 10:1–13

    Google Scholar 

  • Pruesse E, Peplies J, Glockner FO (2012) SINA: accurate high throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC, Zhou J, Oren A, Zhang YZ (2014) A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol Res 196:2210–2215

    Article  Google Scholar 

  • Rodriguez-R LM, Konstantinidis KT (2014) Bypassing cultivation to identify bacterial species. Microbe 9:111–118

    Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids

  • Stackebrandt E, Liesack W, Goebel BM (1993) Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J 7:232–236

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol 30:301–314

    Article  Google Scholar 

  • Wagner M, Horn M (2006) The Planctomycetes, Verrucomicrobia, Chlamydiaeand sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 17:241–249

    Article  CAS  PubMed  Google Scholar 

  • Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N, Dietrich EM, Disz T, Gabbard JL, Gerdes S, Henry CS, Kenyon RW, Machi D, Mao C, Nordberg EK, Olsen GJ, Murphy-Olson DE, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Vonstein V, Warren A, Xia F, Yoo H, Steven RL (2017) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 45:D535–D542

    Article  CAS  PubMed  Google Scholar 

  • Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiegand S, Jogler M, Jogler C (2018) On the maverick Planctomycetes. FEMS Microbiol Rev 42:739–760

    Article  CAS  PubMed  Google Scholar 

  • Wiegand S, Jogler M, Boedeker C, Pinto D, Vollmers J, Rivas-Marín E, Kohn T, Peeters SH, Heuer A, Rast P, Oberbeckmann S, Bunk B, Jeske O, Meyerdierks A, Storesund JE, Kallscheuer N, Lucker S, Lage OM, Pohl T, Merkel BJ, Hornburger P, Muller R, Brummer F, Labrenz M, Sporemann AM, Op den Camp H, Overmann J, Amann R, Jetten MSM, Mascher T, Medema MH, Devos DP, Kaster A-K, Øvreås L, Rohde M, Galperin MY, Jogler C (2020) Cultivation and functional characterization of 79 Planctomycetes uncovers their unique biology. Nat Microbiol 5:126–140

    Article  CAS  PubMed  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y (2018) dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 46:W95–W101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Chang WC, Xiao Y, Liu HW, Liu P (2013) Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 82:497–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Gaurav and Ramana thank DBT, New Delhi for the award of SRF and TATA innovation fellowship, respectively. Sasikala, Dhanesh Kumar and Shabbir thank UGC for Mid-career award, RA and SRF awards respectively. Sreya and Jagadeeshwari thank CSIR and TEQIP, respectively for JRF. We also thanks Mr. Bernhard Schink for providing species name and etymology for strain JC647T.

Funding

This work received specific grant from Department of Biotechnology, Government of India, with sanction No. BT/HRD/35/01/02/2015. Financial support received from Council for Scientific and Industrial Research (CSIR), New Delhi is acknowledged. Infrastructure facilities funded by DST-FIST, UGC-SAP (DRS), TEQIP and AICTE are acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

GK, Ramana and Sasikala performed sample collection, GK performed media optimisation and polar lipid analysis and wrote manuscript, GK and DK isolated the strain and performed the initial cultivation and strain deposition, GK and SPK performed strain characterisation, DK and GK performed the electron microscopic analysis, JU performed the genomic and phylogenetic analysis, SA performed and analysed the data for polyamines, Ramana and Sasikala supervised the study and contributed to text preparation and revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Ch. Sasikala or Ch. V. Ramana.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequences of the strains JC647T is LR132071. This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBankunder the accession JAAXMS000000000. The version described in this paper is version JAAXMS010000000.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3437 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Kumar, D., Jagadeeshwari, U. et al. Crateriforma spongiae sp. nov., isolated from a marine sponge and emended description of the genus “Crateriforma”. Antonie van Leeuwenhoek 114, 341–353 (2021). https://doi.org/10.1007/s10482-020-01515-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-020-01515-1

Keywords

Navigation