Skip to main content
Log in

FSH1 overexpression triggers apoptosis in Saccharomyces cerevisiae

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

FSH1 belongs to the family of serine hydrolases in yeast and is homologous to the human ovarian tumor suppressor gene (OVAC2). Our preliminary results showed that cells lacking Fsh1p exhibit an increase in cell growth, and a decrease in the expression of AIF1 and NUC1 (apoptosis responsive genes) when compared to the wild type cells. Growth inhibition of cells overexpressing FSH1 is due to induction of cell death associated with cell death markers typical of mammalian apoptosis namely DNA fragmentation, phosphatidylserine externalization, ROS accumulation, Cytochrome c release, and altered mitochondrial membrane potential. When wild type cells were overexpressed with FSH1 there was up regulation of AIF1 level when compared to control cells suggesting that overexpression of FSH1 regulated cell death in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

FSH:

Family of serine hydrolase

S. cerevisiae :

Saccharomyces cerevisiae

MMP:

Mitochondrial membrane potential

References

  • Acosta-Zaldıvar M, Andres MT, Rego A, Pereira CS, Fierro JF, Corte-Real M (2016) Human lactoferrin triggers a mitochondrial- and caspases dependent regulated cell death in Saccharomyces cerevisiae. Apoptosis 21:163–173

    Article  Google Scholar 

  • Amigoni L, Frigerio G, Martegani E, Colombo S (2016) Involvement of Aif1 in apoptosis triggered by lack of Hxk2 in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 16(3):fow16. https://doi.org/10.1093/femsyr/fow016

    Article  CAS  Google Scholar 

  • Azizi AA, Gelpi E, Yang JW, Rupp B, Godwin AK, Slater C, Slavc I, Lubec G (2006) Mass spectrometric identification of serine hydrolase OVCA2 in the medulloblastoma cell line DAOY. Cancer Lett 241(2):235–249

    Article  CAS  Google Scholar 

  • Baxter SM, Rosenblum JS, Knutson S, Nelson MR, Montimurro JS, DiGennaro JA, Speir JA, Burbaum JJ, Fetrow JS (2004) Synergistic computational and experimental proteomics approaches for more accurate detection of active serine hydrolases in yeast. Mol Cell Proteom 3:209–225

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Büttner S, Eisenberg T, Carmona-Gutierrez D, Ruli D, Knauer H, Ruckenstuhl C, Sigrist C, Wissing S, Kollroser M, Fröhlich KU, Sigrist S, Madeo F (2007) Endonuclease G regulates budding yeast life and death. Mol Cell 25:233–246

    Article  Google Scholar 

  • Carmona-Gutierrez D, Bauer MA, Zimmermann A, Aguilera A, Austriaco N, Ayscough K et al (2018) Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell 5:4–31

    Article  CAS  Google Scholar 

  • Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high-efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425

    Article  CAS  Google Scholar 

  • Gowsalya R, Ravi C, Kannan M, Nachiappan V (2019) FSH3 mediated cell death is dependent on NUC1 in Saccharomyces cerevisiae. FEMS Yeast Res 19(3):foz017. https://doi.org/10.1093/femsyr/foz017

    Article  PubMed  Google Scholar 

  • Guaragnella N, Bobba A, Passarella S (2010) Yeast acetic acid induced programmed cell death can occur without cytochrome c release which requires metacaspase YCA1. FEBS Lett 584:224–228

    Article  CAS  Google Scholar 

  • Herker E, Jungwrth H, Lehmann KA, Maldene C, Frohlich KU, Wissing S, Buttner S, Fehr M, Sigrist S, Madeo F (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164:501–507

    Article  CAS  Google Scholar 

  • Khan MA, Chock PB, Stadtman ER (2005) Knockout of caspase-like gene, YCA1, abrogates apoptosis and elevates oxidized proteins in Saccharomyces cerevisiae. PNAS 102:17326–17331

    Article  CAS  Google Scholar 

  • Koning AJ, Lum PY, Williams JM, Wright R (1993) DiOC6 staining reveals organelle structure and dynamics in living yeast cells. Cell Motil Cytoskelet 25:111–128

    Article  CAS  Google Scholar 

  • Laun P, Pichova A, Madeo F, Fuchs J, Ellinger A, Kohlwein S, Dawes I, Fröhlich KU, Breitenbach M (2001) Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 39:1166–1173

    Article  CAS  Google Scholar 

  • Lee BI, Lee DJ, Cho KJ, Kim GW (2005) Early nuclear translocation of endonuclease G and subsequent DNA fragmentation after transient focal cerebral ischemia in mice. Neurosci Lett 386:23–27

    Article  CAS  Google Scholar 

  • Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    Article  CAS  Google Scholar 

  • Ligr M, Madeo F, Frohlich E, Hilt W, Frohlich KU, Wolf DH (1998) Mammalian Bax triggers apoptotic changes in yeast. FEBS Lett 38:61–65

    Article  Google Scholar 

  • Ludovico P, Sousa MJ, Silva MT, Leao C, Corte-Real M (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147:2409–2415

    Article  CAS  Google Scholar 

  • Ly JD, Grubb D, Lawen A (2003) The mitochondrial membrane potential (∆ψm) in apoptosis; an update. Apoptosis 8:115–128

    Article  CAS  Google Scholar 

  • Madeo F, Frohlich E, Frohlich KU (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139:729–734

    Article  CAS  Google Scholar 

  • Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Frohlich KU (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145:757–767

    Article  CAS  Google Scholar 

  • Madeo F, Herker E, Maldener C, Wissing S, Lachelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, Frohlich KU (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917

    Article  CAS  Google Scholar 

  • Madeo F, Herker E, Wissing S, Jungwirth H, Eisenberg T, Frohlich KU (2004) Apoptosis in yeast. Curr Opin Microbiol 7:655–660

    Article  CAS  Google Scholar 

  • Madeo F, Carmona-Gutierrez D, Ring J (2009) Caspase-dependent and caspase-independent cell death pathways in yeast. Biochem Biophys Res Commun 382:227–231

    Article  CAS  Google Scholar 

  • Mazzoni C, Falcone C (2008) Caspase-dependent apoptosis in yeast. Biochim Biophys Acta 1783:1320–1327

    Article  CAS  Google Scholar 

  • Miramar MD, Costantini P, Ravagnan L, Saraiva LM, Haouzi D, Brothers G, Penninger JM, Peleato ML, Kroemer G, Susin SA (2001) NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem 276:16391–16398

    Article  CAS  Google Scholar 

  • Montague JW Jr, Hughes FM, Cidlowski JA (1997) Native recombinant cyclophilins A, B, and C degrade DNA independently of peptidylprolyl cis-trans- isomerase activity. Potential roles cyclophilins in apoptosis. J Biol Chem 272:6677–6684

    Article  CAS  Google Scholar 

  • Muzaffar S, Chattoo BB (2017) Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae. Apoptosis 22:463–474

    Article  CAS  Google Scholar 

  • Quevillon-Cheruel S, Leulliot N, Graille M, Hervouet N, Coste F, Bénédetti H, Zelwer C, Janin J, Van Tilbeurgh H (2005) Crystal structure of yeast YHR049W/FSH1, a member of the serine hydrolase family. Protein Sci 14:1350–1356

    Article  CAS  Google Scholar 

  • Schafer P, Scholz SR, Gimadutdinow O, Cymerman IA, Bujnicki JM, Ruiz-Carrillo A, Pingoud A, Meiss G (2004) Structural and functional characterization of mitochondrial Endo G, a sugar non-specific nuclease which plays an important role during apoptosis. J Mol Biol 338:217–228

    Article  CAS  Google Scholar 

  • Simon H-U, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    Article  CAS  Google Scholar 

  • Sousa CA, Soares HMVM, Soares EV (2019) Nickel oxide nanoparticles trigger caspase- and mitochondria-dependent apoptosis in the yeast Saccharomyces cerevisiae. Chem Res Toxicol 32:245–254

    Article  CAS  Google Scholar 

  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  CAS  Google Scholar 

  • Vahsen N, Cande C, Briere JJ (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689

    Article  CAS  Google Scholar 

  • Wissing S, Ludovico P, Herker E (2004) An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166:969–974

    Article  CAS  Google Scholar 

  • Zaim J, Speina E, Kierzek AM (2005) Identification of new genes regulated by the Crt1 transcription factor, an effector of the DNA damage checkpoint pathway in Saccharomyces cerevisiae. J Biol Chem 280:28–37

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Ram Rajasekharan (Central Food Technological Research Institute, Mysore, India) for providing yeast strains and reagents. We thank the infrastructure facilities from DST-FIST, Department of Biochemistry, Life Sciences & DST-PURSE facilities, of Bharathidasan University.

Author information

Authors and Affiliations

Authors

Contributions

VN and RG designed the experiments, RG, CR and MA performed the experiments.VN and RG wrote the manuscript. All the authors discussed the results and concluded the manuscript.

Corresponding author

Correspondence to Vasanthi Nachiappan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowsalya, R., Ravi, C., Arul, M. et al. FSH1 overexpression triggers apoptosis in Saccharomyces cerevisiae. Antonie van Leeuwenhoek 112, 1775–1784 (2019). https://doi.org/10.1007/s10482-019-01310-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-019-01310-7

Keywords

Navigation