Cellulomonas aurantiaca sp. nov., isolated from a soil sample from a tangerine field

  • Su-Kyung Kim
  • MooChang Kook
  • Zheng-Fei Yan
  • Huan Trinh
  • Sheng-Dao Zheng
  • Jung-Eun Yang
  • Sang-Yong Park
  • Tae-Hoo YiEmail author
Original Paper


A Gram-stain positive, facultatively aerobic, motile and rod-shaped bacterial strain, designated THG-SMD2.3T, was isolated from a soil sample collected in a tangerine field, Republic of Korea. According to the 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Cellulomonas and to be closely related to Cellulomonas fimi ATCC 484T (98.5%), Cellulomonas biazotea DSM 20112T (98.3%), Cellulomonas chitinilytica X.bu-bT (98.0%), Cellulomonas xylanilytica XIL11T (97.2%), Cellulomonas humilata ATCC 25174T (97.1%) and Cellulomonas composti TR7-06T (97.0%). The 16S rRNA gene sequence similarities with other current species of the genus Cellulomonas were in the range 95.4–96.6%. Catalase and oxidase tests were found to be positive. The DNA G+C content was determined to be 73.0 mol%. DNA-DNA hybridization values between strain THG-SMD2.3T and C. fimi ATCC 484T, C. biazotea DSM 20112T, C. chitinilytica X.bu-bT, C. xylanilytica XIL11T, C. humilata ATCC 25174T and C. composti TR7-06T were 58.1 ± 1.6%, 56.7 ± 0.8%, 30.3 ± 1.6%, 22.8 ± 1.6%, 19.9 ± 1.6%, and 13.5 ± 3.0%, respectively. Strain THG-SMD2.3T was also found to be able to grow at 20–42 °C, at 0–3% NaCl and at pH 5.5–10. The major fatty acids were identified as anteiso-C15:0, iso-C15:0, anteiso-C17:0 and iso-C14:0. The predominant menaquinone was identified as tetrahydrogenated menaquinones with nine isoprene units [MK-9(H4)]. The polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminolipids and two unidentified phospholipids. Based on these phenotypic, genotypic and phylogenetic characterisations strain THG-SMD2.3T (= KACC 19341T = CGMCC 1.16303T) is concluded to represent a novel species of the genus Cellulomonas, for which the name Cellulomonas aurantiaca sp. nov. is proposed.


THG-SMD2.3 Taxanomy Cellulomonas aurantiaca Tangerine field 









Unidentified phospholipids


Unidentified aminophospholipid


Unidentified glycolipid


Unidentified lipid



This work was carried out with the support of “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ012655042018)” Rural Development Administration, Republic of Korea.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no direct or indirect conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10482_2019_1288_MOESM1_ESM.pptx (775 kb)
Supplementary material 1 (PPTX 775 kb)


  1. Ahmed I, Kudo T, Abbas S, Ehsan M, Iino T, Fujiwara T, Ohkuma M (2014) Cellulomonas pakistanensis sp. nov., a moderately halotolerant Actinobacteria. Int J Syst Evol Microbiol 64:2305–2311CrossRefGoogle Scholar
  2. An DS, Im WT, Yang HC, Kang MS, Kim KK, Jin L, Ki MK, Lee ST (2005) Cellulomonas terrae sp. nov., a cellulolytic and xylanolytic bacterium isolated from soil. Int J Syst Evol Microbiol 55:1705–1709CrossRefGoogle Scholar
  3. Bagnara C, Toci R, Gaudin C, Belaich JP (1985) Isolation and characterization of a cellulolytic microorganism, Cellulomonas fermentans sp. nov. Int J Syst Bacteriol 35:502–507CrossRefGoogle Scholar
  4. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (1923) Bergey’s manual of determinative bacteriology, 1st edn. The Williams & Wilkins Co, Baltimore, pp 1–442Google Scholar
  5. Brown JM, Frazier RP, Morey RE, Steigerwalt AG, Pellegrini GJ, Daneshvar MI, Hollis DG, Mcneil MM (2005) Phenotypic and genetic characterization of clinical isolates of CDC coryneform group A-3: proposal of a new species of Cellulomonas, Cellulomonas denverensis sp. nov. J Clin Microbiol 43:1732–1737CrossRefGoogle Scholar
  6. Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993Google Scholar
  7. Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48:459–470CrossRefGoogle Scholar
  8. Collins MD, Pascual C (2000) Reclassification of Actinomyces humiferus (Gledhill and Casida) as Cellulomonas humilata nom. corrig., comb. nov. Int J Syst Evol Microbiol 50:661–663CrossRefGoogle Scholar
  9. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100(2):221–230CrossRefGoogle Scholar
  10. Eleberson MA, Malekzadeh F, Yazdi MT, Kameranpour N, Noori-daloii MR, Matte MH, Shahamat M, Colwell RR, Sowers KR (2000) Cellulomonas persica sp. nov. and Cellulomonas iranensis sp. nov., mesophilic cellulose-degrading bacteria isolated from forest soils. Int J Syst Evol Microbiol 50:993–996CrossRefGoogle Scholar
  11. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRefGoogle Scholar
  12. Fautz E, Reichenbach H (1980) A simple test for flexirubin-type pigments. Fems Microbiology Lettes 8:87–91CrossRefGoogle Scholar
  13. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefGoogle Scholar
  14. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  15. Funke G, Pascual Ramos C, Collins MD (1995) Identification of some clinical strains of CDC coryneform group A-3 and A-4 bacteria as Cellulomonas species and proposal of Cellulomonas hominis sp. nov., for some group A-3 strains. J Clin Microbiol 33:2091–2097Google Scholar
  16. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  17. Hatayama K, Esaki K, Ide T (2013) Cellulomonas soli sp. nov. and Cellulomonas oligotrophica sp. nov., isolated from soil. Int J Syst Evol Microbiol 63:60–65CrossRefGoogle Scholar
  18. Hu HY, Lim BR, Goto N, Fujie K (2001) Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 47:17–24CrossRefGoogle Scholar
  19. Jones BE, Grant WD, Duckworth AW, Schumann P, Weiss N, Stackebrandt E (2005) Cellulomonas bogoriensis sp. nov., an alkaliphilic cellulomonad. Int J Syst Evol Microbiol 55:1711–1714CrossRefGoogle Scholar
  20. Kang MS, Im WT, Jung HM, Kim MK, Goodfellow M, Kim KK, Yang HC, An DS, Lee ST (2007) Cellulomonas composti sp. nov., a cellulolytic bacterium isolated from cattle farm compost. Int J Syst Evol Microbiol 57:1256–1260CrossRefGoogle Scholar
  21. Kellerman KF, Mcbeth IG (1912) The fermentation of cellulose. Zentralblatt fur Bakteriologie Parasitenkunde Infektionskrankheiten und Hygiene. Abteilung II 34:485–494Google Scholar
  22. Kellerman KF, Mcbeth IG, Scale FM, Smith NR (1913) Identification and classification of cellulose dissolving Bacteria. Zentralblatt fur Bakteriologie Parasitenkunde Infektionskrankheiten und Hygiene. Abteilung II. 39:502–522Google Scholar
  23. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefGoogle Scholar
  24. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. J Mol Evol 16:111–120CrossRefGoogle Scholar
  25. Komagata K, Suzuki K (1987) Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–206CrossRefGoogle Scholar
  26. Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367CrossRefGoogle Scholar
  27. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  28. Lagier JC, Ramasamy D, Rivet R, Raoult D, Fournier PE (2012) Non contiguous-finished genome sequence and description of Cellulomonas massiliensis sp. nov. Stand Genomic Sci 7:258–270CrossRefGoogle Scholar
  29. Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  30. Lee CM, Weon HY, Hong SB, Jeon YA, Schumann P, Kroppenstedt RM, Kwon SW, Stackebrandt E (2008) Cellulomonas aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 58:2925–2929CrossRefGoogle Scholar
  31. Mcbeth IG, Scales FM (1913) The destruction of cellulose by bacteria and filamentous fungi. US Dep Agric Bureau Plant Ind Bull 266:1–52Google Scholar
  32. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  33. Minnikin DE (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  34. Rivas R, Trujillo ME, Mateos PF, Martínez-molina E, Velázquez E (2004) Cellulomonas xylanilytica sp. nov., a cellulolytic and xylanolytic bacterium isolated from a decayed elm tree. Int J Syst Evol Microbiol 54:533–536CrossRefGoogle Scholar
  35. Rusznyák A, Tóth EM, Schumann P, Spröer C, Makk J, Szabó G, Vladár P, Márialigeti K, Borsodi AK (2011) Cellulomonas phragmiteti sp. nov., a cellulolytic bacterium isolated from reed (Phragmites australis) periphyton in a shallow soda pond. Int J Syst Evol Microbiol 61:1662–1666CrossRefGoogle Scholar
  36. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  37. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:1–6Google Scholar
  38. Shi Z, Luo G, Wang G (2012) Cellulomonas carbonis sp. nov., isolated from coal mine soil. Int J Syst Evol Microbiol 62:2004–2010CrossRefGoogle Scholar
  39. Skerman VBD (1967) A guide to the identification of the genera of bacteria, 2nd edn. Williams & Wilkins, BaltimoreGoogle Scholar
  40. Stabili L, Gravili C, Tredici SM, Piraino S, Talà A, Boero F, Alifano P (2008) Epibiotic Vibrio luminous bacteria isolated from some Hydrozoa and Bryozoa species. Microb Ecol 56:625–636CrossRefGoogle Scholar
  41. Stackebrandt E, Kandler O (1980) Cellulomonas cartae sp. nov. Int J Syst Bacteriol 30:186–188CrossRefGoogle Scholar
  42. Stackebrandt E, Keddie RM (1986) Genus cellulomonas. In: Garrity G, Brenner DJ, Krieg NR, Staley JR (eds) Bergey’s manual of systematic bacteriology, vol 2. Springer, Berlin, pp 1325–1329Google Scholar
  43. Stackebrandt E, Schumann P, Prauser H (2006) The prokaryotes: a handbook on the biology of bacteria. The family Cellulomonadaceae. Springer, New York, pp 983–1001CrossRefGoogle Scholar
  44. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefGoogle Scholar
  45. Yan ZF, Trinh H, Moya G, Lin P, Li CT, Kook MC, Yi TH (2015) Lysobacter rhizophilus sp. nov., isolated from rhizosphere soil of mugunghwa, the national flower of South Korea. Int J Syst Evol Microbiol 66:4754–4759Google Scholar
  46. Yoon MH, Ten LN, Im WT, Lee ST (2008) Cellulomonas chitinilytica sp. nov., a chitinolytic bacterium isolated from cattle-farm compost. Int J Syst Evol Microbiol 58:1878–1884CrossRefGoogle Scholar
  47. Zhang L, Xi L, Qiu D, Song L, Dai X, Ruan J, Huang Y (2013) Cellulomonas marina sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 63:3014–3018CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Su-Kyung Kim
    • 1
  • MooChang Kook
    • 2
  • Zheng-Fei Yan
    • 3
  • Huan Trinh
    • 1
  • Sheng-Dao Zheng
    • 1
  • Jung-Eun Yang
    • 4
  • Sang-Yong Park
    • 4
  • Tae-Hoo Yi
    • 1
    Email author
  1. 1.Department of Oriental Medicinal Material and Processing, College of Life ScienceKyung Hee University Global CampusYongin-siRepublic of Korea
  2. 2.Department of Food and NutritionBaewha Women’s UniversitySeoulRepublic of Korea
  3. 3.State Key Laboratory of Food Science and Technology, School of BiotechnologyJiangnan UniversityWuxiPeople’s Republic of China
  4. 4.SD Biotechnologies Co., Ltd, Seoul Hightech Venture CenterSeoulRepublic of Korea

Personalised recommendations