Skip to main content
Log in

A novel phylogenetic tree based on the presence of protein domains in selected actinobacteria

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Protein functional domains are semi-autonomous parts of proteins capable of functioning independently. One protein may contain several domains and one domain may be present in different protein sequences. Thus, protein domains represent the niche specific adaptive nature of an organism. We hypothesized that the presence and absence of protein domains in an organism could be used to make a phylogenetic tree, which may better depict the biotope (niche). Here, we selected 100 actinobacteria and built a phylogenetic tree depending upon the presence and absence of protein domains. Strains of different genera from the same niche were found to cluster together suggesting niche specific domain acquisition among selected strains. Thus, the domain based phylogeny clustered the selected actinobacteria mainly according to their niche rather than their taxonomic classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Apic G, Gough J, Teichmann SA (2001) Domain combinations in archaeal, eubacterial and eukaryotic proteomes1. J Mol Biol 310(2):311–325

    Article  CAS  PubMed  Google Scholar 

  • Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ (2004) The Pfam protein families database. Nucleic Acids Res 32(suppl_1):D138–D141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya RP, Reményi A, Yeh BJ, Lim WA (2006) Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Annu Rev Biochem 75:655–680

    Article  CAS  PubMed  Google Scholar 

  • Bork P (1991) Shuffled domains in extracellular proteins. FEBS Lett 286(1–2):47–54

    Article  CAS  PubMed  Google Scholar 

  • Bork P, Doolittle RF (1992) Proposed acquisition of an animal protein domain by bacteria. Proc Natl Acad Sci 89(19):8990–8994

    Article  CAS  PubMed  Google Scholar 

  • Caetano-Anollés G, Caetano-Anollés D (2003) An evolutionarily structured universe of protein architecture. Genome Res 13(7):1563–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson JN, Chen KC, Jamison RS, Musmanno LA, Kern CB (1993) The evolutionary history of the first three enzymes in pyrimidine biosynthesis. BioEssays 15(3):157–164

    Article  CAS  PubMed  Google Scholar 

  • Ekman D, Björklund ÅK, Frey-Skött J, Elofsson A (2005) Multi-domain proteins in the three kingdoms of life: orphan domains and other unassigned regions. J Mol Biol 348(1):231–243

    Article  CAS  PubMed  Google Scholar 

  • Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, Von Mering C, Jensen LJ (2012) STRING v9. 1: protein–protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(D1):D808–D815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garel JR (1992) Folding of large proteins: multidomain and multisubunit proteins. Protein Fold 1:405–454

    Google Scholar 

  • Gerstein M (1998) Patterns of protein-fold usage in eight microbial genomes: a comprehensive structural census. Proteins: Struct, Funct, Bioinf 33(4):518–534

    Article  CAS  Google Scholar 

  • Ghélis C, Yon JM (1979) Conformational coupling between structural units. A decisive step in the functional structure formation. Comptesrendus des seances de l’Academie des sciences. Serie D, Sciences naturelles 289(2):197–199

    Google Scholar 

  • Islam SA, Luo J, Sternberg MJ (1995) Identification and analysis of domains in proteins. Protein Eng Des Sel 8(6):513–526

    Article  CAS  Google Scholar 

  • Potestio R, Pontiggia F, Micheletti C (2009) Coarse-grained description of protein internal dynamics: an optimal strategy for decomposing proteins in rigid subunits. Biophys J 96(12):4993–5002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson JS (1981) The anatomy and taxonomy of protein structure. In: Anfinsen CB, Edsall JT, Richards FM (eds) Advances in protein chemistry, vol 34. Academic Press, New York, pp 167–339

    Google Scholar 

  • Sarkar I, Normand P, Tisa LS, Gtari M, Bothra A, Sen A (2016) Characterization of PAS domains in Frankia and selected Actinobacteria and their possible interaction with other co-domains for environmental adaptation. Symbiosis 70(1–3):69–78

    Article  CAS  Google Scholar 

  • Savageau MA (1986) Proteins of Escherichia coli come in sizes that are multiples of 14 kDa: domain concepts and evolutionary implications. Proc Natl Acad Sci 83(5):1198–1202

    Article  CAS  PubMed  Google Scholar 

  • Schäfer NKPMT (2014) Practical SAHN clustering for very large data sets and expensive distance metrics. J Graph Algorithms Appl 18(4):577–602. https://doi.org/10.7155/jgaa.00338

    Article  Google Scholar 

  • Sen A, Daubin V, Abrouk D, Gifford I (2014) Phylogeny of the class Actinobacteria revisited in the light of complete genomes. The orders ‘Frankiales’ and Micrococcales should be split into coherent entities: proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. nov. Int J Syst Evolut Microbiol 64:3821–3832

    Article  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teale JM, Benjamin DC (1977) Antibody as immunological probe for studying refolding of bovine serum albumin. Refolding within each domain. J Biol Chem 252(13):4521–4526

    CAS  PubMed  Google Scholar 

  • Wetlaufer DB (1973) Nucleation, rapid folding, and globular intrachain regions in proteins. Proc Natl Acad Sci 70(3):697–701

    Article  CAS  PubMed  Google Scholar 

  • Wheelan SJ, Marchler-Bauer A, Bryant SH (2000) Domain size distributions can predict domain boundaries. Bioinformatics 16(7):613–618

    Article  CAS  PubMed  Google Scholar 

  • Wolf YI, Brenner SE, Bash PA, Koonin EV (1999) Distribution of protein folds in the three superkingdoms of life. Genome Res 9(1):17–26

    CAS  PubMed  Google Scholar 

  • Yang S, Doolittle RF, Bourne PE (2005) Phylogeny determined by protein domain content. Proc Natl Acad Sci 102(2):373–378

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

IS acknowledges UGC-BSR senior research fellowship, Govt, of India. AS is thankful to DBT, Government of India, for funding Bioinformatics Facility at University of North Bengal.AS also acknowledges DST, Government of India for sanctioning the Indo-Tunis joint research project (DST/INT/TUINISIA/P-05/2017).LST acknowledges the USDA National Institute of Food and Agriculture Hatch 022821.

Author information

Authors and Affiliations

Authors

Contributions

AS conceived the idea. AS and IS designed the study, performed research and analysed data. AS, IS, LT and MG wrote the paper.

Corresponding author

Correspondence to Arnab Sen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ST1: List of all the 100 Actinobacteria considered for this study (DOCX 16 kb)

10482_2018_1154_MOESM2_ESM.xlsx

ESM1: Total pan- (sheet1) and core (sheet2) domains among selected actinobacteria and biological enrichment analysis of core domains (sheet3) (XLSX 1536 kb)

10482_2018_1154_MOESM3_ESM.xlsx

ESM2: (a) List of shared domains among thermal niche adapting Acidothermus cellulolyticus and Acidimicrobium ferroxidens (XLSX 54 kb)

10482_2018_1154_MOESM4_ESM.pdf

ESM2: (b) biological network analysis of shared domains among thermal niche adapting Acidothermus cellulolyticus and Acidimicrobium ferroxidens (PDF 13985 kb)

10482_2018_1154_MOESM5_ESM.xlsx

ESM3: (a) List of shared domains among Kineococcus radiotolerans, Jonesia denitrificans and Sanguibacter keddieii (XLSX 69 kb)

10482_2018_1154_MOESM6_ESM.pdf

ESM3: (b) biological network analysis of shared domains among Kineococcus radiotolerans, Jonesia denitrificans and Sanguibacter keddieii (PDF 7658 kb)

ESM4: (a) List of shared domains among Kytococcus sedentarius and Micrococcus luteus (XLSX 57 kb)

10482_2018_1154_MOESM8_ESM.pdf

ESM4: (b) biological network analysis of shared domains among Kytococcus sedentarius and Micrococcus luteus (PDF 5909 kb)

ESM5: (a) List of shared domains among Kribbella flavida and Micromonosporales (XLSX 65 kb)

ESM5: (b) biological network analysis of shared domains among Kribbella flavida and Micromonosporales (PDF 6525 kb)

ESM6: (a) List of shared domains among Stackebrandtia nassauensis and Saccharopolyspora erythraea (XLSX 81 kb)

10482_2018_1154_MOESM12_ESM.pdf

ESM6: (b) biological network analysis of shared domains among Stackebrandtia nassauensis and Saccharopolyspora erythraea (PDF 6187 kb)

ESM7: (a) List of shared domains among Intrasporangium calvum and Nocardioides dokdonensis (XLSX 63 kb)

10482_2018_1154_MOESM14_ESM.pdf

ESM7: (b) biological network analysis of shared domains among Intrasporangium calvum and Nocardioides dokdonensis (PDF 6053 kb)

ESM8: (a) Enrichment analysis of shared domains between Conexibacter woesei and Rubrobacter xylanophilus (XLSX 8 kb)

ESM8: (b) biological network of shared domains between Conexibacter woesei and Rubrobacter xylanophilus (PDF 778 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, I., Gtari, M., Tisa, L.S. et al. A novel phylogenetic tree based on the presence of protein domains in selected actinobacteria. Antonie van Leeuwenhoek 112, 101–107 (2019). https://doi.org/10.1007/s10482-018-1154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-018-1154-1

Keywords

Navigation