A reduction in the butyrate producing species Roseburia spp. and Faecalibacterium prausnitzii is associated with chronic kidney disease progression

Abstract

The human gut microbiota plays an important role in human health and might also be implicated in kidney disease. The interest in butyrate producing bacteria has recently increased and is a poorly understood faecal condition in chronic kidney disease (CKD). Therefore, we evaluated differences of the butyrate producing species Roseburia spp. and Faecalibacterium prausnitzii in the faeces of Chinese patients with CKD. A case–control study was carried out for 65 CKD patients and 20 healthy controls. Differences were quantitatively validated using quantitative real-time polymerase chain reaction (qPCR). Spearman rank correlation was used to analyse the correlation between gut microbiota and clinical variables. Roseburia spp. and F. prausnitzii were significantly different in CKD patients and controls (p = 0.001; p = 0.025, respectively) and reduced more markedly in end stage renal disease (p = 0.000; p = 0.003, respectively) and microinflammation (p = 0.004; p = 0.001, respectively). Roseburia spp. and F. prausnitzii were negatively associated with C-reactive protein in plasma (r = −0.493, p = 0.00; r = −0.528, p = 0.000; respectively) and Cystatin C (r = −0.321, p = 0.006; r = −0.445, p = 0.000; respectively). They were positively associated with eGFR (r = 0.347, p = 0.002; r = 0.416, p = 0.000; respectively). The negative correlation between Roseburia spp., F. prausnitzii and CRP and renal function suggested that the depletion of butyrate producing bacteria may contribute to CKD-associated inflammation and CKD progression. Roseburia spp. and F. prausnitzii may thus serve as ‘microbiomarkers’.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Anders HJ, Andersen K, Stecher B (2013) The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int 83:1010–1016. doi:10.1038/ki.2012.440

    CAS  Article  PubMed  Google Scholar 

  2. Andrade-Oliveira V et al (2015) Gut bacteria products prevent AKI induced by ischemia-reperfusion. J Am Soc Nephrol JASN 26:1877–1888. doi:10.1681/ASN.2014030288

    CAS  Article  PubMed  Google Scholar 

  3. Cachofeiro V, Goicochea M, de Vinuesa SG, Oubina P, Lahera V, Luno J (2008) Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int Suppl 74(111):S4–S9. doi:10.1038/ki.2008.516

    Article  Google Scholar 

  4. Cao Y, Shen J, Ran ZH (2014) Association between Faecalibacterium prausnitzii reduction and inflammatory bowel disease: a meta-analysis and systematic review of the literature. Gastroenterol Res Pract 2014:872725. doi:10.1155/2014/872725

    PubMed  PubMed Central  Google Scholar 

  5. Carrero JJ, Stenvinkel P (2009) Persistent inflammation as a catalyst for other risk factors in chronic kidney disease: a hypothesis proposal. Clin J Am Soc Nephrol CJASN 4(Suppl 1):S49–S55. doi:10.2215/CJN.02720409

    CAS  Article  PubMed  Google Scholar 

  6. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Furusawa Y et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450. doi:10.1038/nature12721

    CAS  Article  PubMed  Google Scholar 

  8. Hedin CR et al (2014) Altered intestinal microbiota and blood T cell phenotype are shared by patients with Crohn’s disease and their unaffected siblings. Gut 63:1578–1586. doi:10.1136/gutjnl-2013-306226

    CAS  Article  PubMed  Google Scholar 

  9. Hendrikx TK et al (2009) End-stage renal failure and regulatory activities of CD4 + CD25bright + FoxP3 + T-cells. Nephrol Dial Transplant 24:1969–1978. doi:10.1093/ndt/gfp005

    CAS  Article  PubMed  Google Scholar 

  10. Herbelin A, Urena P, Nguyen AT, Zingraff J, Descamps-Latscha B (1991) Elevated circulating levels of interleukin-6 in patients with chronic renal failure. Kidney Int 39:954–960

    CAS  Article  PubMed  Google Scholar 

  11. Hida M, Aiba Y, Sawamura S, Suzuki N, Satoh T, Koga Y (1996) Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 74:349–355

    CAS  Article  PubMed  Google Scholar 

  12. Krishnamurthy VM et al (2012) High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int 81:300–306. doi:10.1038/ki.2011.355

    CAS  Article  PubMed  Google Scholar 

  13. Kumari R, Ahuja V, Paul J (2013) Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India. World J Gastroenterol WJG 19:3404–3414. doi:10.3748/wjg.v19.i22.3404

    CAS  Article  PubMed  Google Scholar 

  14. Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294:1–8. doi:10.1111/j.1574-6968.2009.01514.x

    CAS  Article  PubMed  Google Scholar 

  15. Machiels K et al (2014) A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63:1275–1283. doi:10.1136/gutjnl-2013-304833

    CAS  Article  PubMed  Google Scholar 

  16. Mafra D, Lobo JC, Barros AF, Koppe L, Vaziri ND, Fouque D (2014) Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiol 9:399–410. doi:10.2217/fmb.13.165

    CAS  Article  PubMed  Google Scholar 

  17. McIntyre CW et al (2011) Circulating endotoxemia: a novel factor in systemic inflammation and cardiovascular disease in chronic kidney disease. Clin J Am Soc Nephrol CJASN 6:133–141. doi:10.2215/CJN.04610510

    CAS  Article  PubMed  Google Scholar 

  18. Nugent RA, Fathima SF, Feigl AB, Chyung D (2011) The burden of chronic kidney disease on developing nations: a 21st century challenge in global health. Nephron Clin Pract 118:c269–c277. doi:10.1159/000321382

    Article  PubMed  Google Scholar 

  19. Pereira BJ, Shapiro L, King AJ, Falagas ME, Strom JA, Dinarello CA (1994) Plasma levels of IL-1 beta, TNF alpha and their specific inhibitors in undialyzed chronic renal failure, CAPD and hemodialysis patients. Kidney Int 45:890–896

    CAS  Article  PubMed  Google Scholar 

  20. Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139

    CAS  Article  PubMed  Google Scholar 

  21. Quevrain E et al (2016) Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65:415–425. doi:10.1136/gutjnl-2014-307649

    CAS  Article  PubMed  Google Scholar 

  22. Rehman A et al (2016) Geographical patterns of the standing and active human gut microbiome in health and IBD. Gut 65:238–248. doi:10.1136/gutjnl-2014-308341

    Article  PubMed  Google Scholar 

  23. Rose DJ, DeMeo MT, Keshavarzian A, Hamaker BR (2007) Influence of dietary fiber on inflammatory bowel disease and colon cancer: importance of fermentation pattern. Nutr Rev 65:51–62

    Article  PubMed  Google Scholar 

  24. Rossi M et al (2014) Protein-bound uremic toxins, inflammation and oxidative stress: a cross-sectional study in stage 3-4 chronic kidney disease. Arch Med Res 45:309–317. doi:10.1016/j.arcmed.2014.04.002

    CAS  Article  PubMed  Google Scholar 

  25. Sabatino A, Regolisti G, Brusasco I, Cabassi A, Morabito S, Fiaccadori E (2015) Alterations of intestinal barrier and microbiota in chronic kidney disease. Nephrol Dial Transplant 30:924–933. doi:10.1093/ndt/gfu287

    Article  PubMed  Google Scholar 

  26. Shi K, Wang F, Jiang H, Liu H, Wei M, Wang Z, Xie L (2014) Gut bacterial translocation may aggravate microinflammation in hemodialysis patients. Dig Dis Sci 59:2109–2117. doi:10.1007/s10620-014-3202-7

    CAS  Article  PubMed  Google Scholar 

  27. Simenhoff ML, Saukkonen JJ, Burke JF, Wesson LG Jr, Schaedler RW, Gordon SJ (1978) Bacterial populations of the small intestine in uremia. Nephron 22:63–68

    CAS  Article  PubMed  Google Scholar 

  28. Smith PM et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573. doi:10.1126/science.1241165

    CAS  Article  PubMed  Google Scholar 

  29. Sokol H et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105:16731–16736. doi:10.1073/pnas.0804812105

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Sommer F, Backhed F (2013) The gut microbiota–masters of host development and physiology. Nat Rev Microbiol 11:227–238. doi:10.1038/nrmicro2974

    CAS  Article  PubMed  Google Scholar 

  31. Stevens PE, Levin A (2013) Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med 158:825–830. doi:10.7326/0003-4819-158-11-201306040-00007

    Article  PubMed  Google Scholar 

  32. Takahashi K et al (2016) Reduced Abundance of Butyrate-Producing Bacteria Species in the Fecal Microbial Community in Crohn’s Disease. Digestion 93:59–65. doi:10.1159/000441768

    CAS  Article  PubMed  Google Scholar 

  33. Vaziri ND (2004) Oxidative stress in uremia: nature, mechanisms, and potential consequences. Semin Nephrol 24:469–473

    CAS  Article  PubMed  Google Scholar 

  34. Vaziri ND (2012) CKD impairs barrier function and alters microbial flora of the intestine: a major link to inflammation and uremic toxicity. Curr Opin Nephrol Hypertens 21:587–592. doi:10.1097/MNH.0b013e328358c8d5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Vaziri ND, Pahl MV, Crum A, Norris K (2012) Effect of uremia on structure and function of immune system. J Renal Nutr 22:149–156. doi:10.1053/j.jrn.2011.10.020

    CAS  Article  Google Scholar 

  36. Vaziri ND et al (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83:308–315. doi:10.1038/ki.2012.345

    Article  PubMed  Google Scholar 

  37. Vaziri ND, Zhao YY, Pahl MV (2015) Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature, mechanisms, consequences and potential treatment. Nephrol Dial Transplant. doi:10.1093/ndt/gfv095

    PubMed  Google Scholar 

  38. Wang Z et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63. doi:10.1038/nature09922

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Wang F, Jiang H, Shi K, Ren Y, Zhang P, Cheng S (2012) Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrology (Carlton) 17:733–738. doi:10.1111/j.1440-1797.2012.01647.x

    CAS  Article  Google Scholar 

  40. Wong J, Piceno YM, Desantis TZ, Pahl M, Andersen GL, Vaziri ND (2014) Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol 39:230–237. doi:10.1159/000360010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Wu IW et al (2011) p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol Dial Transplant 26:938–947. doi:10.1093/ndt/gfq580

    CAS  Article  PubMed  Google Scholar 

  42. Zhang L et al (2012) Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet 379:815–822. doi:10.1016/S0140-6736(12)60033-6

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by “Guangzhou Pilot Project of Clinical and Translational Research Center (early gastrointestinal cancers,No. 7415696196402)” Center, “Guangdong Provincial Bio-engineering Research Center for Gastroenterology Diseases”, National Natural Science Foundation of China (NSFC) (8157041627) and The National High Technology Research and Development Program of China (863 Program) (2015AA020701).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ye Chen.

Ethics declarations

Ethical approval

The study was reviewed and approved by the Medical Ethics Committee of the Southern Medical University, Guangzhou, China. The study was conducted according to the principles of the Declaration of Helsinki.

Competing interests

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 142 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Xie, S., Lv, D. et al. A reduction in the butyrate producing species Roseburia spp. and Faecalibacterium prausnitzii is associated with chronic kidney disease progression. Antonie van Leeuwenhoek 109, 1389–1396 (2016). https://doi.org/10.1007/s10482-016-0737-y

Download citation

Keywords

  • Gut microbiota
  • Chronic kidney disease
  • Butyrate
  • C-reactive protein