Skip to main content
Log in

Exposure to benzene metabolites causes oxidative damage in Saccharomyces cerevisiae

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Hydroquinone (HQ) and benzoquinone (BQ) are known benzene metabolites that form reactive intermediates such as reactive oxygen species (ROS). This study attempts to understand the effect of benzene metabolites (HQ and BQ) on the antioxidant status, cell morphology, ROS levels and lipid alterations in the yeast Saccharomyces cerevisiae. There was a reduction in the growth pattern of wild-type cells exposed to HQ/BQ. Exposure of yeast cells to benzene metabolites increased the activity of the anti-oxidant enzymes catalase, superoxide dismutase and glutathione peroxidase but lead to a decrease in ascorbic acid and reduced glutathione. Increased triglyceride level and decreased phospholipid levels were observed with exposure to HQ and BQ. These results suggest that the enzymatic antioxidants were increased and are involved in the protection against macromolecular damage during oxidative stress; presumptively, these enzymes are essential for scavenging the pro-oxidant effects of benzene metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akerboom TP, Sies H (1981) Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 77:373–382

    Article  CAS  PubMed  Google Scholar 

  • Aksoy M (1989) Hematotoxicity and carcinogenicity of benzene. Environ Health Perspect 82:193–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arthur JR (2000) The glutathione peroxidases. Cell Mol Life Sci 57:1825–1835

    Article  CAS  PubMed  Google Scholar 

  • Aust SD (1994) Thiobarbituric acid assay reactants. Methods Toxicol 1B:367–374

    CAS  Google Scholar 

  • Avery AM, Avery SV (2001) Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem 276:33730–33735

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem Rev 44:276–287

    Article  CAS  Google Scholar 

  • Bell RM, Coleman RA (1980) Enzymes of glycerolipid synthesis in eukaryotes. Annu Rev Biochem 49:459–487

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Bose S, Sinha SP (1994) Modulation of ochratoxin-produced genotoxicity in mice by vitamin C. Food Chem Toxicol 32:533–537

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carman GM, Zeimetz GM (1996) Regulation of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. Biol Chem 271:13293–13296

    Article  CAS  Google Scholar 

  • Chattopadhyay MK, Raghu G, Sharma YVRK, Biju AR, Rajasekharan MV, Shivaji (2011) Increase in oxidative stress at low temperature in an antarctic bacterium. Curr Microbiol 62:544–546

    Article  CAS  PubMed  Google Scholar 

  • Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61(2):192–208

    Article  CAS  PubMed  Google Scholar 

  • Davies KJA (1995) Oxidative stress: the paradox of life. Biochem Soc Symp 61:1–31

    Article  CAS  PubMed  Google Scholar 

  • Dickinson DA, Forman HJ (2002) Cellular glutathione and thiols metabolism. Biochem Pharmacol 64:1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Dix TA, Aikens J (1993) Mechanisms and biological relevance of lipid peroxidation initiation. Chem Res Toxicol 6:2–18

    Article  CAS  PubMed  Google Scholar 

  • Driver AS, Kodavanti PS, Mundy WR (2000) Age-related changes in reactive oxygen species production in rat brain homogenates. Neurotoxicol Teratol 22(2):175–181

    Article  CAS  PubMed  Google Scholar 

  • Golding BT, Barnes ML, Bleasdale C, Henderson AP, Jiang D, Li X (2010) Modeling the formation and reactions of benzene metabolites. Chem Biol Interact 184:196–200

    Article  CAS  PubMed  Google Scholar 

  • Hapala I, Marza E, Ferreira T (2011) Is fat so bad? Modulation of endoplasmic reticulum stress by lipid droplet formation. Biol Cell 103:271–285

    Article  CAS  PubMed  Google Scholar 

  • IARC (1977) IARC Monographs on the evaluation of the carcinogenic risk of chemicals to man, vol 15, Some Fumigants, the Herbicides 2,4-d and 2,4,5-T, Chlorinated dibenzodioxins and Miscellaneous Industrial Chemicals, Lyon, p 255–264

  • Jeltsch A (2002) Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. ChemBioChem 35:382–382

    Article  Google Scholar 

  • Kataoka M, Fukura Y, Shinohara Y, Baba Y (2005) Analysis of mitochondrial membrane potential in the cells by microchip flow cytometry. Electrophoresis 26(15):3025–3031

    Article  CAS  PubMed  Google Scholar 

  • Kohlwein SD, Veenhuis M, van der Klei IJ (2013) Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat–store ‘em up or burn ‘em down. Genetics 193:1–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesuisse E, Labbe P (1995) Effects of cadmium and of YAP1 and CAD1/YAP2 genes on iron metabolism in the yeast Saccharomyces cerevisiae. Microbiology 141:2937–2943

    Article  CAS  PubMed  Google Scholar 

  • Lin CL, Chen HJ, Hou WC (2002) Activity staining of glutathione peroxidase after electrophoresis on native and sodium dodecyl sulfate polyacrylamide gels. Electrophoresis 23:513–516

    Article  CAS  PubMed  Google Scholar 

  • Lingnert H, Goran A, Caj EE (1989) Antioxidative effect of superoxide dismutase from Saccharomyces cerevisiae in model systems. J Agric Food Chem 37:23–28

    Article  CAS  Google Scholar 

  • Maiorino M, Gregolin C, Ursini F (1990) Phospholipid hydroperoxide glutathione peroxidase. Methods Enzymol 186:448–457

    Article  CAS  PubMed  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474

    Article  CAS  PubMed  Google Scholar 

  • Marnett LJ (1999) Lipid peroxidation: DNA damage by malondialdehyde. Mutat Res 424:83–95

    Article  CAS  PubMed  Google Scholar 

  • Monks TJ, Hanzlik RP, Cohen GM, Ross D, Graham DG (1992) Contemporary issues in toxicology: quinone chemistry and toxicity. Toxicol Appl Pharmacol 112:2–16

    Article  CAS  PubMed  Google Scholar 

  • Muthukumar K, Rajakumar S, Sarkar MN, Nachiappan V (2011) Glutathione peroxidase3 of Saccharomyces cerevisiae protects phospholipids during cadmium-induced oxidative stress. Antonie Van Leeuwenhoek 99:761–771

    Article  CAS  PubMed  Google Scholar 

  • O’Brien PJ (1991) Molecular mechanisms of quinone cytotoxicity. Chem-Biol Interact 80:1–14

    Article  PubMed  Google Scholar 

  • Omaye ST, Turnbull JD, Sauberlich HE (1979) Selected methods for the determination of ascorbic acid in animal cells, tissues and fluids. Methods Enzymol 62:3–11

    Article  CAS  PubMed  Google Scholar 

  • Padh H (1991) Vitamin C: newer insights into its biochemical functions. Nutr Rev 49:65–70

    Article  CAS  PubMed  Google Scholar 

  • Rajakumar S, Ravi C, Nachiappan V (2016) Defect of zinc transporter ZRT1 ameliorates cadmium induced lipid accumulation in Saccharomyces cerevisiae. Metallomics. doi:10.1039/C6MT00005C

    PubMed  Google Scholar 

  • Rouser G, Fleischer S, Yamamoto A (1970) Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorous analysis of spots. Lipids 5:494–496

    Article  CAS  PubMed  Google Scholar 

  • Senaratna T, Mackay CE, Mckersie BD, Fletcher RA (1988) Uniconazol induced chilling tolerancein tomato and its relationship to antioxidant content. J Plant Physiol 133:55–61

    Article  Google Scholar 

  • Shen HM, Shi CY, Lee HP, Ong CN (1994) Aflatoxin Br induced lipid peroxidation in rat liver. Toxicol Appl Pharmacol 127:145–150

    Article  CAS  PubMed  Google Scholar 

  • Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  CAS  PubMed  Google Scholar 

  • Snyder R, Hedli CC (1996) An overview of benzene metabolism. Environ Health Perspect 104(Suppl. 6):1165–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan P, Sabitha KE, Shyamaladevi CS (2007) Attenuation of 4-nitroquinoline 1-oxide induced in vitro lipid peroxidation by green tea polyphenols. Life Sci 80:1080–1086

    Article  CAS  PubMed  Google Scholar 

  • Steels EL, Learmonth RP, Watson K (1994) Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology 140(Pt 3):569–576

    Article  CAS  PubMed  Google Scholar 

  • Steffesen IL, Mesna OJ, Andruchow E, Namork E, Hylland K, Andersen RA (1994) Cytotoxicity and accumulation of Hg, Ag, Cd, Cu, Pb and Zn in human peripheral T and B lymphocytes and monocytes in Vitro. Gen. Pharmac 25:1621–1633

    Article  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Rad Biol Med 18:321–336

    Article  CAS  PubMed  Google Scholar 

  • Temple MD, Perrone GG, Dawes IW (2005) Complex cellular responses to reactive oxygen species. Trends Cell Biol 15:319–326

    Article  CAS  PubMed  Google Scholar 

  • Treadwell FP, Hall WT (1948) Analytical chemistry, vol 2. Wiley, New York

    Google Scholar 

  • Ursini F, Maiorino M, Brigelius-Flohe R, Aumann KD, Roveri A, Schomburg D, Flohe L (1995) Diversity of glutathione peroxidases. Methods Enzymol 252:38–53

    Article  CAS  PubMed  Google Scholar 

  • Vertuani S, Angusti A, Manfredini S (2004) The antioxidants and pro-antioxidants network: an overview. Curr Pharm Des 10(14):1677–1694

    Article  CAS  PubMed  Google Scholar 

  • Vijayaraj P, Sabarirajan J, Nachiappan V (2010) Enhanced phospholipase B activity and alteration of phospholipids and neutral lipids in Saccharomyces cerevisiae exposed to N-nitrosonornicotine. Antonie Van Leeuwenhoek 99:567–577

    Article  PubMed  Google Scholar 

  • Wallace L (1996) Environmental exposure to benzene: an update. Environ Health Perspect 104(Suppl. 6):1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiemels J, Smith MT (1999) Enhancement of myeloid cell growth by benzene metabolites via the production of active oxygen species. Free Radic Res 30:93–103

    Article  CAS  PubMed  Google Scholar 

  • Yamashita A, Sugiura T, Waku K (1997) Acyltransferases and transacylases involved in fatty acid remodeling of phospholipids and metabolism of bioactive lipids in mammalian cells. J Biochem 122:1–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Research 97:111–199

    Article  Google Scholar 

Download references

Acknowledgments

We thank the infrastructure facilities from the DST-FIST of Biochemistry Department, DST-PURSE and Life Sciences facilities of Bharathidasan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasanthi Nachiappan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, A., Nachiappan, V. Exposure to benzene metabolites causes oxidative damage in Saccharomyces cerevisiae . Antonie van Leeuwenhoek 109, 841–854 (2016). https://doi.org/10.1007/s10482-016-0684-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0684-7

Keywords

Navigation