Skip to main content
Log in

Production of inulinase, fructosyltransferase and sucrase from fungi on low-value inulin-rich substrates and their use in generation of fructose and fructo-oligosaccharides

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Owing to applications in the food and nutraceutical industries, inulinases, fructosyltransferases and sucrases have gained considerable attention in recent times. Twenty-five fungal strains were screened for production of these enzymes on three different media formulated using inulin-rich plant extracts prepared from asparagus root, dahlia tuber and dandelion root extract. Culture filtrates of the fungi were examined for hydrolytic activities. Fungi belonging to genus Aspergillus, A. niger GNCC 2655 (11.3 U/ml), A. awamori MTCC 2879 (8.2 U/ml), A. niger ATCC 26011 (7.9 U/ml) secreted high titers of inulinase followed by Penicillium sp. NFCCI 2768 (2.6 U/ml) and Penicillium citrinum MTCC 1256 (1.1 U/ml). High sucrase activity was noticed in A. niger GNCC 2613 (113 U/ml) and A. awamori MTCC 2879 (107.8 U/ml). Analysis of end products of inulinase action by HPLC revealed that most of the enzymes were exo-inulinases liberating fructose exclusively from inulin. Five fungi, P. citrinum MTCC 1256, Penicillium rugulosum MTCC 3487, Penicillium sp. NFCCI 2768, A. fumigatus GNCC 1351 and A. niger ATCC 26011 however, produced a mixture of endo- and exo-inulinases liberating oligosaccharides (GF3 and GF2) along with fructose. High inulinase/sucrase yielding strains were evaluated for extracellular and intracellular hydrolytic and transfructosylating activities and intracellular enzyme profiles were found to be considerably different in terms of titers and end products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altunbas C, Uygun M, Uygun DA, Akgol S, Denizli A (2013) Immobilization of inulinase on concanavalin A-attached super macroporous crygel for production of high fructose syrup. Appl Biochem Biotechnol 170:1909–1921

    Article  CAS  PubMed  Google Scholar 

  • Chen XM, Xu XM, Jin ZY, Chen HQ (2013) Expression of an endoinulinase gene from Aspergillus ficuum in Escherichia coli and its characterization. Carb Pol 92:1984–1990

    Article  CAS  Google Scholar 

  • Chen M, Lei X, Chen C, Zhang S, Xie J, Wei D (2014) Cloning, overexpression, and characterization of a highly active endoinulinase gene from Aspergillus fumigatus Cl1 for production of inulo-oligosaccharides. Appl Biochem Biotechnol. doi:10.1007/s12010-014-1296-1

    Google Scholar 

  • Chi Z, Chi Z, Zhang T, Liu G, Yue L (2009) Inulinase-expressing microorganisms and applications of inulinases. Appl Microbiol Biotechnol 82:211–220

    Article  CAS  PubMed  Google Scholar 

  • Gallegos ACF, Chavez JAM, Aguilar CN, Riutort M, Herrera RR (2014) Gene encoding inulinase isolated from Penicillium citrinum ESS and its molecular phylogeny. Appl Biochem Biotechnol. doi:10.1007/s120-014-1280-9

    Google Scholar 

  • Ganaie MA, Gupta US (2014) Recycling of cell culture and efficient release of intracellular fructosyltransferase by ultrasonication for the production of fructooligosaccharides. Carb Pol 110:253–258

    Article  CAS  Google Scholar 

  • Ganaie MA, Gupta US, Kango N (2013) Screening of biocatalysts for transformation of sucrose to fructooligosaccharides. J Mol Cata B: Enzym 97:12–17

    Article  CAS  Google Scholar 

  • Ganaie MA, Rawat HK, Wani OA, Gupta US, Kango N (2014) Immobilization of fructosyltransferase by chitosan and alginate for efficient production of fructooligosaccharides. Proc Biochem 49:840–844

    Article  CAS  Google Scholar 

  • Gern RM, Furlan SA, Ninow JL, Jonas R (2001) Screening for microorganisms that produce only endo-inulinase. Appl Microbiol Biotechnol 55:632–635

    Article  CAS  PubMed  Google Scholar 

  • Gill PK, Manhas RK, Singh P (2006) Purification and properties of a heat stable exoinulinase isoform from Aspergillus fumigates. Bioresour Technol 97:894–902

    Article  CAS  Google Scholar 

  • He M, Wu D, Wu J, Chen J (2014) Enhanced expression of endoinulinase from Aspergillus niger by codon optimization in Pichia pastoris and its application in inulo-oligosaccharide production. J Ind Microbiol Biotechnol 41:105–114

    Article  CAS  PubMed  Google Scholar 

  • Housseiny MM (2014) Production of an endoinulinase from Aspergillus niger AUMC 9375, by solid state fermentation of agricultural waste, with purification and characterization of the free and immobilized enzyme. J Microbiol 52:389–398

    Article  CAS  PubMed  Google Scholar 

  • Jain SC, Jain PC, Kango N (2012) Production of inulinase from Kluyveromyces marxianus using dahlia tuber extract. Braz J Microbiol 43:62–69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kango N (2008) Production of inulinase using tap roots of dandelion (Taraxacum officinale) by Aspergillus niger. J Food Eng 85:473–478

    Article  CAS  Google Scholar 

  • Kango N, Jain SC (2011) Production and properties of microbial inulinases: recent advances. Food Biotechnol 4:165–212

    Article  Google Scholar 

  • Liu GL, Fu GY, Chi Z, Chi ZM (2014) Enhanced expression of the codon optimized exo-inulinase gene from the yeast Meyerozyma guilliermondii in Saccharomyces sp. W0 and bioethanol production from inulin. Appl Microbiol Biotechnol 98:9129–9138

    Article  CAS  PubMed  Google Scholar 

  • Loo JV, Coussement P, Leenheer L, Hoebregs H, Smits G (1995) On the presence of Inulin and oligofructose as natural ingredients in the western diet. Crit Rev Food Sci Nutr 35:525–552

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin-phenol reagent. Biol Chem 193:265–275

    CAS  Google Scholar 

  • Mansouri M, Houbraken J, Samson RA, Frisvad JC, Christensen M, Tuthill DE, Koutaniemi S, Hatakka A, Lankinen P (2013) Penicillium subrubescens, a new species efficiently producing inulinase. Antonie Van Leeuwenhoek 103:1343–1357

    Article  CAS  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 3:14–26

    Google Scholar 

  • Nakamura T, Shitara A, Matsuda S, Matsuo T, Suiko M, Ohta K (1997) Production, purification and properties of endoinulinase of Penicillium sp. TN-88 that liberates inulotrioses. J Ferment Bioeng 84:313–318

    Article  CAS  Google Scholar 

  • Onion AH, Allsopp D, Eggins HOW (1986) Smith’s introduction to industrial mycology, 2nd edn. Edward Arnold, London, pp 217–226

    Google Scholar 

  • Paixao SM, Teixeira PD, Silva TP, Teixeira AV, Alves L (2013) Screening of novel yeast inulinases and further application to bioprocesses. New Biotechnol 30:598–606

    Article  CAS  Google Scholar 

  • Pouyez J, Mayard A, Vandamme AM, Roussel G, Perpète EA, Wouters J, Housen I, Michaux C (2012) First crystal structure of an endo-inulinase, INU2, from Aspergillus ficuum: discovery of an extra-pocket in the catalytic domain responsible for its endo-activity. Biochimie 94:2423–2430

    Article  CAS  PubMed  Google Scholar 

  • Raper KB, Thom C (1949) Manual of the Penicillia. Williams & Wilkins, Baltimore

    Google Scholar 

  • Silva MF, Rigo D, Mossi V, Golunski S, Kuhn GDO, Luccio MD, Dallago R, Oliveira DD, Oliveira JV, Treichel H (2013) Enzymatic synthesis of fructooligosaccharides by inulinases from Aspergillus niger and Kluyeromyces marxianus NRRL Y-7571 in aqueous-organic medium. Food Chem 138:148–153

    Article  CAS  PubMed  Google Scholar 

  • Sirisansaneeyakul S, Worawuthiyanan N, Vanichsriratana W, Srinophakun P, Chisti Y (2007) Production of fructose from inulin using mixed inulinases from Aspergillus niger and Candida guilliermondii. World J Microbiol Biochnol 23:543–552

    Article  CAS  Google Scholar 

  • Vandamme EJ, Deryke DG (1983) Microbial inulinases: Fermentation process, properties and applications. Adv Appl Microbiol 29:139–176

    Article  CAS  PubMed  Google Scholar 

  • Vargas LHM, Piao ACS, Domingos RN, Carmona EC (2004) Ultrasound effects on invertase from Aspergillus niger. World J Microbiol Biotechnol 20:137–142

    Article  CAS  Google Scholar 

  • Viswanathan P, Kulkarni PR (1996) Inulinase producing fungi and actinomycetes from dahlia rhizosphere. Indian J Microbiol 36:117–118

    Google Scholar 

  • Wenling W, Huiying WWL, Shiyuan W (1999) Continuous preparation of fructose syrups from Jerusalem artichoke tuber using immobilized intracellular inulinase from Kluyveromyces sp. Y-85. Proc Biochem 34:643–646

  • Zhou J, Lu Q, Peng M, Zhang R, Mo M, Tang X, Li J, Xu B, Ding J, Huang Z (2014) Cold active and NaCl-tolerant exo-inulinase from a cold adapted Arthrobacter sp. MN8 and its potential for use in the production of fructose at low temperatures. Biosci Bioeng. doi:10.1016/jbiosc2014-08.003

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to Madhya Pradesh Biotechnology Council (MPBC), Bhopal, India major research project-(PA-23/656) for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kango.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 434 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, H.K., Ganaie, M.A. & Kango, N. Production of inulinase, fructosyltransferase and sucrase from fungi on low-value inulin-rich substrates and their use in generation of fructose and fructo-oligosaccharides. Antonie van Leeuwenhoek 107, 799–811 (2015). https://doi.org/10.1007/s10482-014-0373-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0373-3

Keywords

Navigation