Skip to main content
Log in

Prokaryotic community structure in deep bedrock aquifers of the Austrian Central Alps

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The bacterial and archaeal diversity of deep groundwater systems was investigated based on 16S rRNA-SSCP (single strand conformation polymorphism) fingerprints. The study site included five boreholes along the projected Brenner Base Tunnel in the central Alps of Tyrol, Austria. To obtain representative samples, packer-sealed fractures were sampled at specific depths between 105 and 780 m below surface. Sequence analysis of SSCP bands obtained from 13 samples showed that between 29 and 62 % of the phylotypes belonged to a variety of Proteobacteria including representatives of typical freshwater bacteria of the genera Acidovorax, Aquabacterium, and Sphingomonas. Bacteroidetes (especially Flavobacterium), Firmicutes (Acetobacterium), and candidate division OP3-related sequences were observed in the majority of the analysed groundwaters. On average, 14 % of the detected prokaryotic phylotypes were affiliated with Archaea, comprising the phyla Euryarchaeota, Crenarchaeota and Thaumarchaeota. Most of the archaeal sequences showed low similarities to known cultivated species, with exception of two sequences having 98 % similarity to Methanosaeta sp. A considerable number of thaumarchaeal sequences belonged to two groups related to Nitrososphaera and Nitrosopumilus phylotypes. An environmental clustering of the groundwater samples, based on the bacterial and archaeal phylogeny, revealed a clear distribution pattern of the samples (sites and depths) reflecting the hydrochemical characteristics and underlying geologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alfreider A, Vogt C, Kaiser M, Psenner R (2009) Distribution and diversity of autotrophic bacteria in groundwater systems based on the analysis of Rubis CO genotypes. Syst Appl Microbiol 32:140–150

    Article  CAS  PubMed  Google Scholar 

  • Auguet J-C, Barberan A, Casamayor EO (2010) Global ecological patterns in uncultured Archaea. ISME J 4:182–190

    Article  PubMed  Google Scholar 

  • Barton HA, Taylor NM, Lubbers BR, Pemberton AC (2006) DNA extraction from low-biomass carbonate rock: an improved method with reduced contamination and the low-biomass contaminant database. J Microbiol Methods 66:21–31

    Article  CAS  PubMed  Google Scholar 

  • Brandner R, Reiter F, Toechterle A (2008) Ueberblick zu den Ergebnissen der geologischen Vorerkundung für den Brenner-Basis tunnel. Geo Alp 5:165–174

    Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  CAS  PubMed  Google Scholar 

  • Chapelle FH, O’Neill K, Bradley PM, Methè BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315

    Article  PubMed  Google Scholar 

  • Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, DeSantis TZ, Gihring TM, Lapidus A, Lin L-H, Lowry SR, Moser DP, Richardson PM, Southam G, Wanger G, Pratt LM, Andersen GL, Hazen TC, Brockman FJ, Arkin AP, Onstott TC (2008) Environmental genomics reveals a single-species ecosystem deep within earth. Science 322:275–278

    Article  CAS  PubMed  Google Scholar 

  • Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 41:D633–D642

    Article  Google Scholar 

  • Dohrmann AB, Tebbe CC (2004) Microbial community analysis by PCR-single-strand conformation polymorphism (PCR–SSCP). In: Kowalchuk GA, de Bruijn FJ, Head IM, Akkermans AD, Elsas JD (eds) Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht, pp 809–838

    Google Scholar 

  • Gihring TM, Moser DP, Lin L-H, Davidson M, Onstott TC, Morgan L, Milleson M, Kieft TL, Trimarco E, Balkwill DL, Dollhopf ME (2006) The distribution of microbial taxa in the subsurface water of the Kalahari Shield, South Africa. Geomicrobiol J 23:415–430

    Article  CAS  Google Scholar 

  • Gloeckner J, Kube M, Shrestha PM, Weber M, Glöckner FO, Reinhardt R, Liesack W (2010) Phylogenetic diversity and metagenomics of candidate division OP3. Environ Microbiol 12:1218–1229

    Article  CAS  Google Scholar 

  • Goldscheider N, Hunkeler D, Rossi P (2006) Review: microbial biocenoses in pristine aquifers and an assessment of investigative methods. Hydrogeol J 14:926–941

    Article  CAS  Google Scholar 

  • Griebler C, Lueders T (2008) Microbial biodiversity in groundwater ecosystems. Freshw Biol 54:649–677

    Article  Google Scholar 

  • Guo H, Tang X, Yang S, Shen Z (2008) Effect of indigenous bacteria on geochemical behavior of arsenic in aquifer sediments from the Hetao Basin, Inner Mongolia: evidence from sediment incubations. Appl Geochem 23:3267–3277

    Article  CAS  Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  CAS  PubMed  Google Scholar 

  • Itävaara M, Nyyssönen M, Kapanen A, Nousiainen A, Ahonen L, Kukkonen I (2011) Characterization of bacterial diversity to a depth of 1500 m in the Outokumpu deep borehole, Fennoscandian shield. FEMS Microbiol Ecol 77:295–309

    Article  PubMed  Google Scholar 

  • Jägevall S, Rabe L, Pedersen K (2011) Abundance and diversity of biofilms in natural and artificial aquifers of the Äspö Hard Rock Laboratory, Sweden. Microbial Ecol 61:410–422

    Article  Google Scholar 

  • Jurgens G (2002) Molecular phylogeny of archaea in boreal forest soil, freshwater and temperate estuarine sediment. Dissertation, University of Helsinki

  • Kato K, Nagaosa K, Kimura H, Katsuyama C, Hama K, Kunimaru T, Tsunogai U, Aoki K (2009) Unique distribution of deep groundwater bacteria constrained by geological setting. Environ Microbiol Rep 1:569–574

    Article  CAS  PubMed  Google Scholar 

  • Könneke M, Schubert DM, Brown PC, Hügler M, Standfest S, Schwander T, von Borzyskowski LS, Erb TJ, Stahl DA, Berg IA (2014) Ammonia-oxidizing archaea use the most energy efficient aerobic pathway for CO2 fixation. Proc Natl Acad Sci USA 111:8239–8244

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin X, Kennedy D, Fredrickson J, Bjornstad B, Konopka A (2012) Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site. Environ Microbiol 14:414–425

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann NY Acad Sci 1125:171–189

    Article  CAS  PubMed  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar Buchner A, Lai S, Steppi S, Jobb G, Foerster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Koenig A, Liss T, Luimann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32:20–25

    Article  Google Scholar 

  • McMahon S, Parnell J (2014) Weighing the deep continental biosphere. FEMS Microbiol Ecol 87:113–120

    Article  CAS  PubMed  Google Scholar 

  • Mussmann M, Brito I, Pitcher A, Sinninghe Damsté JS, Hatzenpichler R, Richter A, Nielsen JL, Nielsen PH, Müller A, Daims H, Wagner M, Head IM (2011) Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc Natl Acad Sci USA 108:16771–16776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nealson KH, Inagaki F, Takai H (2005) Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care? Trends Microbiol 13:405–410

    Article  CAS  PubMed  Google Scholar 

  • Pedersen K (2001) Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185:9–16

    Article  Google Scholar 

  • Pester M, Schleper C, Wagner M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 14:1–7

    Article  Google Scholar 

  • Purkamo L, Bomberg M, Nyyssönen M, Kukkonen I, Ahonen L, Kietäväinen R, Itävaara M (2013) Dissecting the deep biosphere: retrieving authentic microbial communities from packer-isolated deep crystalline bedrock fracture zones. FEMS Microbiol Ecol 85:324–337

    Article  CAS  PubMed  Google Scholar 

  • Rastogi G, Osman S, Kukkadapu R, Engelhard M, Vaishampayan PA, Andersen GL, Sani RK (2010) Microbial and mineralogical characterizations of soils collected from the deep biosphere of the former Homestake gold mine, South Dakota. Microbial Ecol 60:539–550

    Article  CAS  Google Scholar 

  • Rogers DR, Casciotti KL (2010) Abundance and diversity of archaeal ammonia oxidizers in a coastal groundwater system. Appl Environ Microbiol 76:7938–7948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sahl JW, Schmidt R, Swanner ED, Mandernack KW, Templeton AS, Kieft TL, Smith RL, Sanford WE, Callaghan RL, Mitton JB, Spear JR (2008) Subsurface microbial diversity in deep-granitic-fracture water in Colorado. Appl Environ Microbiol 74:143–152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C (2010) Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol 18:331–340

    Article  CAS  PubMed  Google Scholar 

  • Stahl DA, Amann RI (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley Press, Chichester, pp 205–248

    Google Scholar 

  • Stevens T (1997) Lithoautotrophy in the subsurface. FEMS Microbiol Rev 20:327–337

    Article  CAS  Google Scholar 

  • Toechterle A, Brandner R, Reiter F (2011) Strain partitioning on major fault zones in the northwestern Tauern Window—insights from the investigations to the Brenner base tunnel. Austrian J Earth Sci 104:15–35

    Google Scholar 

  • Waddell EJ, Elliott TJ, Vahrenkamp JM, Roggenthen WM, Sani RK, Anderson CM, Bang SS (2010) Phylogenetic evidence of noteworthy microflora from the subsurface of the former Homestake gold mine Lead, South Dakota. Environ Technol 31:979–991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilkins MJ, Daly R, Mouser PJ, Texler R, Wrighton KC, Sharma S et al (2014) Trends and future challenges in sampling the deep terrestrial biosphere. Microbiol Front. doi:10.3389/fmicb.2014.00481

    Google Scholar 

  • Wolterink A, Kim S, Muusse M, Kim IS, Roholl PJM, van Ginkel CG, Stams AJM, Kengen SWM (2005) Dechloromonas hortensis sp. nov. and strain ASK-1, two novel (per)chlorate-reducing bacteria, and taxonomic description of strain GR-1. Int J Syst Evol Microbiol 55:2063–2068

    Article  CAS  PubMed  Google Scholar 

  • Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han S-K (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Brenner Base Tunnel SE, especially Lukas Pergher for the technical assistance in the field. We also thank Bernard Millen (Institute of Geology and Paleontology, University of Innsbruck) for collaboration. This study was funded by the Austrian Science Fund (Project FWF P17649).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albin Alfreider.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 306 kb)

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larentis, M., Psenner, R. & Alfreider, A. Prokaryotic community structure in deep bedrock aquifers of the Austrian Central Alps. Antonie van Leeuwenhoek 107, 687–701 (2015). https://doi.org/10.1007/s10482-014-0363-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0363-5

Keywords

Navigation