Skip to main content
Log in

Rhodococcus biphenylivorans sp. nov., a polychlorinated biphenyl-degrading bacterium

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A Gram-positive, aerobic, non-motile and rod–coccus shaped novel actinobacterial strain, designated as TG9T, was isolated from a polychlorinated biphenyl (PCB)-contaminated sediment in Taizhou city, Zhejiang province, eastern China. The isolate was observed to grow at 10–45 °C (optimum 28–32 °C), pH 5.0–11.0 (optimum pH 7.0–8.0) and with 0–9.0 % (w/v) NaCl (optimum 0–3.0 %). Comparison of the 16S rRNA gene sequences of strain TG9T and other members of the genus Rhodococcus showed that strain TG9T shared highest similarities with Rhodococcus pyridinivorans DSM 44555T (99.4 %), R. rhodochrous DSM 43241T (99.2 %), R. gordoniae DSM 44689T (99.2 %) and R. artemisiae DSM 45380T (98.2 %). However, low levels of DNA–DNA relatedness (15–48 %), which are below the 70 % limit for prokaryotic species identification, were obtained by DNA–DNA hybridization. Strain TG9T was found to contain meso-diaminopimelic acid as the diagnostic diamino acid and arabinose and galactose in the whole-cell hydrolysate. Mycolic acids were found to be present. The major fatty acids were identified as C16:0, C16:1 ω7c and/or iso-C15:0 2-OH, 10-methyl C18:0 and C18:1 ω9c. The only menaquinone detected was MK-8 (H2). The major polar lipids detected were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, glycolipid and traces of some unknown lipids. The genomic DNA G+C content of strain TG9T was determined to be 62.8 %. The combined phenotypic and genotypic data show that the strain represents a novel species of the genus Rhodococcus for which the name Rhodococcus biphenylivorans sp. nov. is proposed, with the type strain TG9T (=CGMCC 1.12975T = KCTC 29673T = MCCC 1K00286T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Chen L, Yu CN, Shen CF, Zhang CK, Liu L, Shen KL, Tang XJ, Chen YX (2010) Study on adverse impact of e-waste disassembly on surface sediment in East China by chemical analysis and bioassays. J Soils Sediments 10:359–367

    Article  CAS  Google Scholar 

  • Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Finnerty WR (1992) The biology and genetics of the genus Rhodococcus. Annu Rev Microbiol 46:193–218

    Article  CAS  PubMed  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20:406–416

    Article  Google Scholar 

  • Fuhrmann C, Soedarmanto I, Lämmler C (1997) Studies on the rod-coccus life cycle of Rhodococcus equi. J Vet Med B 44:287–294

    Article  CAS  Google Scholar 

  • Ghosh A, Paul D, Prakash D, Mayilraj S, Jain RK (2006) Rhodococcus imtechensis sp nov., a nitrophenol-degrading actinomycete. Int J Syst Evol Microbiol 56:1965–1969

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M (1989) Genus Rhodococcus. Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore, pp 2362–2371

    Google Scholar 

  • Groth I, Rodríguez C, Schütze B, Schmitz P, Leistner E, Goodfellow M (2004) Five novel Kitasatospora species from soil: Kitasatospora arboriphila sp. nov., K. gansuensis sp. nov., K. nipponensis sp. nov., K. paranensis sp. nov. and K. terrestris sp. nov. Int J Syst Evol Microbiol 54:2121–2129

    Article  CAS  PubMed  Google Scholar 

  • Gürtler V, Mayall BC, Seviour R (2004) Can whole genome analysis refine the taxonomy of the genus Rhodococcus? FEMS Microbiol Rev 28:377–403

    Article  PubMed  Google Scholar 

  • Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322

    Article  CAS  Google Scholar 

  • Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    Article  CAS  PubMed  Google Scholar 

  • Jones AL, Goodfellow M (2012) Genus Rhodococcus (Zopf 1891) emend. In: Goodfellow M, Kämpfer P, Busse H-J et al (eds) Bergey’s manual of systematic bacteriology, vol 5, Part A, 2nd edn. Springer, New York, pp 437–464

    Google Scholar 

  • Jones AL, Sutcliffe IC, Goodfellow M (2013) Proposal to replace the illegitimate genus name Prescottia Jones et al. 2013 with the genus name Prescottella gen. nov. and to replace the illegitimate combination Prescottia equi Jones et al. 2013 with Prescottella equi comb. nov. Antonie Van Leeuwenhoek 103:1405–1407

    Article  PubMed  Google Scholar 

  • Kaprelyants AS, Kell DB (1992) Rapid assessment of bacterial viability and vitality by rhodamine 123 and flow cytometry. J Appl Bacteriol 72:410–422

    Article  CAS  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Lanyi B (1987) Classical and rapid identification methods for medically important bacteria. Method Microbiol 19:1–67

    Article  CAS  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CCR (2005) Biodegradation and Rhodococcus-masters of catabolic versatility. Curr Opin Biotechnol 16:282–290

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    Article  CAS  Google Scholar 

  • Lechevalier MP, De Bievre C, Lechevalier H (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260

    Article  CAS  Google Scholar 

  • Leifson E (1960) Atlas of bacterial flagellation. Academic Press, London

    Google Scholar 

  • Ley JD, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  • Li WJ, Xu P, Peter S, Qin ZY, Rüdiger P, Hua XL, Erko S, Jiang CL (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428

    Article  PubMed  Google Scholar 

  • Li SH, Jin Y, Cheng J, Dong JP, Kim CJ, Hozzein WN, Wadaan MAM, Shu WS, Ding LX, Li WJ (2014) Gordonia jinhuaensis sp. nov., a novel resuscitative actinobacterium, isolated from VBNC (viable but non-culturable) state from pharmaceutical wastewater. Antonie Van Leeuwenhoek 106:347–356

    Article  CAS  PubMed  Google Scholar 

  • Mesbah M, Premachandran U, Whitman W (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 188:221–233

    Article  CAS  Google Scholar 

  • Minnikin DE, O’donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Mukamolova GV, Kaprelyants AS, Young DI, Young M, Kell DB (1998) A bacterial cytokine. Proc Natl Acad Sci USA 95:8916–8921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mukamolova GV, Murzin AG, Salina EG, Demina GR, Kell DB, Kaprelyants AS, Young M (2006) Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol Microbiol 59:84–98

    Article  CAS  PubMed  Google Scholar 

  • Oliver JD (2010) Recent findings on the viable but non-culturable state in pathogenic bacteria. FEMS Microbiol Rev 34:415–425

    CAS  PubMed  Google Scholar 

  • Rainey FA, Burghardt J, Kroppenstedt R, Klatte S, Stackebrandt E (1995) Polyphasic evidence for the transfer of Rhodococcus roseus to Rhodococcus rhodochrous. Int J Syst Bacteriol 45:101–103

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News Lett 20:1–6

    Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654

    Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Article  Google Scholar 

  • Su XM, Shen H, Yao XY, Ding LX, Yu CN, Shen CF (2013) A novel approach to stimulate the biphenyl-degrading potential of bacterial community from PCBs-contaminated soil of e-waste recycling sites. Bioresour Technol 146:27–34

    Article  CAS  PubMed  Google Scholar 

  • Tamaoka J, Katayama FY, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang SK, Wang Y, Chen Y, Lou K, Cao LL, Xu LH, Li WJ (2009) Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 59:2025–2032

    Article  CAS  PubMed  Google Scholar 

  • Tindall BJ (2014a) The correct name of the taxon that contains the type strain of Rhodococcus equi. Int J Syst Evol Microbiol 64:302–308

    Article  CAS  PubMed  Google Scholar 

  • Tindall BJ (2014b) A note on the genus name Rhodococcus Zopf 1891 and its homonyms. Int J Syst Evol Microbiol 64:1062–1064

    Article  CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Murray RGE, Stackebrandt E, Starr MP (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Xu JL, He J, Wang ZC, Wang K, Li WJ, Tang SK, Li SP (2007) Rhodococcus qingshengii sp nov., a carbendazim-degrading bacterium. Int J Syst Evol Microbiol 57:2754–2757

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Cho YG, Kang SS, Kim SB, Lee ST, Park YH (2000a) Rhodococcus koreensis sp nov., a 2,4-dinitrophenol-degrading bacterium. Int J Syst Evol Microbiol 50:1193–1201

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Kang SS, Cho YG, Lee ST, Kho YH, Kim CJ, Park YH (2000b) Rhodococcus pyridinovorans sp nov., a pyridine-degrading bacterium. Int J Syst Evol Microbiol 50:2173–2180

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support provided by the Fundamental Research Funds for the Central Universities (2014QNA6012), the National Natural Science Foundation of China (41271334), the National High Technology Research and Development Program of China (2012AA06A203), and Zhejiang Provincial Natural Science Foundation of China (LR12D01001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaofeng Shen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3920 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Liu, Y., Hashmi, M.Z. et al. Rhodococcus biphenylivorans sp. nov., a polychlorinated biphenyl-degrading bacterium. Antonie van Leeuwenhoek 107, 55–63 (2015). https://doi.org/10.1007/s10482-014-0303-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0303-4

Keywords

Navigation