Skip to main content
Log in

Chryseobacterium zeae sp. nov., Chryseobacterium arachidis sp. nov., and Chryseobacterium geocarposphaerae sp. nov. isolated from the rhizosphere environment

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Four yellow pigmented strains (91A-561T, 91A-576, 91A-593T, and JM-1085T) isolated from plant materials, showed 97.2–98.7 % 16S rRNA gene sequence similarities among each other and were studied in a polyphasic approach for their taxonomic allocation. Cells of all four isolates were rod-shaped and stained Gram-negative. Comparative 16S rRNA gene sequence analysis showed that the four bacteria had highest sequence similarities to Chryseobacterium formosense (97.2–98.7 %), Chryseobacterium gwangjuense (97.1–97.8 %), and Chryseobacterium defluvii (94.6–98.0 %). Sequence similarities to all other Chryseobacterium species were below 97.5 %. Fatty acid analysis of the four strains showed Chryseobacterium typical profiles consisting of major fatty acids C15:0 iso, C15:0 iso 2-OH/C16:1 ω7c, C17:1 iso ω9c, and C17:0 iso 3-OH, but showed also slight differences. DNA–DNA hybridizations with type strains of C. gwangjuense, C. formosense, and C. defluvii resulted in values below 70 %. Isolates 91A-561T and 91A-576 showed DNA–DNA hybridization values >80 % indicating that they belonged to the same species; but nucleic acid fingerprinting showed that the two isolates represent two different strains. DNA–DNA hybridization results and the differentiating biochemical and chemotaxonomic properties showed, that both strains 91A-561T and 91A-576 represent a novel species, for which the name Chryseobacterium geocarposphaerae sp. nov. (type strain 91A-561T=LMG 27811T=CCM 8488T) is proposed. Strains 91A-593T and JM-1085T represent two additional new species for which we propose the names Chyrseobacterium zeae sp. nov. (type strain JM-1085T=LMG 27809T, =CCM 8491T) and Chryseobacterium arachidis sp. nov. (type strain 91A-593T=LMG 27813T, =CCM 8489T), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Behrendt U, Ulrich A, Spröer C, Schumann P (2007) Chryseobacterium luteum sp. nov., associated with the phyllosphere of grasses. Int J Syst Evol Microbiol 57:1881–1885

    Article  PubMed  Google Scholar 

  • Behrendt U, Ulrich A, Schumann P (2008) Chryseobacterium gregarium sp. nov., isolated from decaying plant material. Int J Syst Evol Microbiol 58:1069–1074

    Article  CAS  PubMed  Google Scholar 

  • Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide-sequence of a 16S ribosomal-RNA gene from Escherichia coli. PNAS 75:4801–4805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cho SH, Lee KS, Shin DS, Han JH, Park KS, Lee CH, Park KH, Kim SB (2010) Four new species of Chryseobacterium from the rhizosphere of coastal sand dune plants, Chryseobacterium elymi sp. nov., Chryseobacterium hagamense sp. nov., Chryseobacterium lathyri sp. nov. and Chryseobacterium rhizosphaerae sp. nov. Syst Appl Microbiol 33:122–127

    Article  PubMed  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Glaeser SP, Galatis H, Martin K, Kämpfer P (2013) Niabella hirudinis and Niabella drilacis sp. nov., isolated from the medicinal leech Hirudo verbana. Int J Syst Evol Microbiol 63:3487–3493

    Article  CAS  PubMed  Google Scholar 

  • Hugo CJ, Segers P, Hoste B, Vancanneyt M, Kersters K (2003) Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 53:771–777

    Article  CAS  PubMed  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of the protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Chapter  Google Scholar 

  • Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005

    Article  Google Scholar 

  • Kämpfer P, Steiof M, Dott W (1991) Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251

    Article  PubMed  Google Scholar 

  • Kämpfer P, Dreyer U, Neef A, Dott W, Busse H-J (2003) Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53:93–97

    Article  PubMed  Google Scholar 

  • Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H, Huang X, Kobayashi K, Ezaki T (2003) Chryseobacterium miricola sp. nov., a novel species isolated from condensation water of space station Mir. Syst Appl Microbiol 26:523–528

    Article  CAS  PubMed  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acid Res 32:1363–1371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Montero-Calasanz MD, Göker M, Rohde M, Spröer C, Schumann P, Busse H-J, Schmid M, Tindall BJ, Klenk HP, Camacho M. (2013) Chryseobacterium hispalense sp. nov., a plant growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery and emendation of the species Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 63:4386–4395

  • Nguyen NL, Kim YJ, Hoarig VA, Yang DC (2013) Chryseobacterium ginsengisoli sp. nov., isolated from the rhizosphere of ginseng and emended description of Chryseobacterium gleum. Int J Syst Evol Microbiol 63:2975–2980

    Article  CAS  PubMed  Google Scholar 

  • Park MS, Jung SR, Lee KH, Lee M-S, Do JO, Kim SB, Bae KS (2006) Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56:433–438

    Article  CAS  PubMed  Google Scholar 

  • Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reichenbach H (1989) The order Cytophagales Leadbetter 1974, 99AL. In: Staley JT, Bryant MP, Pfennig N, Holt JC (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams & Wilkins, Baltimore, pp 2011–2073

    Google Scholar 

  • Sang MK, Kim HS, Myung IS, Ryu CM, Kim BS, Kim KD (2013) Chryseobacterium kwangjuense sp. nov., isolated from pepper (Capsicum annuum L.) root. Int J Syst Evol Microbiol 63:2835–2840

    Article  CAS  PubMed  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B (1994) New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bact 44:827–831

    Article  Google Scholar 

  • Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  • Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH et al (2008) The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250

    Article  CAS  PubMed  Google Scholar 

  • Young CC, Kämpfer P, Shen FT, Lai WA, Arun AB (2005) Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (Garden lettuce). Int J Syst Evol Microbiol 55:432–436

    Article  Google Scholar 

  • Ziemke F, Brettar I, Höfle MG (1997) Stability and diversity of the genetic structure of a Shewanella putrefaciens population in the water column of the central Baltic. Aquat Microb Ecol 13:63–74

    Article  Google Scholar 

  • Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R (1998) Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov. Int J Syst Bact 48:179–186

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Gundula Will, Maria Sowinsky, Jan Rodrigues-Fonseca and Anna Baum for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kämpfer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10482_2013_101_MOESM1_ESM.eps

Supplementary Fig. 1: Maximum-likelihood tree based on nearly full-length 16S rRNA gene sequences showing the phylogenetic position of the four new strains among type strains of currently described species of the genus Chryseobacterium. The tree was calculated in ARB using PhyML. Nucleotide position between termini 82 to 1394 (E. coli numbering, Brosius et al. 1978). Two Elizabethkingia type strains were used as outgroups. Bar, 0. 1 nucleotide substitutions per side. Supplementary material 1 (EPS 1871 kb)

10482_2013_101_MOESM2_ESM.eps

Supplementary Fig. 2: Neighbour-joining tree based on nearly full-length 16S rRNA gene sequences showing the phylogenetic position of the four new strains among type strains of currently described species of the genus Chryseobacterium. The tree was calculated in ARB with ARB Neighbor joining (Jukes-Cantor correction, 100 replications). Nucleotide position between termini 82 to 1394 (E. coli numbering, Brosius et al. 1978) were included in the analysis. Bootstrap values above 70 % are shown at branch nodes. Two Elizabethkingia type strains were used as outgroups. Bar, 0. 1 nucleotide substitutions per side. Supplementary material 2 (EPS 1855 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kämpfer, P., McInroy, J.A. & Glaeser, S.P. Chryseobacterium zeae sp. nov., Chryseobacterium arachidis sp. nov., and Chryseobacterium geocarposphaerae sp. nov. isolated from the rhizosphere environment. Antonie van Leeuwenhoek 105, 491–500 (2014). https://doi.org/10.1007/s10482-013-0101-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-0101-4

Keywords

Navigation