Skip to main content

Advertisement

Log in

Non-linear dynamics of carbon and hydrogen isotopic signatures based on a biological kinetic model of nitrite-dependent methane oxidation by “Candidatus Methylomirabilis oxyfera”

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

System dynamics of nitrite-dependent anaerobic methane oxidation (N-DAMO) in a “Candidatus Methylomirabilis oxyfera” culture are described using a mathematical model based on chemical kinetics, microbial growth dynamics and equations for 13C and 2H isotopic fractionation. Experimental data for the N-DAMO model were taken from Rasigraf et al. (2012), who studied N-DAMO in a batch culture of “Ca. M. oxyfera” started at two different conditions with varying methane, nitrite and biomass concentrations. In the model, instead of using concentrations of each isotopologue (12C and 13C, 1H and 2H), total concentrations and respective isotope ratios were considered as variables. The empirical Monod equations, which included methane and nitrite as two rate-limiting substrates, a threshold methane concentration CH 4min below which there was no biomass growth, and the same kinetic coefficients for the separate batch experiments, fitted the experimental data much better than apparent first-order kinetics that required rather different kinetic coefficients for the two experiments. Non-linear dynamics of 13C and 2H isotopic signatures were obtained based on the N-DAMO model. It was shown that rate limitation by methane or nitrite concentrations significantly affected the dynamics of carbon and hydrogen isotopic signatures. Fractionation rate increased at higher initial biomass concentration. The non-linear N-DAMO model satisfactorily described experimental data presented in the two-dimensional plot of hydrogen versus carbon stable isotopic signatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alperin MJ, Reeburgh WS, Whiticar MJ (1988) Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Global Biogeochem Cycles 2:279–288

    Article  CAS  Google Scholar 

  • Barker JF, Fritz P (1981) Carbon isotope fractionation during microbial methane oxidation. Nature 293:289–291

    Article  CAS  Google Scholar 

  • Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlosthatis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) Anaerobic digestion model no. 1 (ADM1). Scientific and technical report no. 13, IWA Publishing, London, p 77

  • Bergamaschi P, Harris GW (1995) Measurments of stable isotope ratios (13CH4/12CH4; 12CH3D/12CH4) in landfill methane using a tunable diode laser absorption spectrometer. Global Biogeochem Cycles 9:439–447

    Article  Google Scholar 

  • Bergamaschi P, Lubina C, Kongstedt R, Fischer H, Veltkamp AC, Zwaagstra O (1998) Stable isotopic signatures (δ13C, δD) of methane from European landfill sites. J Geophys Res 103:8251–8265

    Article  CAS  Google Scholar 

  • Bodegom P (2007) Microbial maintenance: a critical review on its quantification. Microb Ecol 53:513–523

    Article  PubMed  Google Scholar 

  • Brodsky AI (1952) Isotope chemistry. Russian Academy Printing House, Moscow, p 342 (in Russian)

  • Coleman DD, Risatti JB, Schoell M (1981) Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria. Geochim Cosmochim Acta 45:1033–1037

    Article  CAS  Google Scholar 

  • Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1:285–292

    Article  PubMed  CAS  Google Scholar 

  • Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP (2005) A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ Sci Technol 39:6896–6916

    Article  PubMed  CAS  Google Scholar 

  • Elsner M, McKelvier J, Couloume GL, Lollar BS (2007) Insight to methyl tert-butyl ether (MTBE) stable isotope fractionation from abiotic reference experiments. Environ Sci Technol 41:5693–5700

    Article  PubMed  CAS  Google Scholar 

  • Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt K, Medema MH, Op den Camp HJM, Jetten MM, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10:3164–3173

    Article  PubMed  CAS  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs KJ, Stunnenberg HK, Weissenbach J, Jetten MM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–550

    Article  PubMed  CAS  Google Scholar 

  • Feisthauer S, Vogt C, Modrzynski J, Szlenkier M, Krüger M, Siegert M, Richnow HH (2011) Different types of methane monooxygenases produce similar carbon and hydrogen isotope fractionation patterns during methane oxidation. Geochim Cosmochim Acta 75:1173–1184

    Article  CAS  Google Scholar 

  • Goevert D, Conrad R (2009) Effect of substrate concentration on carbon isotope fractionation during acetoclastic methanogenesis by Methanosarcina barkeri and M. acetivorance and in rice field soil. Appl Environ Microb 75:2605–2612

    Article  CAS  Google Scholar 

  • Happell JD, Chanton JP, Showers WS (1994) The influence of methane oxidation on the stable isotopic composition of methane emitted from Florida swamp forests. Geochim Cosmochim Acta 58:4377–4388

    Article  CAS  Google Scholar 

  • Henze M, Grady CPL, Gujer W, Marais GvR, Matsuo T (1987) Activated sludge model no. 1 IAWPRC Scientific and technical report. London, p 33

  • Hoh CY, Cord-Ruwisch R (1996) A practical kinetic model that considers end-product inhibition in anaerobic digestion processes by including the equilibrium constant. Biotech Bioengn 51:597–604

    Article  CAS  Google Scholar 

  • Holler T, Wegener G, Knittel K, Boetius A, Brunner B, Kuypers MMM, Widdel F (2009) Substantial δ13 CH4/δ12 CH4 and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro. Environ Microbiol Rep 1(5):370–376

    Article  PubMed  CAS  Google Scholar 

  • Kampara M, Thullner M, Richnow HH, Harms H, Wick LY (2008) Impact of bioavailability restrictions on microbially induced stable isotope fractionation. 1. Experimental evidence. Environ Sci Technol 42(17):6552–6558

    Article  PubMed  CAS  Google Scholar 

  • Kessler JD, Reeburgh WS, Tyler SC (2006) Controls on methane concentrations and stable isotope (δ2H–CH4 and δ13C–CH4) distributions in the water columns of the Black Sea and Cariasco Basin. Glob Biogeochem Cycles 20: GB4004

  • Kinnaman FS, Valentine DL, Tyler SC (2007) Carbon and hydrogen isotope fractionation associated with the aerobic microbial oxidation of methane, ethane, propane and butane. Geochim Cosmochim Acta 71:271–283

    Article  CAS  Google Scholar 

  • Kovarova-Kovar K, Egli T (1998) Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microb Mol Biol Rev 62:646–666

    CAS  Google Scholar 

  • Lema JM, Fdes-Polanco F, Carballa M, Rofriguez J, Suarez S (eds) (2013) Proceedings of 13th world congress on anaerobic digestion: recovering (bio) resources for the world, Santiago de Compostela (Spain). ISBN: 978-84-695-7756-1, p 194

  • Maggi F, Riley WJ (2010) Mathematical treatment of isotopologue and isotopomer speciation and fractionation in biochemical kinetics. Geochim Cosmochim Acta 74:1823–1835

    Article  CAS  Google Scholar 

  • Mahieu K, Visscher AD, Vanrolleghem P, Cleemput OV (2006) Carbon and hydrogen isotope fractionation by microbial methane oxidation: improved determination. Waste Manag (New York, NY) 26:389–398

    Article  CAS  Google Scholar 

  • Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux A, Tardieux P (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil 62(3):413–430

    Article  CAS  Google Scholar 

  • Martens CS, Albert DB, Alperin MJ (1999) Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernforde Bay, German Baltic Sea. Am J Sci 299:589–610

    Article  CAS  Google Scholar 

  • Menyailo OV, Hungate BA (2006) Stable isotope discrimination during soil denitrification: Production and consumption of nitrous oxide. Glob Biogeochem Cycles 20:GB3025

    Article  Google Scholar 

  • Northrop DB (1981) The expression of isotope effects on enzyme-catalyzed reactions. Ann Rev Biochem 50:103–131

    Article  PubMed  CAS  Google Scholar 

  • Powelson DK, Chanton JP, Abichow T (2006) Methane oxidation in biofilters measured by mass-balance and stable isotope methods. Environ Sci Technol 41:620–625

    Article  Google Scholar 

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Damsté JSS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    Article  PubMed  CAS  Google Scholar 

  • Rasigraf O, Vogt C, Richnow HH, Jetten MSM, Ettwig KF (2012) Carbon and hydrogen isotope fractionation during nitrite-dependent anaerobic methane oxidation by Methylomirabilis oxyfera. Geochim Cosmochim Acta 89:256–264

    Article  CAS  Google Scholar 

  • Rayleigh JWC (1896) Theoretical consideration respecting the separation of gases by diffusion and similar processes. Philos Mag 42:493–498

    Google Scholar 

  • Snover AK, Quay PD (2000) Hydrogen and carbon kinetic isotope effects during soil uptake of atmospheric methane. Glob Biogeochem Cycles 14:25–39

    Article  CAS  Google Scholar 

  • Tang FHM, Maggi F (2012) The effect of 15N to 14N ratio on nitrification, denitrification and dissimilatory nitrate reduction. Rapid Commun Mass Spectr 26:430–442

    Article  CAS  Google Scholar 

  • Thullner M, Kampara M, Richnow HH, Harms H, Wick LY (2008) Impact of bioavailability restrictions on microbially induced stable isotope fractionation. 1. Theoretical calculation. Environ Sci Technol 42(17):6544–6551

    Article  PubMed  CAS  Google Scholar 

  • Tong JY, Yankwich PE (1957) Calculation of experimental isotope effects for pseudo first-order irreversible reactions. J Phys Chem 61:540–543

    Article  CAS  Google Scholar 

  • van Breukelen BM, Prommer H (2008) Beyond the Rayleigh equation: reactive transport modeling of isotope fractionation effects to improve quantification of biodegradation. Environ Sci Technol 42:2457–2463

    Article  PubMed  Google Scholar 

  • Vavilin VA (2010) Equation for isotope accumulation in products and biomass as a way to reveal the pathways in mesophilic methanol methanization by microbial community. Ecol Model 221:2881–2886

    Article  CAS  Google Scholar 

  • Vavilin VA (2012a) Estimating evolution of δ13CH4 during methanization of cellulosic waste based on stoichiometric chemical reactions, microbial dynamics and stable carbon isotope fractionation. Biores Technol 110:706–710

    Article  CAS  Google Scholar 

  • Vavilin VA (2012b) Estimating evolution of δ13CH4 during methanization in the boreal peatland ecosystems based on stoichiometric chemical reactions, microbial dynamics and stable carbon isotope fractionation. Ecol Model 240:84–92

    Article  CAS  Google Scholar 

  • Vavilin VA (2013a) Estimating changes of isotopic fractionation based on chemical reactions and microbial dynamics during anaerobic methane oxidation: apparent zero- and first-order kinetics at high and low initial methane concentrations. Ant Leeuwenhoek 103:375–383

    Article  CAS  Google Scholar 

  • Vavilin VA (2013b) New step in anaerobic digestion modeling: estimating changes in isotopic composition as a way to reveal metabolic pathways. Proceedings of 13th world congress on anaerobic digestion: recovering (bio) resources for the world, Santiago de Compostela (Spain), USB flash drive. SPA14 (IWA-10830): http://www.redbiogas.cl

  • Waser NAD, Harrison PJ, Nielsen B, Calvert SE, Turpin DH (1998) Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, and urea by a marine diatom. Limnol Oceanogr 43(2):215–224

    Article  CAS  Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Article  CAS  Google Scholar 

  • Wu ML, Ettwig KF, Jetten MM, Strous M, Keltjens JT, van Niftrik L (2011) A new intra-aerobic metabolism in the nitrite-driven anaerobic methane-oxidizing bacterium Candidatus ‘Methylomirabilis oxyfera’. Biochem Soc Trans 39:243–248

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Samper FJ, Molinero J, Bonilla M (2005) Modeling microbially-mediated consumption of oxygen trapped in voids of a potential repository after backfilling at äspö site. VII Jornada La Coruña, s de Zona no Saturada (La Coruña, Spain) 289–294

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Vavilin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vavilin, V.A., Rytov, S.V. Non-linear dynamics of carbon and hydrogen isotopic signatures based on a biological kinetic model of nitrite-dependent methane oxidation by “Candidatus Methylomirabilis oxyfera”. Antonie van Leeuwenhoek 104, 1097–1108 (2013). https://doi.org/10.1007/s10482-013-0031-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-0031-1

Keywords

Navigation