Skip to main content
Log in

Comparative biogeography of Chromobacterium from the neotropics

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The genus Chromobacterium encompasses free-living Gram-negative bacteria. Until 2007, the genus consisted of only one species but six species are now recognized. Chromobacterium violaceum is the type species of the genus and is commonly found in soil and water in tropical and sub-tropical regions. We have investigated a collection of 111 isolates displaying violet pigmentation from undisturbed aquatic and soil environments from Brazilian Cerrado ecosystem. The 16S rRNA gene phylogeny revealed that all isolates were allocated in a monophyletic cluster inside the Chromobacterium genus and formed few clusters related most closely with Chromobacterium piscinae. The two sets of isolates from water and soil were analyzed by the repetitive extragenic palindromic (rep)-PCR genomic fingerprinting technique using a BOX-AR1 primer. The antimicrobial susceptibility and the different carbon sources utilized by these isolates were also investigated. Physiological profiles of the isolates generated by BIOLOG GN2 plates showed great versatility in the substrate utilization, much higher than the C. violaceum ATCC 12472. All isolates exhibited a high minimum inhibitory concentration (MIC) to ampicillin (MIC > 512 μg/ml) and were inhibited by ciprofloxacin, tetracycline and mercury at the lowest concentration tested (MIC < 2 μg/ml). Thirteen BOX-PCR band patterns were identified from 33 individual fingerprints. Eleven patterns provided evidence for endemic distributions. Antimicrobial susceptibility and BOX-PCR fingerprint clustering showed a clear distinction between Chromobacterium isolates from the water and soil. The results suggested that microenvironment barriers such as water and soil can play an important role in the periodic selection and diversification of Chromobacterium population ecotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440

    CAS  PubMed  Google Scholar 

  • Baquero F, Martinez JL, Canton R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19:260–265

    Article  CAS  PubMed  Google Scholar 

  • Benites VM, Mendonça ES, Ernesto C, Schaefer GR, Novotny EH, Reis EL, Ker JC (2005) Properties of black soil humic acids from high altitude rocky complexes in Brazil. Geoderma 127:104–113

    Article  CAS  Google Scholar 

  • Bergonzini C (1881) Um nuevo bacterio colorato. Ann Soc Nat Modena Ser 2:149–158

    Google Scholar 

  • Bowman JP, McCuaig RD (2003) Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69:2463–2483

    Article  CAS  PubMed  Google Scholar 

  • Brückner R, Titgemeyer F (2002) Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209:141–148

    Article  PubMed  Google Scholar 

  • Brusetti L, Malkhazova I, Gtari M, Tamagnini I, Borin S, Merabishvili M, Chanishvili N, Mora D, Cappitelli F, Daffonchio D (2008) Fluorescent-BOX-PCR for resolving bacterial genetic diversity, endemism and biogeography. BMC Microbiol 8:220

    Article  PubMed  Google Scholar 

  • Callisto M, Moreno P, Goulart M, Medeiros A, Petrucio M, Moretti M, Mayrink N, Rosa CA (2002) The assessment of aquatic biodiversity along an altitudinal gradient at the Serra do Cipó (south-eastern Brazil). Verh Int Verein Limnol 28:1–4

    Google Scholar 

  • Cho JC, Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66:5448–5456

    Article  CAS  PubMed  Google Scholar 

  • Cohan FM (2002) What are bacterial species? Annu Rev Microbiol 56:457–487

    Article  CAS  PubMed  Google Scholar 

  • Creczynski-Pasa TB, Antonio RV (2004) Energetic metabolism of Chromobacterium violaceum. Genet Mol Res 3:162–166

    CAS  PubMed  Google Scholar 

  • D’Costa VM, Griffiths E, Wright GD (2007) Expanding the soil antibiotic resistome: exploring environmental diversity. Curr Opin Microbiol 10:481–489

    Article  PubMed  Google Scholar 

  • DeLong EF (1997) Marine microbial diversity: the tip of the iceberg. Trends Biotechnol 15:203–207

    Article  CAS  PubMed  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    CAS  PubMed  Google Scholar 

  • Fox GE, Wisotzkey JD, Jurtshuk P Jr (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170

    Article  CAS  PubMed  Google Scholar 

  • Freitas DB, Reis MP, Freitas L, Assis PS, Chartone-Souza E, Nascimento AMA (2008) Molecular bacterial diversity and distribution in waste from a steel plant. Can J Microbiol 54:996–1005

    Article  CAS  PubMed  Google Scholar 

  • Fulthorpe RR, Rhodes AN, Tiedje JM (1998) High levels of endemicity of 3-chlorobenzoate-degrading soil bacteria. Appl Environ Microbiol 64:1620–1627

    CAS  PubMed  Google Scholar 

  • Galvão MV, Nimer E (1965) Clima. In: Galvão MV, Nimer E (eds) Geografia do Brasil-Grande Região Leste. IBGE, Rio de Janeiro, pp 91–139

    Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    CAS  PubMed  Google Scholar 

  • Gordon D, Desmarais C, Green P (2001) Automated finishing with autofinish. Genome Res 11:614–625

    Article  CAS  PubMed  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PJ (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Han XY, Han FS, Segal J (2008) Chromobacterium haemolyticum sp. nov., a strongly haemolytic species. Int J Syst Evol Microbiol 58:1398–1403

    Article  CAS  PubMed  Google Scholar 

  • Horner-Devine MC, Lage M, Hughes JB, Bohannan BJM (2004) A taxa–area relationship for bacteria. Nature 432:750–753

    Article  CAS  PubMed  Google Scholar 

  • Kämpfer P, Busse HJ, Scholz HC (2009) Chromobacterium piscinae sp. nov. and Chromobacterium pseudoviolaceum sp. nov., from environmental samples. Int J Syst Evol Microbiol 59:2486–2490

    Article  PubMed  Google Scholar 

  • Kang SC, Park S, Lee DG (1999) Purification and characterization of a novel chitinase from the entomopathogenic fungus, Metarhizium anisopliae. J Invertebr Pathol 73:276–281

    Article  CAS  PubMed  Google Scholar 

  • Koeuth T, Versalovic J, Lupski JR (1995) Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. Genome Res 5:408–418

    Article  CAS  PubMed  Google Scholar 

  • Koppen W (1936) Das geographisca System der Klimate. In: Köppen W, Geiger R (ed) Handbuch der Klimatologie Gebrüder Borntraeger. Berlin, pp 1–46

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Kuske CR, Barns SM, Busch JD (1997) Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Appl Environ Microbiol 63:3614–3621

    CAS  PubMed  Google Scholar 

  • Lemke MJ, Lienau EK, Rothe J, Pagioro TA, Rosenfeld J, Desalle R (2009) Description of freshwater bacterial assemblages from the upper Paraná river flood pulse system. Braz Microb Ecol 57:94–103

    Article  Google Scholar 

  • Levin BR (1981) Periodic selection, infectious gene exchange and the genetic structure of E. coli populations. Genetics 99:1–23

    CAS  PubMed  Google Scholar 

  • Lima-Bittencourt CI, Cursino L, Gonçalves-Dornelas H, Pontes DS, Nardi RMD, Callisto M, Chartone-Souza E, Nascimento AMA (2007a) Multiple antimicrobial resistance in Enterobacteriaceae isolates from pristine freshwater. Genet Mol Res 6:510–521

    CAS  PubMed  Google Scholar 

  • Lima-Bittencourt CI, Astolfi-Filho S, Chartone-Souza E, Santos FR, Nascimento AMA (2007b) Analysis of Chromobacterium sp. natural isolates from different Brazilian ecosystems. BMC Microbiol 7:58

    Article  PubMed  Google Scholar 

  • Logan NA, Moss MO (1992) Identification of Chromobacterium, Janthinobacterium and Iodobacter species. Soc Appl Bacteriol Tech Ser 29:183–192

    Google Scholar 

  • Lu JJ, Perng CL, Lee SY, Wan CC (2000) Use of PCR with universal primers and restriction endonuclease digestions for detection and identification of common bacterial pathogens in cerebrospinal fluid. J Clin Microbiol 38:2076–2080

    CAS  PubMed  Google Scholar 

  • Martin PA, Gundersen-Rindal D, Blackburn M, Buyer J (2007) Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. Int J Syst Evol Microbiol 57:993–999

    Article  CAS  PubMed  Google Scholar 

  • Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594

    Article  CAS  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nesbo CL, Dlutek M, Doolittle WF (2006) Recombination in thermotoga: implications for species concepts and biogeography. Genetics 172:759–769

    Article  CAS  PubMed  Google Scholar 

  • Noguez AM, Arita HT, Escalante AE, Forney LJ, García-Oliva F, Souza V (2005) Microbial macroecology: highly structured prokaryotic soil assemblages in a tropical deciduous forest. Glob Ecol Biogeogr 14:241–248

    Article  Google Scholar 

  • Oren A (2004) Prokaryote diversity and taxonomy: current status and future challenges. Philos Trans R Soc Lond B Biol Sci 359:623–638

    Article  CAS  PubMed  Google Scholar 

  • Peng L, Shimizu K (2003) Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. Appl Microbiol Biotechnol 61:163–178

    CAS  PubMed  Google Scholar 

  • Pommier T, Canback B, Riemann L, Bostrom KH, Simu K, Lundberg P, Tunlid A, Hagstrom A (2007) Global patterns of diversity and community structure in marine bacterioplankton. Mol Ecol 16:867–880

    Article  CAS  PubMed  Google Scholar 

  • Portillo MC, Gonzalez JM (2008) Microbial communities and immigration in volcanic environments of Canary Islands (Spain). Naturwissenschaften 95:307–315

    Article  CAS  PubMed  Google Scholar 

  • Rademaker JL, Hoste B, Louws K, Kersters J, Swings FJ, Vauterin L, Vauterin P, de Bruijn FJ (2000) Comparison of AFLP and rep-PCR genomic fingerprinting with DNA–DNA homology studies: xanthomonas as a model system. Int J Syst Evol Microbiol 50(Pt 2):665–677

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. CSH Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Siqueira IC, Dias J, Ruf H, Ramos EA, Maciel EA, Rolim A, Labur L, Vasconcelos L, Silvany C (2005) Chromobacterium violaceum in siblings. Braz Emerg Infect Dis 11:1443–1445

    Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Taylor MW, Schupp PJ, de Nys R, Kjelleberg S, Steinberg PD (2005) Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. Environ Microbiol 7:419–433

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos ATR, Almeida DF, Hungria M et al (2003) The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc Natl Acad Sci USA 100:11660–11665

    Article  Google Scholar 

  • Vijayan AP, Anand MR, Remesh P (2009) Chromobacterium violaceum sepsis in an infant. Indian Pediatr 46:721–722

    CAS  PubMed  Google Scholar 

  • Vilas-Boas G, Sanchis V, Lereclus D, Lemos MVF, Bourguet D (2002) Genetic differentiation between sympatric populations of Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol 68:1414–1424

    Article  CAS  PubMed  Google Scholar 

  • Vogel J, Normand P, Thioulouse J, Nesme X, Grundmann GL (2003) Relationship between spatial and genetic distance in Agrobacterium spp. in 1 cubic centimeter of soil. Appl Environ Microbiol 69:1482–1487

    Article  CAS  PubMed  Google Scholar 

  • Young CC, Arun AB, Lai WA, Chen WM, Chou JH, Shen FT, Rekha PD, Kampfer P (2008) Chromobacterium aquaticum sp. nov., isolated from spring water samples. Int J Syst Evol Microbiol 58:877–880

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the CNPq and FAPEMIG for the grant to execute this work. FRS and AMAN are also supported by CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andréa M. A. Nascimento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima-Bittencourt, C.I., Costa, P.S., Hollatz, C. et al. Comparative biogeography of Chromobacterium from the neotropics. Antonie van Leeuwenhoek 99, 355–370 (2011). https://doi.org/10.1007/s10482-010-9501-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9501-x

Keywords

Navigation