Skip to main content
Log in

16SrRNA and enzymatic diversity of culturable bacteria from the sediments of oxygen minimum zone in the Arabian Sea

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Sediment underlying the oxygen minimum zone of the eastern Arabian Sea is rich in organic matter. Bacteria in this sediment–water interface are of great ecological importance as they are responsible for decomposing, mineralizing and subsequent recycling of organic matter. This study has for the first time addressed the phylogenetic and functional description of culturable bacteria of this region. Genotypic characterization of the isolates using amplified rDNA restriction analysis (ARDRA) followed by 16SrRNA sequencing grouped them into various phylogenetic groups such as Firmicutes, Gammaproteobacteria, Low G+C Gram positive bacteria, Actinobacteria and unaffiliated bacteria. Among the enzyme activities, phosphatase was predominant (52%) and was associated with all the phylotypes followed by amylase (37%) and gelatinase (33%). These hydrolytic enzymes were expressed at a wide range of temperature and pH. Firmicutes expressed most of the hydrolytic activities, consistent with a role in degradation of organic matter. Multiple enzyme expression (≥3) was exhibited by Actinobacteria (100%), followed by unaffiliated group (62.5%) and Firmicutes (61.5%). Besides hydrolytic enzymes, the phylotypes also elaborated functional enzymes such as nitrate reductase and catalase (58 and 81% of the isolates, respectively). In the oxygen minimum zone, the diversity was high with 28 phylotypes. Culturable bacterial assemblages encountered were Bacillus sp., Halobacillus sp., Virgibacillus sp., Paenibacillus sp., Marinilactibacillus sp., Kytococcus sp., Micrococcus sp., Halomonas sp. and Alteromonas sp. The high diversity and high percentage of extracellular hydrolytic enzyme activities of the culturable bacteria reflect their important ecological role in biogeochemical cycling of organic matter in the oxygen minimum zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

OMZ:

Oxygen minimum zone

AS:

Arabian Sea

References

  • Alagarsamy R (2003) Organic matter composition in sediments of the Oman margin. Chem Ecol 19:419–429

    Article  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhls K (eds) (2003) Current protocols in molecular biology. Wiley, USA

    Google Scholar 

  • Ayyakkannu K, Chandramohan D (1971) Occurrence and distribution of phosphate solubilizing bacteria and phosphatase in marine sediments at Port Novo. Mar Biol 11:201–205

    Article  CAS  Google Scholar 

  • Azam F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280:694–696

    Article  CAS  Google Scholar 

  • Bhosle NB, Dhargalkar VK, Braganca AM (1978) Distribution of biochemical compounds in the sediments of the shelf and slope regions of the west coast of India. Indian J Mar Sci 7:155–158

    CAS  Google Scholar 

  • Bhosle NB, Sawant SS, Sankaran PD, Wagh AB (1989) Sedimentation of particulate material in stratified and non stratified water columns in the Bombay High area of the Arabian Sea. Mar Ecol Prog Ser 57:225–236

    Article  Google Scholar 

  • Biddle JF, House CH, Brenchely JE (2005) Microbial stratification in deeply buried marine sediment reflects changes in sulfate/methane profiles. Geobiology 3:287–295

    Article  CAS  Google Scholar 

  • Boetius A (1995) Microbial hydrolytic enzyme activities in deep-sea sediments. Helgoländer Meeresuntersuchungen 49:177–178

    Article  Google Scholar 

  • Boetius A, Lochte K (2000) Regional variation of total microbial biomass in sediments of the deep Arabian Sea. Deep Sea Res II 7:149–168

    Article  Google Scholar 

  • Chróst RJ, Overbeck J (1987) Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in Lake Plußsee (North German eutrophic lake). Microb Ecol 13:229–248

    Article  Google Scholar 

  • Codispoti LA, Brandes JA, Christensen JP, Devol AH, Naqvi SWA, Pearl HW, Yoshinari T (2001) The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene? Sci Mar 65:85–105

    Article  CAS  Google Scholar 

  • Cowie G (2005) The biogeochemistry of the Arabian Sea surficial sediments: a review of recent studies. Prog Oceanogr 65:260–289

    Article  Google Scholar 

  • Dang H, Zhu H, Wang J, Li T (2009) Extracellular hydrolytic enzyme screening of culturable heterotrophic bacteria from deep-sea sediments of the Southern Okinawa Trough. World J Microbiol Biotechnol 25:71–79

    Article  CAS  Google Scholar 

  • Dell’Anno A, Corinaldesi C (2004) Degradation and turnover of extracellular DNA in marine sediments: ecological and methodological considerations. Appl Environ Microbiol 70:4384–4386

    Article  PubMed  CAS  Google Scholar 

  • Dell’Anno A, Danovaro R (2003) Extracellular DNA plays a key role in deep-sea ecosystem functioning. Science 309:2179

    Article  Google Scholar 

  • DeLong EF, Franks DG, Yayanos AA (1997) Evolutionary relationships of cultivated psychrophilic and barophilic deep sea bacteria. Appl Environ Microbiol 63:2105–2108

    CAS  PubMed  Google Scholar 

  • Devol AH, Naqvi SWA, Codispoti LA (2006) Nitrogen cycling in the suboxic waters of the Arabian Sea. In: Neretin LN (ed) Past and present water column anoxia. Springer, Dordrecht, pp 283–310

    Google Scholar 

  • Dias ACF, Andreote FD, Dini-Andreote F, Lacava PT, Sa ALB, Melo IS, Azevedo JL, Araujo WL (2009) Diversity and biotechnological potential of culturable bacteria from Brazilian mangrove sediment. World J Microbiol Biotechnol 25:1305–1311

    Article  CAS  Google Scholar 

  • Froelich PN, Kim KH, Burnett R, Deakin WC, Hensley V, Jahnke RL, Kaul L, Kim KH, Soutar K, Vathakanon C (1988) Early diagenesis of organic matter in Peru continental margin sediments: phosphorite precitation. Mar Geol 80:309–343

    Article  CAS  Google Scholar 

  • Fuchs BM, Woebken D, Zubkov MV, Burkill P, Amman R (2005) Molecular identification of picoplankton populations in contrasting waters of Arabian Sea. Aquat Microb Ecol 39:145–157

    Article  Google Scholar 

  • Gerhardt P, Murray RGE, Costilov RN, Nester EW, Wood WA, Kreig NR, Philips GB (1981) Manual methods for general bacteriology. American Society for Microbiology, Washington, DC, pp 409–443

    Google Scholar 

  • Giuliano L, De Domenico M, De Domenico E, Hofle MG, Yakimov MM (1999) Identification of culturable oligotrophic bacteria within naturally occurring bacterioplankton communities of the Ligurian Sea by 16SrRNA sequencing and probing. Microb Ecol 37:77–85

    Article  CAS  PubMed  Google Scholar 

  • Hall POJ, Hulth S, Hulthe G, Landen A, Roos P, Tenberg A (1998) Recycling and burial of organic carbon in continental margin sediments of the Skagerrak (Northeastern North Sea). Cont Shelf Res 23:1787–1809

    Google Scholar 

  • Hedges JI, Keil RG (1995) Sedimentary organic-matter preservation: an assessment and speculative synthesis. Mar Chem 49:81–115

    Article  CAS  Google Scholar 

  • Helly JJ, Levin LA (2004) Global distribution of naturally occurring marine hypoxia on continental margin. Deep Sea Res I 51:1159–1168

    Article  CAS  Google Scholar 

  • Hoope HG (2003) Phosphatase activity in the sea. Hydrobiologia 493:187–200

    Article  Google Scholar 

  • Hoppe HG (1991) Microbial extracellular enzyme activity: a new key parameter in aquatic ecology. In: Chróst RJ (ed) Microbial enzymes in aquatic environments. Springer, New York, pp 60–83

    Google Scholar 

  • Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki T, Nealson KH, Horikoshi K (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of Okhotsk. Appl Environ Microbiol 69:7224–7235

    Article  CAS  PubMed  Google Scholar 

  • Ingall E, Jahnke R (1994) Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochim Cosmochim Acta 58:2571–2575

    Article  CAS  Google Scholar 

  • Jorgensen NOG, Kroer N, Coffin RB, Lee C (1993) Dissolved free amino acids, combined amino acids, and DNA as source of carbon and nitrogen to marine bacteria. Mar Ecol Prog Ser 98:135–148

    Article  Google Scholar 

  • Kamykowski DZ, Zentera SJ (1990) Hypoxia in the world ocean as recorded in the historical data set. Deep Sea Res 37:1861–1874

    Article  CAS  Google Scholar 

  • Kato C, Inoue A, Horikoshi K (1996) Isolating and characterizing deep-sea marine microorganisms. Trends Biotechnol 14:6–12

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Koide O, Mori K, Shimamura S, Matsuura T, Miura T, Takaki Y, Morono Y, Nunoura T, Imachi H, Inagaki F, Takai K, Horikoshi K (2008) Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics and methane rich sediments off Shimokita Peninsula. Extremophiles 12:519–527

    Article  CAS  PubMed  Google Scholar 

  • Kristensen E (1995) Aerobic and anaerobic decomposition of organic matter in marine sediment: which is fastest? Limnol Oceanogr 40:1430–1437

    CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing in nucleic acid techniques. In: Stackebrandt E, Goodfellow M (eds) Bacterial systematics. Wiley, New York, pp 115–148

    Google Scholar 

  • Levin LA (2003) Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr Mar Biol Annu Rev 41:1–45

    Google Scholar 

  • Liu X, Bagwell CE, Wu L, Devol AH, Zhou J (2003a) Molecular diversity of sulfate reducing bacteria from two different continental margin habitats. Appl Environ Microbiol 69:6073–6081

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Tiquia SM, Holguin G, Wu L, Nold SC, Devol AH, Luo K, Palumbo AV, Tiedje JM, Zhou J (2003b) Molecular diversity of denitrifying genes in continental margin sediments within the oxygen deficient zone off the Pacific coast of Mexico. Appl Environ Microbiol 69:3549–3560

    Article  CAS  PubMed  Google Scholar 

  • Mayer LM (1994) Surface area control of organic carbon accumulation in the continental shelf sediments. Geochim Cosmochim Acta 58:1271–1284

    Article  CAS  Google Scholar 

  • Meyer-Reil LA (1991) Ecological aspects of enzymatic activity in marine sediments. In: Chrost RJ (ed) Microbial enzymes in aquatic environments. Springer Verlag, New York, pp 84–95

    Google Scholar 

  • Middelboe M, Borch NH, Kirchman DL (1995) Bacterial utilization of dissolved free amino acids, dissolved combined amino acids and ammonium in the Delaware Bay estuary: effects of carbon and nitrogen limitation. Mar Ecol Prog Ser 128:109–120

    Article  CAS  Google Scholar 

  • Mudryk ZJ, Podgorska B (2006) Enzymatic activity of bacterial strains isolated from marine beach sediments. Pol J Environ Stud 15:441–448

    CAS  Google Scholar 

  • Nair S, Mohandas C, Loka Barathi PA, Sheelu G, Raghukumar C (2000) Microscale response of sediment variables to benthic disturbance in the Central Indian Ocean Basin. Mar Georesources Geotechnol 18:273–283

    Article  Google Scholar 

  • Nakai R, Horinouchi S, Uozumi U, Beppu T (1987) Purification and properties of cellulases from an alkalophilic streptomyces strain. Agri Biol Chem 51:3061–3065

    CAS  Google Scholar 

  • Naqvi SWA (1994) Denitrification processes in the Arabian Sea. In: Lal D (ed) Biogeochemistry of the Arabian Sea. Indian Academy of Sciences, Bangalore, pp 181–202

    Google Scholar 

  • Naqvi SWA, Naik H, Jayakumar DA, Shailaja MS, Narvekar PV (2006) Seasonal oxygen deficiency over the western continental shelf of India. In: Neretin LN (ed) Past and present water column anoxia. Springer, Dordrecht, pp 195–224

    Chapter  Google Scholar 

  • Niimura Y, Yanagida F, Suzuki K, Komagata K, Kozaki M (1990) Amphibacillus xylanus gen. nov., sp. nov., a facultatively anaerobic sporeforming xylan-digesting bacterium which lacks cytochrome, quinone, and catalase. Int J Syst Bacteriol 40:297–301

    Article  CAS  Google Scholar 

  • Nishiyama Y, Massey V, Anzai Y, Watanabe T, Miyaji T, Uchimura T, Kozaki M, Suzuki H, Niimura Y (1997) Purification and characterization of Sporolactobacillus inulinus NADH oxidase and its physiological role in aerobic metabolism of the bacterium. J Ferment Bioeng 84:22–27

    Article  CAS  Google Scholar 

  • Olsen GJ, Lane DL, Giovannoni SJ, Pace NR (1986) Microbial ecology and evolution: a ribosomal RNA approach. Ann Rev Microbiol 40:337–365

    Article  CAS  Google Scholar 

  • Pace NR, Stahl DA, Lane DJ, Olsen GJ (1985) Analysing natural microbial populations by rRNA sequences. ASM News 51:4–12

    Google Scholar 

  • Pantoja S, Lee C (1994) Cell surface oxidation of amino acids in sea water. Limnol Oceanogr 39:1718–1725

    Article  CAS  Google Scholar 

  • Pantoja S, Sepulveda J, Gonzalez HE (2004) Decomposition of sinking proteinaceous material during the fall in the oxygen minimum zone off northern Chile. Deep Sea Res I 51:55–70

    Article  CAS  Google Scholar 

  • Paropkari AL, Babu CP, Mascareahas A (1992) A critical evaluation of depositional parameters controlling the variability of organic carbon in the Arabian Sea sediments. Mar Geol 107:213–226

    Article  CAS  Google Scholar 

  • Poole LB, Reynolds CM, Wood ZA, Karplus PA, Ellis HR, Calzi ML (2000) AhpF and other NADH: peroxiredoxin oxidoreductases, homologues of low Mrthioredoxin reductase. Eur J Biochem 267:6126–6133

    Article  CAS  PubMed  Google Scholar 

  • Poremba K (1995) Hydrolytic enzymatic activity in deep sea sediments. FEMS Microbiol Ecol 16:213–222

    Article  CAS  Google Scholar 

  • Raghukumar C, Nath NB, Sharma R, Bharathi PAL, Dalal SG (2006) Long term changes in microbial and biochemical parameters in the Central Indian Basin. Deep Sea Res I 53:1695–1717

    CAS  Google Scholar 

  • Rocha ER, Smith CJ (1995) Biochemical and genetic analyses of a catalase from the anaerobic bacterium Bacteroides fragilis. J Bacteriol 177:3111–3118

    CAS  PubMed  Google Scholar 

  • Rottenberg KC, Berner R (1993) Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochim Cosmochim Acta 57:991–1007

    Article  Google Scholar 

  • Schippers A, Neretin LN (2006) Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR. Environ Microbiol 8:1251–1260

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2004) Status of the microbial censes. Microbiol Mol Biol Rev 68:686–691

    Article  PubMed  Google Scholar 

  • Schulte S, Mangelsdorf K, Rullkötter J (2000) Organic matter preservation on the Pakistan continental margin as revealed by biomarker geochemistry. Org Geochem 31:1005–1022

    Article  CAS  Google Scholar 

  • Slombe CP, Malschaert JFP, Van Raaphorst W (1998) The role of adsorption in sediments-water exchange of phosphate in North Sea continental margin sediments. Limnol Oceanogr 43:832–846

    Article  Google Scholar 

  • Suess E (1981) Phosphate regeneration from sediments of the Peru continental margin by dissolution of fish debris. Geochim Cosmochim Acta 45:577–588

    Article  CAS  Google Scholar 

  • Sundby B, Gobeil C, Silverberg N, Mucci A (1992) The phosphorus cycle in coastal marine sediments. Limnol Oceanogr 37:1129–1145

    Article  CAS  Google Scholar 

  • Uphoff HA, Felske A, Fehr W, Wagner-Dobler I (2001) The microbial diversity in picoplankton enrichment cultures: a molecular screening of marine isolates. FEMS Microbiol Ecol 35:249–258

    Article  CAS  PubMed  Google Scholar 

  • Wakeham SG (1995) Lipid biomarkers for heterotrophic alteration of suspended particulate organic matter in oxygenated and anoxic water columns of the ocean. Deep Sea Res I 42:1749–1771

    Article  CAS  Google Scholar 

  • Walsh JJ (1991) Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature 350:53–55

    Article  CAS  Google Scholar 

  • Wang F, Wang P, Chen M, Xiao X (2004) Isolation of extremophiles with the detection and retrieval of Shewanella strains in deep-sea sediments from the west Pacific. Extremophiles 21:165–168

    Article  CAS  Google Scholar 

  • Woese CR, Stackebrandt E, Macke TJ, Fox GE (1985) A phylogenetic definition of the major eubacterial taxa. Syst Appl Microbiol 6:143–151

    CAS  PubMed  Google Scholar 

  • Wyrtki K (1962) The oxygen minima in relation to ocean circulation. Deep Sea Res 9:11–23

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the captain and crew of FORV Sagar Sampada for the help rendered in collection of samples. We would like to thank the referee for the valuable suggestions which has improved the quality of the manuscript. We are grateful Dr. C. T. Achuthankutty, Visiting Scientist, National Centre for Antarctic Ocean Research (NCAOR) Goa, for critically reading the Manuscript and Dr. A. Parvathi, Scientist, National Institute of Oceanography, Regional Centre (NIO, RC), Kochi for suggestions in ARDRA analysis. Ms. Neenu Tom and Ms. Jiya Jose of the National Institute of Oceanography, Regional Centre, Kochi are acknowledged for their help in laboratory experiments. This work was supported by Central Marine Living Resources Exploration (CMLRE), Kochi and laboratory facilities were extended by the Marine Microbial Reference Facility of NIO RC, Kochi funded by the Ministry of Earth Sciences, New Delhi. BD thanks Council of Scientific and Industrial Research, New Delhi, for the Senior Research Fellowship. This is NIO contribution No. 4692.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanta Nair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Divya, B., Soumya, K.V. & Nair, S. 16SrRNA and enzymatic diversity of culturable bacteria from the sediments of oxygen minimum zone in the Arabian Sea. Antonie van Leeuwenhoek 98, 9–18 (2010). https://doi.org/10.1007/s10482-010-9423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9423-7

Keywords

Navigation