Skip to main content
Log in

Computer-assisted numerical analysis of colour-group data for dereplication of streptomycetes for bioprospecting and ecological purposes

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Large numbers of alkaliphilic streptomycetes isolated from a beach and dune sand system were dereplicated manually based on aerial spore mass, colony reverse and diffusible pigment colours formed on oatmeal agar, and on their capacity to produce melanin pigments on peptone-yeast extract-iron agar. The resultant data were converted to their respective red, blue and green shade intensities. The Euclidean distances between each of the colours were calculated by considering red, green and blue shade intensity values as X, Y and Z coordinates in three dimensional space. The clusters of isolates delineated in the dendrogram generated using the distances were found to match those obtained by manual colour-grouping of the isolates. A reasonable linear correlation was found between the colour-group and corresponding rep-PCR data. The implications of the computer-assisted colour-grouping method for bioprospecting and ecological studies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antony-Babu S, Goodfellow M (2008) Biosystematics of alkaliphilic streptomycetes isolated from seven locations across a beach and dune sand system. Antonie van Leeuwenhoek 94:581–591

    Article  PubMed  Google Scholar 

  • Antony-Babu S, Stach JEM, Goodfellow M (2008) Genetic and phenotypic evidence for Streptomyces griseus ecovars isolated from a beach and dune sand system. Antonie van Leeuwenhoek 94:63–74

    Article  CAS  PubMed  Google Scholar 

  • Atalan E, Manfio GP, Ward AC, Kroppenstedt RM, Goodfellow M (2000) Biosystematic studies on novel streptomycetes from soil. Antonie van Leeuwenhoek 77:337–353

    Article  CAS  PubMed  Google Scholar 

  • Bérdy J (1995) Are actinomycetes exhausted as a source of secondary metabolites? Biotechnologia 7:13–34

    Google Scholar 

  • Bruntner C, Binder T, Pathom-aree W, Goodfellow M, Bull AT, Potterat O, Puder C, Horer S, Schmid A, Bolek W (2005) Frigocyclinone, a novel angucyclinone antibiotic produced by a Streptomyces griseus strain from Antarctica. J Antibiot (Tokyo) 58:346–349

    CAS  Google Scholar 

  • Bull AT (2004a) Biotechnology, the art of exploiting biology. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington, pp 3–12

    Google Scholar 

  • Bull AT (2004b) The paradigm shift in microbial prospecting. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington, pp 241–249

    Google Scholar 

  • Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol R 64:573–606

    Article  CAS  Google Scholar 

  • Demain AL (1998) Microbial natural products: alive and well in 1998. Nature 16:3–4

    CAS  Google Scholar 

  • Demain AL (1999) Pharmaceutically active secondary metabolites of micro-organisms. Appl Environ Microbiol 52:455–463

    CAS  Google Scholar 

  • Demain AL, Elander RP (1999) The ß-lactam antibiotics: past, present, and future. Antonie van Leeuwenhoek 75:5–19

    Article  CAS  PubMed  Google Scholar 

  • Duangmal K, Ward AC, Goodfellow M (2005) Selective isolation of members of the Streptomyces violaceoruber clade from soil. FEMS Micobiol Lett 245:321–327

    Article  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Felsenstein J (1995) PHYLIP (Phylogeny Inference Package), version 3.57 c. University of Washington, Seattle

    Google Scholar 

  • Fiedler HP, Bruntner C, Bull AT, Ward AC, Goodfellow M, Potterat O, Puder C, Mihm G (2005) Marine actinomycetes as a source of novel secondary metabolites. Antonie van Leeuwenhoek 87:37–42

    Article  CAS  PubMed  Google Scholar 

  • Fiedler HP, Dieter A, Gulder TAM, Kajahn I, Hamm A, Brown R, Jones A, Goodfellow M, Müller WEG, Bringmann G (2008) Genoketides A1 and A2, new octaketides and biosynthetic intermediates of chrysophanol produced by Streptomyces sp. AK 671. J Antibiot 61:464–473

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Haynes J (1984) Actinomycetes in marine sediments. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V (eds) Biological, chemical and biomedical aspects of actinomycetes. Academic Press, New York

    Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Kumar Y, Labeda D, Sembiring L (2007) The Streptomyces violaceusniger clade: a home for streptomycetes with rugose ornamented spores. Antonie van Leeuwenhoek 92:173–199

    Article  PubMed  Google Scholar 

  • Graf E, Schneider K, Nicholson G, Ströbele M, Jones AL, Goodfellow M, Beil W, Süssmuth RD, Fiedler HP (2007) Elloxazinones A and B, new aminophenoxazinones from Streptomyces griseus Acta 2871. J Antibiot 60:277–284

    Article  CAS  PubMed  Google Scholar 

  • Hohmann C, Schneider K, Bruntner C, Brown R, Jones AL, Goodfellow M, Imhoff JF, Nicholson G, Fiedler H-P, Süssmuth RD (2009a) Albidopyrone, a new α-pyrone-containing metabolite from marine-derived Streptomyces sp. NTK 227. J Antibiot 62:75–79

    Article  CAS  PubMed  Google Scholar 

  • Hohmann C, Schneider K, Bruntner C, Irran E, Nicholson G, Bull AT, Jones AL, Brown R, Stach JEM, Goodfellow M, Beil W, Krämer M, Imhoff JF, Süssmuth RD, Fiedler H-P (2009b) Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. J Antibiot 62:99–104

    Article  CAS  PubMed  Google Scholar 

  • Höltzel A, Dieter A, Schmid DG, Brown R, Goodfellow M, Beil W, Jung G, Fiedler HP (2003) Lactonamycin Z, an antibiotic and antitumor compound produced by Streptomyces sanglieri strain AK 623. J Antibiot 56:1058–1061

    PubMed  Google Scholar 

  • Jensen PR, Williams PG, Oh DC, Zeigler L, Fenical W (2007) Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora? Appl Environ Microbiol 73:1146–1152

    Article  CAS  PubMed  Google Scholar 

  • Kelly KL (1964) Inter-Society Color Council–National Bureau of Standards Color-Name charts illustrated with centroid colors. US Government Printing Office, Washington, DC

    Google Scholar 

  • Kűster E (1959) Outline of a comparative study of criteria used in characterisation of the actinomycetes. Int Bull Bacteriol Nomencl Taxon 9:97–104

    Google Scholar 

  • Larsen TO, Smedsgaard J, Nielsen KF, Hansen ME, Frisvad JC (2005) Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Nat Prod Rep 22:672–695

    Article  CAS  PubMed  Google Scholar 

  • Lazzarini A, Cavaletti L, Toppo G, Marinelli F (2000) Rare genera of actinomycetes as potential producers of new antibiotics. Antonie van Leeuwenhoek 78:399–405

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Shi Y, Zhang Y, Zhou Z, Lu Z, Li W, Huang Y, Rodriguez C, Goodfellow M (2005) Classification of Streptomyces griseus (Krainsky 1914) Waksman and Henrici 1948 and related species and the transfer of ‘Microstreptospora cinerea’ to the genus Streptomyces as Streptomyces yanii sp. nov. Int J Syst Evol Microbiol 55:1605–1610

    Article  CAS  PubMed  Google Scholar 

  • Manfio GP, Atalan E, Zakrzewska-Czerwinska J, Mordarski M, Rodríguez C, Collins MD, Goodfellow M (2003) Classification of novel soil streptomycetes as Streptomyces aureus sp. nov., Streptomyces laceyi sp. nov. and Streptomyces sanglieri sp. nov. Antonie van Leeuwenhoek 83:245–255

    Article  CAS  PubMed  Google Scholar 

  • Okoro K, Brown R, Jones AL, Andrews BA, Asenjo JA, Goodfellow M, Bull AT (2009) Cultivable actinomycete diversity in hyper-arid soils of the Attacama Desert, Chile. Antonie van Leeuwenhoek 95:121–133

    Article  PubMed  Google Scholar 

  • Pathom-aree W, Stach JEM, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from Challenger Deep sediment (10, 898 m) from the Mariana Trench. Extremophiles 10:181–189

    Article  CAS  PubMed  Google Scholar 

  • Sembiring L, Ward AC, Goodfellow M (2000) Selective isolation and characterisation of members of the Streptomyces violaceusniger clade associated with the roots of Paraserianthes falcataria. Antonie van Leeuwenhoek 78:353–366

    Article  CAS  PubMed  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313

    Article  Google Scholar 

  • Sneath PHA, Sokal RR (eds) (1973) Numerical taxonomy: the principles and practice of numerical classification. W. H. Freeman and Co., San Francisco

    Google Scholar 

  • Strap JL, Crawford DL (2006) Ecology of Streptomyces in soil and rhizosphere. In: Cooper J, Rao JR (eds) Molecular approaches to soil, rhizosphere and plant microorganism analysis. CABI Publishing, Oxfordshire, pp 166–182

    Chapter  Google Scholar 

  • Strohl WR (2004) Antimicrobials. In: Bull AT (ed) Microbial biodiversity and bioprospecting. ASM Press, Washington, pp 336–355

    Google Scholar 

  • Tan GYA, Ward AC, Goodfellow M (2006) Exploration of Amycolatopsis diversity in soil using genus-specific primers and novel selective media. Syst Appl Microbiol 29:557–569

    Article  CAS  PubMed  Google Scholar 

  • Tan GYA, Robinson S, Lacey E, Brown R, Kim W, Goodfellow M (2007) Amycolatopsis regifaucium sp. nov., a novel actinomycete that produces kigamicins. Int J Syst Evol Microbiol 57:2562–2567

    Article  CAS  PubMed  Google Scholar 

  • Ward AC, Goodfellow M (2004) Phylogeny and functionality: taxonomy as a roadmap to genes. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington, DC, pp 288–313

    Google Scholar 

  • Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390

    Article  CAS  PubMed  Google Scholar 

  • Williams ST, Vickers JC (1988) Detection of actinomycetes in the natural environment: problems and perspectives. In: Okami Y, Beppu T, Ogawara K (eds) Biology of actinomycetes. Japan Scientific Societies Press, Tokyo, pp 265–270

    Google Scholar 

  • Williams ST, Davies FL, Hall DM (1969) A practical approach to the taxonomy of actinomycetes isolated from soil. In: Sheals JG (ed) The soil ecosystem. The Systematics Association, London, pp 107–117

    Google Scholar 

Download references

Acknowledgments

Sanjay Antony-Babu is grateful to the University of Newcastle for an International Research Scholarship and to the School of Biology for a Research Studentship. Authors would also like to thank Sapna Chitlapilly Dass for helping with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Antony-Babu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antony-Babu, S., Stach, J.E.M. & Goodfellow, M. Computer-assisted numerical analysis of colour-group data for dereplication of streptomycetes for bioprospecting and ecological purposes. Antonie van Leeuwenhoek 97, 231–239 (2010). https://doi.org/10.1007/s10482-009-9404-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-009-9404-x

Keywords

Navigation