Skip to main content
Log in

Bacteria colonizing root nodules of wild legumes exhibit virulence-associated properties of mammalian pathogens

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Bacteria not proficient in nitrogen fixing symbiosis were proven able to invade root nodules of three wild legumes of the genus Hedysarum in Algeria and to be multiplying in these in place of the natural rhizobium symbionts. The involved species featured taxa known as human pathogens including: Enterobacter cloacae, Enterobacter kobei, Escherichia vulneris, Pantoea agglomerans and Leclercia adecarboxylata. A direct screening of the phenotypic determinants of virulence using human cultured cells tested positive for the traits of cytotoxicity, vital stain exclusion and adhesion to epithelia. Antibiogram analyses revealed also a complex pattern of multiple antibiotic resistances. The data suggest that legume root nodules can be a site of survival and of active multiplication for populations of mammalian pathogens, which could thus alternate between the target animal and a number of neutral plant hosts. The worldwide distribution of as yet uninvestigated legumes raises the concern that these represent a general niche that could enhance the hazards posed by microorganisms of clinical nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barak JD, Gorski L, Naraghi-Arani P, Charkowski AO (2005) Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Appl Environ Microbiol 71:5685–5691

    Article  CAS  PubMed  Google Scholar 

  • Benhizia Y, Benhizia H, Benguedouar A, Muresu R, Giacomini A, Squartini A (2004) Gamma proteobacteria can nodulate legumes of the genus Hedysarum. Syst Appl Microbiol 27:462–468

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685

    Article  CAS  PubMed  Google Scholar 

  • Bontemps C, Golfier G, Gris-Liebe C, Carrere S, Talini L, Boivin-Masson C (2005) Microarray-based detection and typing of the rhizobium nodulation gene nodC: potential of DNA arrays to diagnose biological functions of interest. Appl Environ Microbiol 71:8042–8048

    Article  CAS  PubMed  Google Scholar 

  • Brenner DJ, McWorther AC, Leete Knudson JK, Steigerwalt AG (1982) Escherichia vulneris a new species of Enterobacteriaceae associated with human wounds. J Clin Microbiol 15:1133–1140

    CAS  PubMed  Google Scholar 

  • Cooley MB, Miller WG, Mandrell RE (2003) Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae. Appl Environ Microbiol 69:4915–4926

    Article  CAS  PubMed  Google Scholar 

  • De Champs C, LeSeaux S, Dubost JJ, Boisgard S, Sauvezie B, Sirot J (2000) Isolation of Pantoea agglomerans in two cases of septic monoarthritis after plant thorn and wood sliver injuries. J Clin Microbiol 38:460–461

    PubMed  Google Scholar 

  • Derlet RW, Carlson JR (2002) An analysis of human pathogens found in horse/mule manure along the John Muir Trail. Wilderness Environ Med 13:113–118

    PubMed  Google Scholar 

  • Fouts DE, Tyler HL, DeBoy RT, Daugherty S, Ren Q, Badger JH, Durkin AS, Huot H, Shrivastava S, Kothari S, Dodson RJ et al (2008) Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 4(7):e1000141

    Article  PubMed  CAS  Google Scholar 

  • Frankel G, Riley L, Giron JA, Valmassoi J, Friedman A, Strockbine N, Falkow S, Schoolnik GK (1990) Detection of Shigella in feces using DNA amplification. J Infect Dis 161:1252–1256

    CAS  PubMed  Google Scholar 

  • Gomes TAT, Blake PA, Trabulsi LR (1989) Prevalence of Escherichia coli strains with localized, diffuse, and aggregative adherence to HeLa cells in infants with diarrhoea matched. J Clin Microbiol 27:266–269

    CAS  PubMed  Google Scholar 

  • Holden N, Pritchard L, Toth I (2008) Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic bacteria. FEMS Microbiol Rev. doi: 10.1111/j.1574-6976.2008.00153.x

  • Iniguez AL, Dong Y, Carter HD, Ahmer BMM, Stone JM, Triplett EW (2005) Regulation of enteric endophytic bacterial colonization by plant defenses. MPMI 18:169–178

    Article  CAS  PubMed  Google Scholar 

  • Ishii S, Yan T, Shively DA, Byappanahalli MN, Whitman R, Sadowsky MJ (2006) Cladophora (Chlorophyta) spp. harbor human bacterial pathogens in nearshore water of lake Michigan. Appl Environ Microbiol 72:4545–4553

    Article  CAS  PubMed  Google Scholar 

  • Jepsen CF, Klebe TM, Prag J (1997) Escherichia vulneris in a Danish soccer wound. Scand J Infect Dis 29:313–314

    Article  CAS  PubMed  Google Scholar 

  • Johnson JR (1991) Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 4:80–125

    CAS  PubMed  Google Scholar 

  • Knutton S, Baldwin T, Williams PH, McNeish AS (1989) Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 57:1290–1298

    CAS  PubMed  Google Scholar 

  • Korhonen TK (1979) Yeast cell agglutination by purified enterobacterial pili. FEMS Microbiol Lett 6:421–425

    Article  CAS  Google Scholar 

  • Korhonen TK, Nurmiaho-Lassila E-L, Laakso T, Haahtela K (1986) Tpe Adhesion of fimbriated nitrogen-fixing enteric bacteria to roots of grasses and cereals. Plant Soil 90:1–3

    Article  Google Scholar 

  • Kratz A, Greenberg D, Barki Y, Cohen E, Lifshitz M (2003) Pantoea agglomerans as a cause of septic arthritis after palm tree thorn injury: case report and literature review. Arch Dis Child 88:542–544

    Article  CAS  PubMed  Google Scholar 

  • Kutter S, Hartmann A, Schmid M (2006) Colonization of barley (Hordeum vulgare) with Salmonella enterica and Listeria spp. FEMS Microbiol Ecol 56:262–271

    Article  CAS  PubMed  Google Scholar 

  • Markova YA, Romanenko AS, Igumnova EK (2002) Plants as possible reservoirs of bacteria pathogenic for humans and animals. Doklady Biological Sciences 386:454–456. Translated from Doklady Akademii Nauk 386:277–279

    Google Scholar 

  • Markova YA, Romanenko AS, Dukhanina A (2005) Isolation of bacteria of the family Enterobacteriaceae from plant tissues. Microbiology 74:575–578

    Article  CAS  Google Scholar 

  • Milanowski J, Dutkiewicz J, Potoczna H, ku L, Urbanovicz B (1998) Allergic alveolitis among agricultural workers in eastern Poland, a study of twenty cases. Ann Agric Environ Med 5:31–43

    CAS  PubMed  Google Scholar 

  • Mühldorfer I, Hacker J (1994) Genetic aspects of Escherichia coli virulence. Microb Pathog 16:171–181

    Article  PubMed  Google Scholar 

  • Muresu R, Polone E, Sulas L, Baldan B, Tondello A, Delogu G, Cappuccinelli P, Alberghini S, Benhizia Y, Benhizia H, Benguedouar A, Mori B, Calamassi R, Dazzo FB, Squartini A (2008) Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol 63:383–400

    Article  CAS  PubMed  Google Scholar 

  • Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142–201

    CAS  PubMed  Google Scholar 

  • Rappelli P, Folgosa E, Solinas ML, Dacosta JL, Pisanu C, Sidat M, Melo J, Cappuccinelli P, Colombo MM (2005) Pathogenic enteric Escherichia coli in children with and without diarrhea in Maputo, Mozambique. FEMS Immunol Med Microbiol 43:67–72

    Article  CAS  PubMed  Google Scholar 

  • Roe A, Currie C, Smith D, Gally DL (2001) Analysis of type 1 fimbriae expression in verotoxigenic Escherichia coli: a comparison between serotypes O157 and O26. Microbiology 147:145–152

    CAS  PubMed  Google Scholar 

  • Schikora A, Carreri A, Charpentier E, Hirt H (2008) The dark side of the salad: Salmonella typhimurium overcomes the innate immune response of Arabidopsis thaliana and shows an endopathogenic lifestyle. PLoS ONE 3(5):e2279. doi:10.1371/journal.pone.0002279

    Article  PubMed  CAS  Google Scholar 

  • Schulz B, Boyle C, Sieber T (eds) (2006) Microbial root endophytes. Springer, Berlin

    Google Scholar 

  • Skórska C, Golec M, Mackiewicz B, Góra A, Dutkiewicz J (2005) Health effects of exposureto herb dust in valerian growing farmers. Ann Agricult Environ Medicine 12:247–252

    Google Scholar 

  • Struve C, Bojer M, Krogfelt KA (2009) Identification of a conserved chromosomal region encoding Klebsiella pneumoniae type 1 and type 3 fimbriae and assessment of the role of fimbriae in pathogenicity. Infect Immun. doi: 10.1128/IAI.00585-09

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on growth. Biol Fertil Soils 25:13–19

    Article  Google Scholar 

  • Tyler HL, Triplett EW (2008) Plants as a habitat for beneficial and/or human pathogenic bacteria. Ann Rev Phytopathol 46:53–73

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Antonella Mattana for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Squartini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muresu, R., Maddau, G., Delogu, G. et al. Bacteria colonizing root nodules of wild legumes exhibit virulence-associated properties of mammalian pathogens. Antonie van Leeuwenhoek 97, 143–153 (2010). https://doi.org/10.1007/s10482-009-9396-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-009-9396-6

Keywords

Navigation