Skip to main content
Log in

The β-tubulin gene as a molecular phylogenetic marker for classification and discrimination of the Saccharomyces sensu stricto complex

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The Saccharomyces sensu stricto complex comprises seven very closely related species. In this study, we compared the use of two different phylogenetic markers, the 26S rDNA and β-tubulin genes, for discriminating phylogenetic relationships among Saccharomyces sensu stricto strains using sequencing as well as RFLP methods. The average sequence similarity for the β-tubulin gene (90.0%) among seven strains was significantly less than that for 26S rDNA (98.6%). This result demonstrates that β-tubulin gene sequences provided higher resolution than 26S rDNA sequences. Species-specific restriction profiles of the Saccharomyces strains were obtained by cutting them with the Tsp509I enzyme. Our data indicate that phylogenetic relationships between these strains are best resolved using sequencing or RFLP analysis of the β-tubulin gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Azumi M, Goto-Yamamoto N (2001) AFLP analysis of type strains and laboratory and industrial strains of Saccharomyces sensu stricto and its application to phenetic clustering. Yeast 18:1145–1154. doi:10.1002/yea.767

    Article  PubMed  CAS  Google Scholar 

  • Begerow D, John B, Oberwinkler F (2004) Evolutionary relationships among beta-tubulin gene sequences of basidiomycetous fungi. Mycol Res 108:1257–1263. doi:10.1017/S0953756204001066

    Article  PubMed  CAS  Google Scholar 

  • Borsting C, Hummel L, Schultz ER, Rose TM, Pedersen MB, Knudsen J, Kristiansen K (1997) Saccharomyces carlsbergensis contains two functional genes encoding the acyl-CoA binding protein, one similar to the ACB1 gene from S. cerevisiae and one identical to the ACB1 gene from S. monacensis. Yeast 13:1409–1421. doi:10.1002/(SICI)1097-0061(199712)13:15<1409::AID-YEA188>3.0.CO;2-A

    Article  PubMed  CAS  Google Scholar 

  • Chang HW, Dom YD, Sung Y, Kim KH, Roh SW, Yoon JH, An KG, Bae JW (2007) Quantitative real time PCR assays for the enumeration of Saccharomyces cerevisiae and the Saccharomyces sensu stricto complex in human feces. J Microbiol Methods 71:191–201. doi:10.1016/j.mimet.2007.08.013

    Article  PubMed  CAS  Google Scholar 

  • dos Santos SKB, Basilio ACM, Brasileiro BTRV, Simões DA, da Silva-Fiho EA, De Morais M Jr (2007) Identification of yeasts within Saccharomyces sensu stricto complex by PCR-fingerprinting. World J Microbiol Biotechnol 23:1613–1620. doi:10.1007/s11274-007-9407-6

    Article  CAS  Google Scholar 

  • Einax E, Voigt K (2003) Oligonucleotide primers for the universal amplification of β-tubulin genes facilitate phylogenetic analyses in the regnum fungi. Org Divers Evol 3:185–194. doi:10.1078/1439-6092-00069

    Article  Google Scholar 

  • Esteve-Zarzoso B, Belloch C, Uruburu F, Querol A (1999) Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int J Syst Bacteriol 49:329–337

    Article  PubMed  CAS  Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP (phylogeny inference package), version 3.5c. Department of Genetics, University of Washington, Seattle, USA

    Google Scholar 

  • Hansen J, Kielland-Brandt MC (1994) Saccharomyces carlsbergensis contains two functional MET2 alleles similar to homologues from Saccharomyces cerevisiae and Saccharomyces monacensis. Gene 140:33–40. doi:10.1016/0378-1119(94)90727-7

    Article  PubMed  CAS  Google Scholar 

  • Hennequin C, Thierry A, Richard GF, Lecointre G, Nguyen HV, Gaillardin C, Dujon B (2001) Microsatellite typing as a new tool for identification of Saccharomyces cerevisiae strains. J Clin Microbiol 39:551–559. doi:10.1128/JCM.39.2.551-559.2001

    Article  PubMed  CAS  Google Scholar 

  • Huang CH, Lee FL, Tai CJ (2008) A novel specific DNA marker in Saccharomyces bayanus for species identification of the Saccharomyces sensu stricto complex. J Microbiol Methods 75:531–534. doi:10.1016/j.mimet.2008.08.005

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen MD, Davidson AD, Li SY, Shaw DJ, Gow NA, Odds FC (2008) Molecular phylogenetic analysis of Candida tropicalis isolates by multi-locus sequence typing. Fungal Genet Biol 45:1040–1042. doi:10.1016/j.fgb.2008.03.011

    Article  PubMed  CAS  Google Scholar 

  • Josepa S, Guillamon JM, Cano J (2000) PCR differentiation of Saccharomyces cerevisiae from Saccharomyces bayanus/Saccharomyces pastorianus using specific primers. FEMS Microbiol Lett 193:255–259. doi:10.1111/j.1574-6968.2000.tb09433.x

    Article  PubMed  CAS  Google Scholar 

  • Juan L, Feng YB (2007) Single-strand conformation polymorphism of microsatellite for rapid strain typing of Candida albicans. Med Mycol 45:629–639. doi:10.1080/13693780701530950

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. doi:10.1007/BF01731581

    Article  PubMed  CAS  Google Scholar 

  • Krawczyk B, Lewandowski K, Kur J (2002) Comparative studies of the Acinetobacter genus and the species identification method based on the recA sequence. Mol Cell Probes 16:1–11. doi:10.1006/mcpr.2001.0388

    Article  PubMed  CAS  Google Scholar 

  • Kurtzman CP (2006) Yeast species recognition from gene sequence analysis and other molecular methods. Mycoscience 47:65–71. doi:10.1007/s10267-006-0280-1

    Article  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371. doi:10.1023/A:1001761008817

    Article  PubMed  CAS  Google Scholar 

  • Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among yeasts of the Saccharomyces complex determined from multigene sequence analyses. FEMS Yeast Res 3:417–432. doi:10.1016/S1567-1356(03)00012-6

    Article  PubMed  CAS  Google Scholar 

  • Manzano M, Cocolin L, Longo B, Comi G (2004) PCR-DGGE differentiation of strains of Saccharomyces sensu stricto. Antonie Van Leeuwenhoek 85:23–27. doi:10.1023/B:ANTO.0000020270.44019.39

    Article  PubMed  CAS  Google Scholar 

  • Marinangeli P, Clementi F, Ciani M, Mannazzu I (2004) SED1 polymorphism within the genus Saccharomyces. FEMS Yeast Res 5:73–79. doi:10.1016/j.femsyr.2004.07.001

    Article  PubMed  CAS  Google Scholar 

  • Nardi T, Carlot M, De Bortoli E, Corich V, Giacomini A (2006) A rapid method for differentiating Saccharomyces sensu stricto strains from other yeast species in an enological environment. FEMS Microbiol Lett 264:168–173. doi:10.1111/j.1574-6968.2006.00450.x

    Article  PubMed  CAS  Google Scholar 

  • Naumov GI (1996) Genetic identification of biological species in the Saccharomyces sensu stricto complex. J Ind Microbiol Biotechnol 17:295–302. doi:10.1007/BF01574704

    Article  CAS  Google Scholar 

  • Naumov GI, James SA, Naumova ES, Louis EJ, Roberts IN (2000) Three new species in Saccharomyces sensu stricto complex. Int J Syst Evol Microbiol 50:1931–1942

    PubMed  CAS  Google Scholar 

  • Petti CA (2007) Detection and identification of microorganisms by gene amplification and sequencing. Clin Infect Dis 44:1108–1114. doi:10.1086/512818

    Article  PubMed  CAS  Google Scholar 

  • Plachý R, Hamal P, Raclavský V (2005) McRAPD as a new approach to rapid and accurate identification of pathogenic yeasts. J Microbiol Methods 60:107–113. doi:10.1016/j.mimet.2004.09.003

    Article  PubMed  CAS  Google Scholar 

  • Pontes SP, Lima-Bittencourt CI, Chartone-Souza E, Amaral Nascimento AM (2007) Molecular approaches: advantages and artifacts in assessing bacterial diversity. J Ind Microbiol Biotechnol 34:463–473. doi:10.1007/s10295-007-0219-3

    Article  PubMed  CAS  Google Scholar 

  • Putignani L, Paglis MG, Bordi E, Nebuloso E, Pucillo LP, Visca P (2008) Identification of clinically relevant yeast species by DNA sequence analysis of the D2 variable region of the 25-28S rRNA gene. Mycoses 51:209–227. doi:10.1111/j.1439-0507.2007.01472.x

    Article  PubMed  CAS  Google Scholar 

  • Querol A, Belloch C, Fernán dez-Espinar MT, Barrio E (2003) Molecular evolution in yeast of biotechnological interest. Int Microbiol 6:201–205. doi:10.1007/s10123-003-0134-z

    Article  PubMed  Google Scholar 

  • Rainieri S, Zambonelli C, Kaneko Y (2003) Saccharomyces sensu stricto: systematics, genetic diversity and evolution. J Biosci Bioeng 96:1–9

    PubMed  CAS  Google Scholar 

  • Replansky T, Koufopanou V, Greig D, Bell G (2008) Saccharomyces sensu stricto as a model system for evolution and ecology. Trends Ecol Evol 23:494–501. doi:10.1016/j.tree.2008.05.005

    Article  PubMed  Google Scholar 

  • Redzepović S, Orlić S, Sikora S, Majdak A, Pretorius IS (2002) Identification and characterization of Saccharomyces cerevisiae and Saccharomyces paradoxus strains isolated from Croatian vineyards. Lett Appl Microbiol 35:305–310. doi:10.1046/j.1472-765X.2002.01181.x

    Article  PubMed  Google Scholar 

  • Robert V, Bonjean B, Karutz M, Paschold H, Peeters W, Wubbolts MG (2001) Candida bituminiphila, a novel anamorphic species of yeast. Int J Syst Evol Microbiol 51:2171–2176

    PubMed  CAS  Google Scholar 

  • Ryu S, Murooka Y, Kaneko Y (1996) Genomic reorganization between two sibling yeast species, Saccharomyces bayanus and Saccharomyces cerevisiae. Yeast 12:757–764. doi:10.1002/(SICI)1097-0061(19960630)12:8<757::AID-YEA970>3.0.CO;2-H

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Tamai Y, Momma T, Yoshimoto H, Kaneko Y (1998) Co-existence of two types of chromosome in the bottom fermenting yeast, Saccharomyces pastorianus. Yeast 14:923–933. doi:10.1002/(SICI)1097-0061(199807)14:10<923::AID-YEA298>3.0.CO;2-I

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876

    Article  PubMed  CAS  Google Scholar 

  • Tornai-Lehoczki J, Dlauchy D (1996) An opportunity to distinguish species of Saccharomyces sensu stricto by electrophoretic separation of the large chromosomes. Lett Appl Microbiol 23:227–230. doi:10.1111/j.1472-765X.1996.tb00071.x

    Article  PubMed  CAS  Google Scholar 

  • Tornai-Lehoczki J, Peter G, Dlauchy D, Deak T (1996) Some remarks on a taxonomic key for the genus Saccharomyces (Vaughan Martini and Martini 1993). Antonie Van Leeuwenhoek 69:229–233. doi:10.1007/BF00399611

    Article  PubMed  CAS  Google Scholar 

  • Torriani S, Zapparoli G, Malacrino P, Suzzi G, Dellaglio F (2004) Rapid identification and differentiation of Saccharomyces cerevisiae, Saccharomyces bayanus and their hybrids by multiplex PCR. Lett Appl Microbiol 38:239–244. doi:10.1111/j.1472-765X.2004.01468.x

    Article  PubMed  CAS  Google Scholar 

  • Wang LT, Lee FL, Tai CJ, Kasai H (2007) Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 57:1846–1850. doi:10.1099/ijs.0.64685-0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank T. Y. Liu, C. C. Liao, G. F. Yuan (Food Industry Research and Development Institute, Taiwan), M. T. Chang (Department of Animal Science, National Chung Hsing University, Taiwan) for their encouragement. This research was supported by the Taiwanese Ministry of Economic Affairs (project no. 97-EC-17-A-R7-0525).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fwu-Ling Lee.

Additional information

The β-tubulin gene sequence data reported in this paper appear in the GenBank nucleotide sequence database with the following accession numbers: FJ238316–FJ238341.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CH., Lee, FL. & Tai, CJ. The β-tubulin gene as a molecular phylogenetic marker for classification and discrimination of the Saccharomyces sensu stricto complex. Antonie van Leeuwenhoek 95, 135–142 (2009). https://doi.org/10.1007/s10482-008-9296-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-008-9296-1

Keywords

Navigation