Skip to main content
Log in

Isolation and characterization of Sulfurospirillum carboxydovorans sp. nov., a new microaerophilic carbon monoxide oxidizing epsilon Proteobacterium

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A new microaerophilic, Gram-negative, motile, 2–3 μm long and 0.3 μm wide, vibrioid to spirillum-shaped, CO oxidizing bacterium, designated strain MV, isolated from marine sediment (The North Sea) is described. Strain MV was able to couple the oxidation of CO to the reduction of elemental sulphur, DMSO and thiosulphate. Growth occurred with up to 100% (v/v) CO in the headspace. Acetate was needed as carbon source. No growth on CO was observed with nitrate and selenate as electron acceptor. Sulphite, elemental sulphur, DMSO, thiosulphate, nitrate, nitrite, perchloroethylene, arsenate and selenate were used as electron acceptors with pyruvate as energy and carbon source. Microaerophilic growth was observed. In non-agitated cultures growth occurred at atmospheric oxygen concentrations in the headspace. Hydrogen (with acetate as carbon source), formate (with acetate as carbon source), pyruvate, lactate, succinate, fumarate, malate α-ketoglutaric acid, aspartate and yeast extract (1% (w/v)) supported growth with nitrate as electron acceptor. Fumarate and malate were fermented. Vitamins were not required for growth. The strain was cytochrome C oxidase and catalase positive. The DNA mol G+C content was 30.5%. 16S rRNA gene sequence comparison showed that strain MV grouped within the genus Sulfurospirillum with Sulfurospirillum arcachonense (sequence similarity 98.3%) as closest relative. The relative DNA–DNA relatedness between strain MV and S. arcachonense was 33.1%. Based on a detailed phenotypic and phylogenetic analysis, inclusion of strain MV in the genus Sulfurospirillum as a well separated new species is proposed. As species name we propose Sulfurospirillum carboxydovorans. The type strain is strain MV (ATCC BAA-937 = DSM 16295, GenBank accession number: AY740528).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Badziong R.K. Thauer (1980) ArticleTitleVectorial electron-transport in Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate as sole energy-source Arch. Microbiol. 125 167–174 Occurrence Handle10.1007/BF00403215 Occurrence Handle1:CAS:528:DyaL3cXhvFCitbg%3D

    Article  CAS  Google Scholar 

  2. G.W. Bartholomew M. Alexander (1979) ArticleTitleMicrobial-metabolism of carbon-monoxide in culture and in soil Appl. Environ. Microbiol. 37 932–937 Occurrence Handle1:CAS:528:DyaE1MXktlGntL0%3D Occurrence Handle485139

    CAS  PubMed  Google Scholar 

  3. M.W. Beijerinck A. Van Delden (1903) ArticleTitleÜber eine farblose Bakteriederen Kohlenstoffnahrung aus der atmosphärischen Luft herrührt Centralblatt BakteriologieParasitenkunde Infektionskrankheiten 210 33–47

    Google Scholar 

  4. D.A. Benson M.S. Boguski D.J. Lipman J. Ostell B.F. Ouellette B.A. Rapp D.L. Wheeler (1999) ArticleTitleGenBank Nucleic Acids Res. 27 12–17 Occurrence Handle10.1093/nar/27.1.12 Occurrence Handle1:CAS:528:DyaK1MXpsVGlsA%3D%3D Occurrence Handle9847132

    Article  CAS  PubMed  Google Scholar 

  5. J. Brosius T.J. Dull D.D. Sleeter H.F. Noller (1981) ArticleTitleGene organization and primary structure of a ribosomal RNA operon from Escherichia coli J. Mol. Biol. 148 107–127 Occurrence Handle10.1016/0022-2836(81)90508-8 Occurrence Handle1:CAS:528:DyaL3MXltFSgtro%3D Occurrence Handle7028991

    Article  CAS  PubMed  Google Scholar 

  6. P. Cashion M.A. Holderfranklin J. Mccully M. Franklin (1977) ArticleTitleRapid method for base ratio determination of bacterial DNA Anal. Biochem. 81 461–466 Occurrence Handle10.1016/0003-2697(77)90720-5 Occurrence Handle1:CAS:528:DyaE2sXkvFyhtb4%3D Occurrence Handle907108

    Article  CAS  PubMed  Google Scholar 

  7. R. Conrad O. Meyer W. Seiler (1981) ArticleTitleRole of carboxydobacteria in consumption of atmospheric carbon-monoxide by soil Appl. Environ. Microbiol. 42 211–215 Occurrence Handle1:CAS:528:DyaL3MXlt12jsLo%3D

    CAS  Google Scholar 

  8. R. Conrad W. Seiler (1980) ArticleTitleRole of microorganisms in the consumption and production of atmospheric carbon-monoxide by soil Appl. Environ. Microbiol. 40 437–445 Occurrence Handle1:CAS:528:DyaL3cXmtVeisbw%3D

    CAS  Google Scholar 

  9. L. Daniels G. Fuchs R.K. Thauer J.G. Zeikus (1977) ArticleTitleCarbon monoxide oxidation by methanogenic bacteria J. Bacteriol. 132 118–126 Occurrence Handle1:CAS:528:DyaE2sXlvFKqu70%3D Occurrence Handle21159

    CAS  PubMed  Google Scholar 

  10. M.N. Davidova N.B. Tarasova F.K. Mukhitova I.U. Karpilova (1994) ArticleTitleCarbon monoxide in metabolism of anaerobic bacteria Can. J. Microbiol. 40 417–425 Occurrence Handle1:CAS:528:DyaK2cXksFemt78%3D Occurrence Handle8050061

    CAS  PubMed  Google Scholar 

  11. M. Davydova R. Sabirova N. Vylegzhanina N. Tarasova (2004) ArticleTitleCarbon monoxide and oxidative stress in Desulfovibrio desulfuricans B-1388 J. Biochem. Mol. Toxcol. 18 87–91 Occurrence Handle10.1002/jbt.20011 Occurrence Handle1:CAS:528:DC%2BD2cXjs1Gls70%3D

    Article  CAS  Google Scholar 

  12. J. De Ley H. Cattoir A. Reynaert (1970) ArticleTitleQuantitative measurement of DNA hybridization from renaturation rates Eur. J. Biochem. 12 133–142 Occurrence Handle10.1111/j.1432-1033.1970.tb00830.x Occurrence Handle1:CAS:528:DyaE3cXnsVOgtg%3D%3D Occurrence Handle4984993

    Article  CAS  PubMed  Google Scholar 

  13. G.B. Diekert R.K. Thauer (1978) ArticleTitleCarbon monoxide oxidation by Clostridium thermoaceticumClostridium formicoaceticum J. Bacteriol. 136 597–606 Occurrence Handle1:CAS:528:DyaE1MXjs1Wjug%3D%3D Occurrence Handle711675

    CAS  PubMed  Google Scholar 

  14. R.V. Eck M.O. Dayhoff (1966) Atlas of Protein Sequence and Structure 1966 National Biomedical Research Foundation Silver Spring, Maryland

    Google Scholar 

  15. J.F. Escara J.R. Hutton (1980) ArticleTitleThermal-stability and renaturation of DNA in dimethylsulfoxide solutions – acceleration of the renaturation rate Biopolymers 19 1315–1327 Occurrence Handle10.1002/bip.1980.360190708 Occurrence Handle1:CAS:528:DyaL3cXlt1Ogtr4%3D Occurrence Handle7397315

    Article  CAS  PubMed  Google Scholar 

  16. J. Felsenstein (1985) ArticleTitleConfidence limits on phylogenies: an approach using the bootstrap Evolution 39 783–791

    Google Scholar 

  17. K. Finster W. Liesack B.J. Tindall (1997) ArticleTitleSulfurospirillum arcachonense sp. nov., a new-microaerophilic sulfur-reducing bacterium Int. J. Syst. Bacteriol. 47 1212–1217 Occurrence Handle1:STN:280:ByiH2sfgtFw%3D Occurrence Handle9336931

    CAS  PubMed  Google Scholar 

  18. W.M. Fitch (1971) ArticleTitleTowards defining the course of evolution: minimum change for a specific tree topology Syst. Zool. 20 406–416

    Google Scholar 

  19. W.T. Frankenberger M. Arshad (2001) ArticleTitleBioremediation of selenium-contaminated sediments and water Biofactors 14 241–254 Occurrence Handle1:CAS:528:DC%2BD3MXnsFKnurk%3D Occurrence Handle11568461

    CAS  PubMed  Google Scholar 

  20. T.A. Hall (1999) ArticleTitleBioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT Nucleic Acids Symp. Ser. 41 95–98 Occurrence Handle1:CAS:528:DC%2BD3cXhtVyjs7Y%3D

    CAS  Google Scholar 

  21. K.R. Hardy G. King (2001) ArticleTitleEnrichment of high-affinity CO oxidizers in Maine forest soil Appl. Environ. Microbiol. 67 3671–3676 Occurrence Handle10.1128/AEM.67.8.3671-3676.2001 Occurrence Handle1:CAS:528:DC%2BD3MXlvFSksrk%3D Occurrence Handle11472946

    Article  CAS  PubMed  Google Scholar 

  22. R.E. Hicks R.I. Amann D.A. Stahl (1992) ArticleTitleDual staining of natural bacterioplankton with 4′,6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences Appl. Environ. Microbiol. 58 2158–2163 Occurrence Handle1:CAS:528:DyaK38Xlt1Omt7g%3D Occurrence Handle1379029

    CAS  PubMed  Google Scholar 

  23. C. Holliger S. Gaspard G. Glod C. Heijman W. Schumacher R.P. Schwarzenbach F. Vazquez (1997) ArticleTitleContaminated environments in the subsurface and bioremediation: organic contaminants FEMS Microbiol. Rev. 20 517–523 Occurrence Handle10.1016/S0168-6445(97)00030-2 Occurrence Handle1:CAS:528:DyaK2sXltl2msbw%3D Occurrence Handle9299718

    Article  CAS  PubMed  Google Scholar 

  24. C. Holliger G. Wohlfarth G. Diekert (1998) ArticleTitleReductive dechlorination in the energy metabolism of anaerobic bacteria FEMS Microbiol. Rev. 22 383–398 Occurrence Handle10.1016/S0168-6445(98)00030-8 Occurrence Handle1:CAS:528:DyaK1MXksFCqtw%3D%3D

    Article  CAS  Google Scholar 

  25. V.A. Huss R.H. Festl K.H. Schleifer (1983) ArticleTitleStudies on the spectrophotometric determination of DNA hybridization from renaturation rates Syst. Appl. Microbiol. 4 184–192 Occurrence Handle1:CAS:528:DyaL3sXktlGmt7s%3D

    CAS  Google Scholar 

  26. R.E. Inman R. Ingersol E.A. Levy (1971) ArticleTitleSoil-natural sink for carbon monoxide Science 172 1229–1231 Occurrence Handle1:CAS:528:DyaE3MXksVOqsbc%3D

    CAS  Google Scholar 

  27. InstitutionalAuthorNameIPPC (2001) Climate Change 2001, The Scientific Basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovermental Panel on Climate Change Cambridge University Press New York

    Google Scholar 

  28. M.F. Isaksen A. Teske (1996) ArticleTitleDesulforhopalus vacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary Arch. Microbiol. 166 160–168 Occurrence Handle10.1007/s002030050371 Occurrence Handle1:CAS:528:DyaK28XlslOgtLw%3D

    Article  CAS  Google Scholar 

  29. K.D. Jahnke (1992) ArticleTitleBasic computer-program for evaluation of spectroscopic DNA renaturation data from Gilford-System-2600 spectrophotometer on a Pc/Xt/at Type personal-computer J. Microbiol. Meth. 15 61–73 Occurrence Handle10.1016/0167-7012(92)90069-G

    Article  Google Scholar 

  30. T.H. Jukes C.R. Cantor (1969) Evolution of protein molecules H.N. Munro (Eds) Mammalian Protein Metabolismvol. 3 Academic Press New York 21–132

    Google Scholar 

  31. R.L. Kerby P.W. Ludden G.P. Roberts (1995) ArticleTitleCarbon monoxide-dependent Growth of Rhodospirillum rubrum J. Bacteriol. 177 2241–2244 Occurrence Handle1:CAS:528:DyaK2MXkvFelsbc%3D Occurrence Handle7721719

    CAS  PubMed  Google Scholar 

  32. Y.M. Kim G.D. Hegeman (1983) ArticleTitleOxidation of carbon monoxide by bacteria Int. Rev. Cytol. 81 1–32 Occurrence Handle1:CAS:528:DyaL3sXlslans70%3D Occurrence Handle6409833

    CAS  PubMed  Google Scholar 

  33. G.M. King (1999a) ArticleTitleCharacteristics and significance of atmospheric carbon monoxide consumption by soils Chemosphere: Global Change Sci. 1 53–63 Occurrence Handle10.1016/S1465-9972(99)00021-5 Occurrence Handle1:CAS:528:DyaK1MXmsVOru7g%3D

    Article  CAS  Google Scholar 

  34. G.M. King (1999b) ArticleTitleAttributes of atmospheric carbon monoxide oxidation by Maine forest soils Appl. Environ. Microbiol. 65 5257–5264 Occurrence Handle1:CAS:528:DyaK1MXnvVGjtrs%3D

    CAS  Google Scholar 

  35. G.M. King (2000) ArticleTitleImpacts of land use on atmospheric carbon monoxide consumption by soils Global Biogeochem. Cycles 14 1161–1172 Occurrence Handle10.1029/2000GB001272 Occurrence Handle1:CAS:528:DC%2BD3MXktVGksg%3D%3D

    Article  CAS  Google Scholar 

  36. G.M. King (2003a) ArticleTitleContributions of atmospheric CO and hydrogen uptake to microbial dynamics on recent Hawaiian volcanic deposits Appl. Environ. Microbiol. 69 4067–4075 Occurrence Handle10.1128/AEM.69.7.4067-4075.2003 Occurrence Handle1:CAS:528:DC%2BD3sXlsFagtbc%3D

    Article  CAS  Google Scholar 

  37. G.M. King (2003b) ArticleTitleUptake of carbon monoxide and hydranden at environmentally relevant concentrations by mycobacteria Appl. Environ. Microbiol. 69 7266–7272 Occurrence Handle10.1128/AEM.69.12.7266-7272.2003 Occurrence Handle1:CAS:528:DC%2BD3sXpvFCls7s%3D

    Article  CAS  Google Scholar 

  38. G.M. King (2003c) ArticleTitleMolecular and culture-based analyses of aerobic carbon monoxide oxidizers diversity Appl. Environ. Microbiol. 69 7257–7265 Occurrence Handle10.1128/AEM.69.12.7257-7265.2003 Occurrence Handle1:CAS:528:DC%2BD3sXpvFCls7o%3D

    Article  CAS  Google Scholar 

  39. S. Kumar K. Tamura I.B. Jakobsen M. Nei (2001) ArticleTitleMEGA2: molecular evolutionary genetics analysis software Bioinformatics 17 1244–1245 Occurrence Handle10.1093/bioinformatics/17.12.1244 Occurrence Handle1:CAS:528:DC%2BD38XmtVCktQ%3D%3D Occurrence Handle11751241

    Article  CAS  PubMed  Google Scholar 

  40. D.J. Lane (1991) 16S/23S rRNA sequencing E. Stackebrandt M. Goodfellow (Eds) Nucleic Acid Techniques in Bacterial Systematics, 1st ed John Wiley & Sons New York 115–175

    Google Scholar 

  41. O.H. Lowry N.J. Rosebrough A.L. Farr R.J. Randall (1951) ArticleTitleProtein measurement with the Folin phenol reagent J. Biol. Chem. 193 265–275 Occurrence Handle1:CAS:528:DyaG38XhsVyrsw%3D%3D Occurrence Handle14907713

    CAS  PubMed  Google Scholar 

  42. M.L.G.C. Luijten J. de Weert H. Smidt H.T.S. Boschker W.M. de Vos G. Schraa A.J.M. Stams (2003) ArticleTitleDescription of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacteriumand transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov Int. J. Syst. Evol. Microbiol. 53 787–793 Occurrence Handle10.1099/ijs.0.02417-0 Occurrence Handle1:CAS:528:DC%2BD3sXkvFOisr8%3D Occurrence Handle12807201

    Article  CAS  PubMed  Google Scholar 

  43. M.L.G.C. Luijten S.A.B. Weelink B. Godschalk A.A.M. Langenhoff M.H.A. van Eekert G. Schraa A.J.M. Stams (2004) ArticleTitleAnaerobic reduction and oxidation of quinone moieties and the reduction of oxidized metals by halorespiring and related organisms FEMS Microbiol. Ecol. 49 145–150 Occurrence Handle10.1016/j.femsec.2004.01.015 Occurrence Handle1:CAS:528:DC%2BD2cXltVKgurg%3D

    Article  CAS  Google Scholar 

  44. F.S. Lupton R. Conrad J.G. Zeikus (1984) ArticleTitleCO metabolism of Desulfovibrio vulgaris strain Madison – physiological-function in the absence or presence of exogeneous substrates FEMS Microbiol. Lett. 23 263–268 Occurrence Handle10.1016/0378-1097(84)90221-0 Occurrence Handle1:CAS:528:DyaL2cXltVOisb8%3D

    Article  CAS  Google Scholar 

  45. B.L. Maidak J.R. Cole T.G. Lilburn C.T. Parker SuffixJr. P.R. Saxman R.J. Farris G.M. Garrity G.J. Olsen T.M. Schmidt J.M. Tiedje (2001) ArticleTitleThe RDP-II (ribosomal database project) Nucleic Acids Res. 29 173–174 Occurrence Handle10.1093/nar/29.1.173 Occurrence Handle1:CAS:528:DC%2BD3MXjtlWmsr0%3D Occurrence Handle11125082

    Article  CAS  PubMed  Google Scholar 

  46. M. Mesbah U. Premachandran W.B. Whitman (1989) ArticleTitlePrecise measurement of the G+C content of deoxyribonucleic-acid by high-performance liquid-chromatography Int. J. Syst. Bacteriol. 39 159–167 Occurrence Handle1:CAS:528:DyaL1MXltFWku7o%3D

    CAS  Google Scholar 

  47. O. Meyer K. Frunzke D. Gadkari S. Jacobitz I. Hugendieck M. Kraut (1990) ArticleTitleUtilization of carbon-monoxide by aerobes – recent advances FEMS Microbiol. Rev. 87 253–260 Occurrence Handle10.1016/0378-1097(90)90463-Z Occurrence Handle1:CAS:528:DyaK3MXnvVaksQ%3D%3D

    Article  CAS  Google Scholar 

  48. O. Meyer H.G. Schlegel (1978) ArticleTitleReisolation of carbon-monoxide utilizing hydrogen bacterium Pseudomonas carboxydovorans (Kistner) Comb Nov Arch. Microbiol. 118 35–43 Occurrence Handle10.1007/BF00406071 Occurrence Handle1:CAS:528:DyaE1cXlt1Kjt7w%3D Occurrence Handle697501

    Article  CAS  PubMed  Google Scholar 

  49. O. Meyer H.G. Schlegel (1979) ArticleTitleOxidation of carbon monoxide in cell extracts of Pseudomonas carboxydovorans J. Bacteriol. 137 811–817 Occurrence Handle1:CAS:528:DyaE1MXhsVyht7s%3D Occurrence Handle33964

    CAS  PubMed  Google Scholar 

  50. O. Meyer H.G. Schlegel (1983) ArticleTitleBiology of aerobic carbon-monoxide oxidizing bacteria Ann. Rev. Microbiol. 37 277–310 Occurrence Handle10.1146/annurev.mi.37.100183.001425 Occurrence Handle1:CAS:528:DyaL2cXjtFSh

    Article  CAS  Google Scholar 

  51. G. Mörsdorf K. Frunzke D. Gadkari O. Meyer (1992) ArticleTitleMicrobial growth on carbon monoxide Biodegradation 3 61–82

    Google Scholar 

  52. G. Muyzer E.C. de Waal A.G. Uitterlinden (1993) ArticleTitleProfiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA Appl. Environ. Microbiol. 59 695–700 Occurrence Handle1:CAS:528:DyaK3sXit1Kktrk%3D Occurrence Handle7683183

    CAS  PubMed  Google Scholar 

  53. J.M. Obrien R.H. Wolkin T.T. Moench J.B. Morgan J.G. Zeikus (1984) ArticleTitleAssociation of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon-monoxide J. Bacteriol. 158 373–375 Occurrence Handle1:CAS:528:DyaL2cXitVKgsrY%3D Occurrence Handle6715282

    CAS  PubMed  Google Scholar 

  54. R.S. Oremland J.S. Blum C.W. Culbertson P.T. Visscher L.G. Miller P. Dowdle F.E. Strohmaier (1994) ArticleTitleIsolation, growthand metabolism of an obligately anaerobic, selenate-respiring bacteriumstrain Ses-3 Appl. Environ. Microbiol. 60 3011–3019 Occurrence Handle1:CAS:528:DyaK2cXltVertrw%3D

    CAS  Google Scholar 

  55. R.S. Oremland J.F. Stolz (2003) ArticleTitleThe ecology of arsenic Science 300 939–944 Occurrence Handle10.1126/science.1081903 Occurrence Handle1:CAS:528:DC%2BD3sXjsVyjsLs%3D Occurrence Handle12738852

    Article  CAS  PubMed  Google Scholar 

  56. N. Saitou M. Nei (1987) ArticleTitleThe neighbor-joining method: a new method for reconstructing phylogenetic trees Mol. Biol. Evol. 4 406–425 Occurrence Handle1:STN:280:BieC1cbgtVY%3D Occurrence Handle3447015

    CAS  PubMed  Google Scholar 

  57. Sander R. 1999. Compilation of Henry’s Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry. http://www.mpch-mainz.mpg.de/∼sander/res/henry.html.

  58. H. Scholzmuramatsu A. Neumann M. Messmer E. Moore G. Diekert (1995) ArticleTitleIsolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium Arch. Microbiol. 163 48–56 Occurrence Handle1:CAS:528:DyaK2MXkvVOhsL0%3D

    CAS  Google Scholar 

  59. W. Schumacher P.M.H. Kroneck N. Pfennig (1992) ArticleTitleComparative systematic study on Spirillum-5175, CampylobacterWolinella species – description of Spirillum-5175 as Sulfurospirillum deleyianum gen. nov., sp. nov Arch. Microbiol. 158 287–293 Occurrence Handle10.1007/BF00245247 Occurrence Handle1:CAS:528:DyaK38XmtVykt7o%3D

    Article  CAS  Google Scholar 

  60. T.G. Sokolova N.A. Kostrikina N.A. Chernyh T.P. Tourova T.V. Kolganova E.A. Bonch-Osmolovskaya (2002) ArticleTitleCarboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring Int. J. Syst. Evol. Microbiol. 52 1961–1967 Occurrence Handle10.1099/ijs.0.02173-0 Occurrence Handle1:CAS:528:DC%2BD3sXht12jsg%3D%3D Occurrence Handle12508854

    Article  CAS  PubMed  Google Scholar 

  61. J.F. Stolz D.J. Ellis J.S. Blum D. Ahmann D.R. Lovley R.S. Oremland (1999) ArticleTitleSulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the epsilon Proteobacteria Int. J. Syst. Evol. Microbiol. 49 1177–1180 Occurrence Handle1:CAS:528:DyaK1MXltVyqt7Y%3D

    CAS  Google Scholar 

  62. J.F. Stolz R.S. Oremland (1999) ArticleTitleBacterial respiration of arsenic and selenium FEMS Microbiol. Rev. 23 615–627 Occurrence Handle10.1016/S0168-6445(99)00024-8 Occurrence Handle1:CAS:528:DyaK1MXmsFartLc%3D Occurrence Handle10525169

    Article  CAS  PubMed  Google Scholar 

  63. V.A. Svetlichny T.G. Sokolova M. Gerhardt M. Ringpfeil N.A. Kostrikina G.A. Zavarzin (1991a) ArticleTitleCarboxydothermus hydrogenoformans gen. nov, sp. nov., a co-utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir-island Syst. Appl. Microbiol. 14 254–260

    Google Scholar 

  64. J. Tamaoka K. Komagata (1984) ArticleTitleDetermination of DNA-base composition by reversed-phase high-performance liquid-chromatography FEMS Microbiol. Lett. 25 125–128 Occurrence Handle10.1016/0378-1097(84)90059-4 Occurrence Handle1:CAS:528:DyaL2MXitVGktg%3D%3D

    Article  CAS  Google Scholar 

  65. N.B. Tarasova M.I. Belyaeva (1998) ArticleTitleThe CO dehydrogenase activity of Desulfovibrio desulfuricans growing under chemoorganotrophic and chemolithoheterotrophic conditions Microbiology 67 504–508 Occurrence Handle1:CAS:528:DyaK1cXnt1OjtLs%3D

    CAS  Google Scholar 

  66. N.B. Tarasova A.V. Zolotov O.E. Petrova (1998) ArticleTitleEnergetic aspects of CO oxidation in Desulfovibrio desulfuricans Biochemistry (Mosc) 63 1144–1147 Occurrence Handle1:CAS:528:DyaK1cXotVOlsrw%3D

    CAS  Google Scholar 

  67. R.L. Uffen (1976) ArticleTitleAnaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate Proc. Nat. Acad. Sci. (USA) 73 3298–3302 Occurrence Handle1:CAS:528:DyaE28XlsFKgsb0%3D

    CAS  Google Scholar 

  68. R.L. Uffen (1983) ArticleTitleMetabolism of carbon-monoxide by Rhodopseudomonas gelatinosa – cell-growth and properties of the oxidation system J. Bacteriol. 155 956–965 Occurrence Handle1:CAS:528:DyaL3sXlsFCqtLo%3D Occurrence Handle6688413

    CAS  PubMed  Google Scholar 

  69. Visuvanathan 1989, S.M.T. Moss, J.L. Stanford, J. Hermontaylor, J.J. Mcfadden, Simple enzymic method for isolation of DNA from diverse bacteria, J. Microbiol. Met.10 59--64

  70. T. Yagi (1958) ArticleTitleEnzymic oxidation of carbon monoxide Biochim. Biophys. Acta 30 194–195 Occurrence Handle10.1016/0006-3002(58)90263-4 Occurrence Handle1:CAS:528:DyaG1MXhslKiuw%3D%3D Occurrence Handle13584419

    Article  CAS  PubMed  Google Scholar 

  71. G.A. Zavarzin A.N. Nozhevnikova (1977) ArticleTitleAerobic carboxydo-bacteria Microb. Ecol. 3 305–326 Occurrence Handle1:CAS:528:DyaE1cXhvVyhtQ%3D%3D

    CAS  Google Scholar 

  72. D. Zheng E.W. Alm D.A. Stahl L. Raskin (1996) ArticleTitleCharacterization of universal small-subunit rRNA hybridization probes for quantitative molecular microbial ecology studies Appl. Environ. Microbiol. 62 4504–4513 Occurrence Handle1:CAS:528:DyaK28Xnt1anurg%3D Occurrence Handle8953722

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Finster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, A., Finster, K. Isolation and characterization of Sulfurospirillum carboxydovorans sp. nov., a new microaerophilic carbon monoxide oxidizing epsilon Proteobacterium. Antonie Van Leeuwenhoek 87, 339–353 (2005). https://doi.org/10.1007/s10482-004-6839-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-004-6839-y

Keywords

Navigation