Skip to main content
Log in

Asymptotics for credit portfolio losses due to defaults in a multi-sector model

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Consider a credit portfolio with the investments in various sectors and exposed to an external stochastic environment. The portfolio loss due to defaults is of critical importance for social and economic security particularly in times of financial distress. We argue that the dependences among obligors within sectors (intradependence) and across sectors (interdependence) may coexist and influence the portfolio loss. To quantify the portfolio loss, we develop a multi-sector structural model in which a multivariate regular variation structure is employed to model the intradependence within sectors, and the interdependence across sectors is implied in the arbitrarily dependent macroeconomic factors, although, given them, obligors in different sectors are conditionally independent. We establish some sharp asymptotic formulas for the tail probability and the (tail) distortion risk measures of the portfolio loss. Our results show that the portfolio loss is mainly driven by the latent variables and the recovery rate function, and is also potentially affected by the macroeconomic factors and the intradependence within sectors. Moreover, we implement intensive numerical studies to examine the accuracy of the obtained approximations and conduct some sensitivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For example, during the worst three-year period of the Great Depression, the annual default rates totalled to \(12.88\%\) of the total par value of the corporate bond market; and even worse, in the the railroad crisis of 1873–1875, the total defaults amounted to \(35.90\%\), see Giesecke et al. (2011).

  2. See page 19 of the Global Financial Stability Report of IMF, available at https://www.imf.org/en/Publications/GFSR/Issues/2022/10/11/global-financial-stability-report-october-2022.

  3. The Annual Report 2021 of AIG reported that its corporate debt securities are mainly invested in the sectors including finance, utilities, communications, and energy, see page 122, available at https://www.aig.com/content/dam/aig/america-canada/us/documents/investor-relations/2022/aig-annual-report-2021.pdf.

  4. High-level quantiles and related risk measures of the portfolio LGD are of considerable interest in economic capital assessment. To maintain its superior credit quality, the Bank for International Settlements (BIS) sets economic capital measured at the 99.99% confidence level assuming a one-year holding period. See the Annual Report 2020/2021 of BIS, available at https://www.bis.org/about/areport/areport2021.pdf.

  5. For two random vectors \(\varvec{\xi }=(\xi _1,\dots , \xi _d)\) and \(\varvec{\eta }=(\eta _1,\dots , \eta _d)\), \(\varvec{\xi }\) is stochastically dominated by \(\varvec{\eta }\), written as \(\varvec{\xi }\le _{st} \varvec{\eta }\), if \( P(\varvec{\xi }\in \Delta )\le P(\varvec{\eta }\in \Delta ) \) holds for every increasing set \(\Delta \subset \mathbb R^d\) (namely, a set whose indicator function is component-wise increasing). Particularly, in the univariate case, \(\xi \le _{st}\eta \) if and only if \(P(\xi>x)\le P(\eta >x)\) for every \(x\in \mathbb R\). See Section 17.A of Marshall et al. (2011) for this concept and related discussions.

  6. The dataset collects the returns data during the period from April 2, 1992 to February 27, 2004, rendering 3,106 return observations per bank.

  7. The dataset consists of the daily stock returns data of top 20 technology firms from 2 April 1992 to 31 December 2019.

  8. VaR is popular in the banking industry and is used for both external and internal reporting purposes.

  9. CTE has already replaced VaR in regulatory requirements of, e.g., Canada, Israel, and Switzerland. On the insurance side, CTE has been regarded as the key risk measure, since the adoption of the C-3 Phase II revision to the regulatory risk-based capital model for variable annuities in 2005, and the implementation of the analogous principles-based reserving methodology in 2009 by the National Association of Insurance Commissioners, as well as the analogous reserve and capital methodology for life insurance products in 2014 by the Life Reserves Work Group and the Life Capital Work Group.

  10. Practically, the regulatory requirement in Canada, Israel, and Switzerland is \(q = 0.99\) over a one-year time horizon, and the Solvency II Accord designed by the EU Commission sets \(q = 0.995\) over a one-year time horizon. See, e.g., Asimit et al. (2011).

  11. The Basel Accord banking book risk measure under certain conditions is asymptotically equivalent to the \(99.9\%\) VaR, see Gordy (2003). The Basel II and Basel III risk measures for trading books are both special cases of VaR, see Basel Committee on Banking Supervision (2006); Basel Committee on Banking Supervision (2011).

References

  • Asimit, A. V., Furman, E., Tang, Q., & Vernic, R. (2011). Asymptotics for risk capital allocations based on conditional tail expectation. Insurance Mathematics and Economics, 49(3), 310–324.

    Article  Google Scholar 

  • Assa, H. (2015). On optimal reinsurance policy with distortion risk measures and premiums. Insurance Mathematics and Economics, 61, 70–75.

    Article  Google Scholar 

  • Azizpour, S., Giesecke, K., & Schwenkler, G. (2018). Exploring the sources of default clustering. Journal of Financial Economics, 129(1), 154–183.

    Article  Google Scholar 

  • Basel Committee on Banking Supervision. (2006). International convergence of capital measurement and capital standards: A revised framework (comprehensive version). Bank for International Settlements, Basel, Switzerland: Report.

  • Basel Committee on Banking Supervision. (2011). Revisions to the Basel II market risk framework. Bank for International Settlements, Basel, Switzerland: Report.

  • Barbe, P., Fougeres, A. L., & Genest, C. (2006). On the tail behavior of sums of dependent risks. ASTIN Bulletin: The Journal of the IAA, 36(2), 361–373.

    Article  Google Scholar 

  • Bassamboo, A., Juneja, S., & Zeevi, A. (2008). Portfolio credit risk with extremal dependence: Asymptotic analysis and efficient simulation. Operations Research, 56(3), 593–606.

    Article  Google Scholar 

  • Bingham, N. H., Goldie, C. M., & Teugels, J. L. (1987). Regular Variation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Cai, J. J., Einmahl, J. H. J., & de Haan, L. (2011). Estimation of extreme risk regions under multivariate regular variation. The Annals of Statistics, 39, 1803–1826.

    Article  Google Scholar 

  • Calabrese, R. (2023). Contagion effects of UK small business failures: A spatial hierarchical autoregressive model for binary data. European Journal of Operational Research, 305, 989–997.

    Article  Google Scholar 

  • Cao, X. R., & Wan, X. (2017). Sensitivity analysis of nonlinear behavior with distorted probability. Mathematical Finance, 27(1), 115–150.

    Article  Google Scholar 

  • Chaudhry, S. M., Ahmed, R., Huynh, T. L. D., & Benjasak, C. (2022). Tail risk and systemic risk of finance and technology (FinTech) firms. Technological Forecasting and Social Change, 174, 121191.

    Article  Google Scholar 

  • Chan, J. C., & Kroese, D. P. (2010). Efficient estimation of large portfolio loss probabilities in \(t\)-copula models. European Journal of Operational Research, 205(2), 361–367.

    Article  Google Scholar 

  • Chen, P., & Wu, C. (2014). Default prediction with dynamic sectoral and macroeconomic frailties. Journal of Banking and Finance, 40, 211–226.

    Article  Google Scholar 

  • Chen, Y., Wang, J., & Zhang, W. (2022). Tail distortion risk measure for portfolio with multivariate regularly variation. Communications in Mathematics and Statistics, 10, 263–285.

    Article  Google Scholar 

  • Cheung, K. C., Yam, S. C. P., & Zhang, Y. (2019). Risk-adjusted Bowley reinsurance under distorted probabilities. Insurance: Mathematics and Economics, 86, 64–72.

    Google Scholar 

  • Cui, H., Tan, K. S., & Yang, F. (2022). Portfolio credit risk with Archimedean copulas: Asymptotic analysis and efficient simulation. Annals of Operations Research. https://doi.org/10.1007/s10479-022-04717-0

    Article  Google Scholar 

  • Davis, R. A., & Mikosch, T. (1998). The sample autocorrelations of heavy-tailed processes with applications to ARCH. The Annals of Statistics, 26(5), 2049–2080.

    Article  Google Scholar 

  • de Haan, L., & Resnick, S. I. (1981). On the observation closest to the origin. Stochastic Processes and their Applications, 11(3), 301–308.

    Article  Google Scholar 

  • Dhaene, J., Kukush, A., Linders, D., & Tang, Q. (2012). Remarks on quantiles and distortion risk measures. European Actuarial Journal, 2(2), 319–328.

    Article  Google Scholar 

  • Duffie, D., & Singleton, K. J. (1999). Modeling term structures of defaultable bonds. The Review of Financial Studies, 12(4), 687–720.

    Article  Google Scholar 

  • Einmahl, J.H.J., & Krajina, A. (2023). Empirical likelihood based testing for multivariate regular variation. Working Paper.

  • Einmahl, J. H. J., Yang, F., & Zhou, C. (2021). Testing the multivariate regular variation model. Journal of Business and Economic Statistics, 39(4), 907–919.

    Article  Google Scholar 

  • Embrechts, P., Lambrigger, D. D., & Wüthrich, M. V. (2009). Multivariate extremes and the aggregation of dependent risks: Examples and counter-examples. Extremes, 12(2), 107–127.

    Article  Google Scholar 

  • Fernando, C. S., May, A. D., & Megginson, W. L. (2012). The value of investment banking relationships: Evidence from the collapse of Lehman Brothers. The Journal of Finance, 67(1), 235–270.

    Article  Google Scholar 

  • Foss, S., & Richards, A. (2010). On sums of conditionally independent subexponential random variables. Mathematics of Operations Research, 35(1), 102–119.

    Article  Google Scholar 

  • Föllmer, H., & Schied, A. (2002). Convex measures of risk and trading constraints. Finance and Stochastics, 6(4), 429–447.

    Article  Google Scholar 

  • Giesecke, K., Longstaff, F. A., Schaefer, S., & Strebulaev, I. (2011). Corporate bond default risk: A 150-year perspective. Journal of Financial Economics, 102(2), 233–250.

    Article  Google Scholar 

  • Giesecke, K., Spiliopoulos, K., Sowers, R. B., & Sirignano, J. A. (2015). Large portfolio asymptotics for loss from default. Mathematical Finance, 25(1), 77–114.

    Article  Google Scholar 

  • Giesecke, K., & Weber, S. (2004). Cyclical correlations, credit contagion, and portfolio losses. Journal of Banking and Finance, 28(12), 3009–3036.

    Article  Google Scholar 

  • Glasserman, P., & Young, H. P. (2016). Contagion in financial networks. Journal of Economic Literature, 54(3), 779–831.

    Article  Google Scholar 

  • Gordy, M. B. (2003). A risk-factor model foundation for ratings-based bank capital rules. Financial Intermed, 12(3), 199–232.

    Article  Google Scholar 

  • Hauksson, H., Dacorogna, M., Domenig, T., Mller, U., & Samorodnitsky, G. (2001). Multivariate extremes, aggregation and risk estimation. Quantitative Finance, 1, 79–95.

    Article  Google Scholar 

  • Hartmann, P., Straetmans, S., & de Vries, C. G. (2006). Banking system stability: A cross-Atlantic perspective. In M. Carey & R. M. Stulz (Eds.), The Risks of Financial Institutions. The University of Chicago Press.

    Google Scholar 

  • Hawawini, G., Subramanian, V., & Verdin, P. (2003). Is performance driven by industry-or firm-specific factors? A new look at the evidence. Strategic Management Journal, 24(1), 1–16.

    Article  Google Scholar 

  • He, Y., & Einmahl, J. H. J. (2017). Estimation of extreme depth-based quantile regions. Journal of the Royal Statistical Society Series B: Statistical Methodology, 79(2), 449–461.

    Article  Google Scholar 

  • Jorion, P., & Zhang, G. (2007). Good and bad credit contagion: Evidence from credit default swaps. Journal of Financial Economics, 84(3), 860–883.

    Article  Google Scholar 

  • Kley, O., Klüppelberg, C., & Reinert, G. (2016). Risk in a large claims insurance market with bipartite graph structure. Operations Research, 64(5), 1159–1176.

    Article  Google Scholar 

  • Kou, S., Peng, X., & Heyde, C. C. (2013). External risk measures and Basel accords. Mathematics of Operations Research, 38(3), 393–417.

    Article  Google Scholar 

  • Liu, J. (2018). LLN-type approximations for large portfolio losses. Insurance: Mathematics and Economics, 81, 71–77.

    Google Scholar 

  • Longstaff, F. A., & Rajan, A. (2008). An empirical analysis of the pricing of collateralized debt obligations. The Journal of Finance, 63(2), 529–563.

    Article  Google Scholar 

  • Marshall, A. W., Olkin, I., & Arnold, B. C. (2011). Inequalities: Theory of Majorization and Its Applications. Springer.

    Book  Google Scholar 

  • Mainik, G., & Embrechts, P. (2013). Diversification in heavy-tailed portfolios: Properties and pitfalls. Annals of Actuarial Science, 7(1), 26–45.

    Article  Google Scholar 

  • Mainik, G., & Rüschendorf, L. (2010). On optimal portfolio diversification with respect to extreme risks. Finance and Stochastics, 14, 593–623.

    Article  Google Scholar 

  • Morris, J. (2001). Risk diversification in the credit portfolio: An overview of country practices. IMF Working Paper, International Monetary Fund.

  • Pais, A., & Stork, P. A. (2011). Contagion risk in the Australian banking and property sectors. Journal of Banking and Finance, 35(3), 681–697.

    Article  Google Scholar 

  • Qi, H., Shi, J., & Xie, Y. A. (2019). Default correlation: Rating, industry ripple effect, and business cycle. Applied Economics, 51(30), 3256–3273.

    Article  Google Scholar 

  • Resnick, S. I. (1987). Extreme Values, Regular Variation, and Point Processes. Springer-Verlag.

    Book  Google Scholar 

  • Resnick, S. I. (2007). Heavy-tail Phenomena: Probabilistic and Statistical Modeling. Springer.

    Google Scholar 

  • Rodríguez-Moreno, M., & Peña, J. I. (2013). Systemic risk measures: The simpler the better? Journal of Banking and Finance, 37(6), 1817–1831.

    Article  Google Scholar 

  • Shi, X., Tang, Q., & Yuan, Z. (2017). A limit distribution of credit portfolio losses with low default probabilities. Insurance: Mathematics and Economics, 73, 156–167.

    Google Scholar 

  • Tabak, B. M., Fazio, D. M., & Cajueiro, D. O. (2011). The effects of loan portfolio concentration on Brazilian banks’ return and risk. Journal of Banking and Finance, 35(11), 3065–3076.

    Article  Google Scholar 

  • Tang, Q., Tang, Z., & Yang, Y. (2019). Sharp asymptotics for large portfolio losses under extreme risks. European Journal of Operational Research, 276(2), 710–722.

    Article  Google Scholar 

  • Tang, Q., & Yang, Y. (2019). Interplay of insurance and financial risks in a stochastic environment. Scandinavian Actuarial Journal, 2019(5), 432–451.

    Article  Google Scholar 

  • Tang, Q., & Yuan, Z. (2013). Asymptotic analysis of the loss given default in the presence of multivariate regular variation. North American Actuarial Journal, 17, 253–271.

    Article  Google Scholar 

  • Wang, S. (2004). Cat bond pricing using probability transforms. Geneva Papers: Etudes et Dossiers, 278, 19–29.

    Google Scholar 

  • Wei, L., & Yuan, Z. (2016). The loss given default of a low-default portfolio with weak contagion. Insurance: Mathematics and Economics, 66, 113–123.

    Google Scholar 

  • Weng, C., & Zhang, Y. (2012). Characterization of multivariate heavy-tailed distribution families via copula. Journal of Multivariate Analysis, 106, 178–186.

    Article  Google Scholar 

  • Wu, F., Valdez, E., & Sherris, M. (2007). Simulating from exchangeable Archimedean copulas. Communications in Statistics-Simulation and Computation, 36(5), 1019–1034.

    Article  Google Scholar 

  • Yaari, M. (1987). The dual theory of choice under risk. Econometrica, 55, 95–116.

    Article  Google Scholar 

  • Yang, F. (2015). First-and second-order asymptotics for the tail distortion risk measure of extreme risks. Communications in Statistics-Theory and Methods, 44(3), 520–532.

    Article  Google Scholar 

  • Zhou, C. (2010). Dependence structure of risk factors and diversification effects. Insurance: Mathematics and Economics, 46(3), 531–540.

    Google Scholar 

  • Zhu, L., & Li, H. (2012). Tail distortion risk and its asymptotic analysis. Insurance: Mathematics and Economics, 51(1), 115–121.

    Google Scholar 

Download references

Acknowledgements

Yang Yang acknowledges the financial support by the National Social Science Fund of China (No. 22BTJ060), the Humanities and Social Sciences Foundation of the Ministry of Education of China (No. 20YJA910006), Natural Science Foundation of Jiangsu Province of China (No. BK20201396), and Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 23KJA110002). Zhimin Zhang acknowledges the financial support by the the National Natural Science Foundation of China (Nos. 11871121, 12271066, 12171405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang.

Ethics declarations

Conflict of interest

The authors have no Conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proofs

Appendix A: Proofs

For convenience, we abbreviate the conditional probability measure \(P(\cdot |{\varvec{S}})\) to \(P^{\varvec{S}}(\cdot )\), and for each \(i=1,\dots , k\), construct an associated random vector \(\varvec{Y}_i=(Y_{i 1},\ldots ,Y_{i d_i})\) with

$$\begin{aligned} Y_{i j} = \frac{1}{R\left( \frac{X_{i j}}{a_{i j}} -1 \right) }, \end{aligned}$$
(A.1)

\(j=1,\dots , d_i\). The following lemma can be found in Lemma 4.3 of Tang and Yuan (2013), which is crucial in the proof of Theorem 3.1.

Lemma A.1

If Assumption 3.1(ii) is satisfied and \(R\in \textrm{RV}_{-\beta }\) for some \(0<\beta \le \infty \), then it holds that for each \(i=1,\dots , k\), almost surely,

$$\begin{aligned} \frac{P^{\varvec{S}}\left( \varvec{Y}_{i}/x \in \cdot \right) }{\overline{F_i}\circ \left( {1}/{R} \right) ^{\leftarrow }(x)} {\mathop {\rightarrow }\limits ^{v}} \tilde{\nu }^{\varvec{S}}_{i} (\cdot ) \end{aligned}$$

on \([0,\infty ]^{d_i}\setminus \{\varvec{0}\}\), where \(\tilde{\nu }^{\varvec{S}}_{i}\) is defined by (3.3).

Proof of Theorem 3.1

We start with a claim that, almost surely,

$$\begin{aligned} \lim _{x\rightarrow \infty }\frac{P^{\varvec{S}}\left( L>1-1/x \right) }{\left( \prod _{i=1}^{k}\overline{F_i} \right) \circ \left( 1/R \right) ^{\leftarrow } (x)} =\frac{\prod _{i=1}^{k}\Gamma \left( 1+\frac{\alpha _i}{\beta } \right) }{\Gamma \left( 1+\frac{1}{\beta }\sum _{i=1}^{k}\alpha _i\right) } \prod _{i=1}^k \tilde{\nu }^{\varvec{S}}_{i}(A_{i}). \end{aligned}$$
(A.2)

Recalling \(\varvec{Y}_{i}, i=1,\dots , k\), in (A.1) and \(\sum _{i=1}^k\sum _{j=1}^{d_i} e_{i j} =1\), we rewrite the conditional probability \(P^{\varvec{S}}\left( L>1-\frac{1}{x} \right) \) as

$$\begin{aligned} P^{\varvec{S}}\left( L>1-\frac{1}{x} \right) =P^{\varvec{S}}\left( \sum _{i=1}^k \sum _{j=1}^{d_i} \frac{e_{i j}}{ Y_{i j}/x} <1 \right) . \end{aligned}$$

If we can prove that, almost surely, for any \(e_{i j}>0\), \(j=1,\dots , d_i\); \(i=1,\dots , k\),

$$\begin{aligned} P^{\varvec{S}}\left( \sum _{i=1}^k \sum _{j=1}^{d_i} \frac{e_{i j}}{ Y_{i j}/x} <1 \right) \sim \frac{\prod _{i=1}^{k}\Gamma \left( 1+\frac{\alpha _i}{\beta } \right) }{\Gamma \left( 1+\frac{1}{\beta }\sum _{i=1}^{k}\alpha _i\right) } \prod _{i=1}^k \tilde{\nu }^{\varvec{S}}_{i}(A_{i})\cdot \left( \prod _{i=1}^{k}\overline{F_i} \right) \circ \left( \frac{1}{R} \right) ^{\leftarrow } (x), \end{aligned}$$
(A.3)

then (A.2) holds. For (A.3), we proceed by induction on k. Trivially, (A.3) holds for \(k=1\) from Lemma A.1. Now we assume by induction that it holds for all \(k\le k_0\) and some \(k_0\in \mathbb N\), and we are going to prove it for \(k=k_0 +1\). First consider the lower bound of (A.3) with \(k=k_0 +1\). For each \(i=1,\dots , k_0+ 1\), by (3.4) it is easy to see that \({\varvec{y}}_1 \in A_i\) implies \({\varvec{y}}_2 \in A_i\) for any \({\varvec{y}}_2 \ge {\varvec{y}}_1\), and thus \(t (\partial A_i)\cap \partial A_i = \emptyset \) for every \(t>1\). Then, by Lemma 7.1 of Shi et al. (2017), we have \(\tilde{\nu }^{\varvec{S}}_i( \partial A_i )=0\). For any large but fixed \(n\in \mathbb N\), almost surely,

$$\begin{aligned}{} & {} P^{\varvec{S}}\left( \sum _{i=1}^{k_0+1} \sum _{j=1}^{d_i} \frac{e_{ij}}{Y_{i j}/x}<1 \right) \nonumber \\\ge & {} \sum _{m=1}^{n-1} P^{\varvec{S}}\left( \frac{m-1}{n} \le \sum _{i=1}^{k_0} \sum _{j=1}^{d_i} \frac{e_{ij}}{ Y_{ij}/x}< \frac{m}{n}, \sum _{j=1}^{d_{k_0+1}} \frac{e_{(k_0+1) j}}{ Y_{(k_0+1) j}/x}<1-\frac{m}{n} \right) \nonumber \\= & {} \sum _{m=1}^{n-1} \left( P^{\varvec{S}}\left( \sum _{i=1}^{k_0}\sum _{j=1}^{d_i} \frac{e_{i j}}{ Y_{i j}/x}< \frac{m}{n}\right) - P^{\varvec{S}}\left( \sum _{i=1}^{k_0}\sum _{j=1}^{d_{i}} \frac{e_{i j}}{ Y_{i j}/x}< \frac{m-1}{n}\right) \right) \nonumber \\{} & {} \times P^{\varvec{S}} \left( \sum _{j=1}^{d_{k_0 +1}} \frac{e_{(k_0+1) j}}{ Y_{(k_0+1) j}/x} <1-\frac{m}{n} \right) \nonumber \\\sim & {} \left( \sum _{m=1}^{n-1} \left( 1-\frac{m}{n}\right) ^{\frac{\alpha _{k_0+1}}{\beta }} \left( \left( \frac{m}{n}\right) ^{\frac{1}{\beta }\sum _{i=1}^{k_0}\alpha _i} -\left( \frac{m-1}{n}\right) ^{\frac{1}{\beta }\sum _{i=1}^{k_0}\alpha _i} \right) \right) \cdot \frac{ \prod _{i=1}^{k_0}\Gamma \left( 1+ \frac{\alpha _i}{\beta }\right) }{\Gamma \left( 1+\frac{1}{\beta } \sum _{i=1}^{k_0}\alpha _i\right) }\nonumber \\{} & {} \times \prod _{i=1}^{k_0+1}\tilde{\nu }^{\varvec{S}}_{i}(A_{i}) \left( \prod _{i=1}^{k_0+1}\overline{F_i} \right) \circ \left( \frac{1}{R} \right) ^{\leftarrow } (x) \end{aligned}$$
(A.4)

where we used (A.3) for all \(k\le k_0\) and (2.4) in the last step. Letting \(n\rightarrow \infty \), the sum in (A.4) converges to \(\int _0^1 (1-y)^{\frac{\alpha _{k_0+1}}{\beta }} \textrm{d} \left( y^{\frac{1}{\beta }\sum _{i=1}^{k_0}\alpha _i}\right) ={\Gamma \left( 1+\frac{1}{\beta }\sum _{i=1}^{k_0}\alpha _i\right) \Gamma \left( 1+ \frac{\alpha _{k_0 +1}}{\beta }\right) }/{\Gamma \left( 1+\frac{1}{\beta } \sum _{i=1}^{k_0 +1}\alpha _i\right) }\). For the upper bound of (A.3) with \(k=k_0+1\), we do the split

$$\begin{aligned}{} & {} P^{\varvec{S}}\left( L>1-\frac{1}{x} \right) \\{} & {} \quad \le \sum _{m=1}^{n} P^{\varvec{S}}\left( \frac{m-1}{n} \le \sum _{i=1}^{k_0}\sum _{j=1}^{d_i} \frac{e_{i j}}{ Y_{i j}/x}< \frac{m}{n}, \sum _{j=1}^{d_{k_0 +1}} \frac{e_{(k_0+1) j}}{ Y_{(k_0+1) j}/x} <1-\frac{m-1}{n} \right) . \end{aligned}$$

Then, a similar discussion to (A.4) can be carried out to derive the upper bound. Thus, the desired relation (A.3) holds for \(k=k_0+1\).

Therefore, applying the dominated convergence theorem and by (A.2) we can obtain

$$\begin{aligned} \lim _{x\rightarrow \infty }\frac{P\left( L>1-1/x \right) }{\left( \prod _{i=1}^k \overline{F_i} \right) \circ \left( 1/R \right) ^{\leftarrow } (x)}= & {} \lim _{x\rightarrow \infty }E\left[ \frac{P^{\varvec{S}}\left( L>1-1/x \right) }{\left( \prod _{i=1}^k \overline{F_i} \right) \circ \left( 1/R \right) ^{\leftarrow } (x)} \right] \nonumber \\= & {} \frac{\prod _{i=1}^k\Gamma \left( 1+\frac{\alpha _i}{\beta }\right) }{\Gamma \left( 1+\frac{1}{\beta }\sum _{i=1}^k\alpha _i\right) }E\left[ \prod _{i=1}^k \tilde{\nu }^{\varvec{S}}_{i}(A_{i}) \right] . \end{aligned}$$

In the derivation above, the applicability of the dominated convergence theorem can be justified as follows. For any fixed \(x\ge 1\), denote by

$$\Delta _{i}(x) = \left\{ \varvec{x}\in [\varvec{0}, \varvec{\infty }]^{d_i}: \sum _{j=1}^{d_i} e_{i j} R \left( \frac{x_j}{a_{i j}} -1 \right) <\frac{1}{x} \right\} ,$$

\(i=1,\dots , k\). Clearly, it can be verified that, for any fixed \(x\ge 1\), the sets \(\Delta _i(x), i=1,\dots , k\), are all increasing, since \(R(\cdot )\) is a non-increasing function. By Assumption 3.1(i), (iii), for any fixed \(\epsilon >0\), there exists a large constant \(M>0\), such that for all sufficiently large \(x\ge 1\), almost surely,

$$\begin{aligned} \frac{P^{\varvec{S}}\left( L>1-1/x \right) }{\left( \prod _{i=1}^k \overline{F_i} \right) \circ \left( 1/R \right) ^{\leftarrow } (x)}\le & {} \frac{\prod _{i=1}^k P^{\varvec{S}}({\varvec{X}}_i \in \Delta _i(x))}{\left( \prod _{i=1}^k\overline{F_i} \right) \circ \left( 1/R \right) ^{\leftarrow } (x)} \nonumber \\\le & {} \frac{\prod _{i=1}^k P({\varvec{X}}_i^* \in \Delta _i(x))}{\left( \prod _{i=1}^k \overline{F_i} \right) \circ \left( 1/R \right) ^{\leftarrow } (x)}\nonumber \\\le & {} \frac{\prod _{i=1}^k P\left( e_{i 1} R \left( \frac{X^*_{i 1}}{a_{i 1}} -1 \right) <\frac{1}{x} \right) }{\left( \prod _{i=1}^k \overline{F_i} \right) \circ \left( 1/R \right) ^{\leftarrow } (x)}\nonumber \\\le & {} \prod _{i=1}^k \frac{ P\left( X^*_{i 1} > (1-\epsilon ) e_{i 1}^{\frac{1}{\beta }} a_{i 1} \left( 1/R \right) ^{\leftarrow } (x) \right) }{ \overline{F_i} \circ \left( 1/R \right) ^{\leftarrow } (x) }\nonumber \\\le & {} 2\prod _{i=1}^k \nu ^{*}_i((\varvec{1}_1, \varvec{\infty }]) \max \left\{ 1, M\big ( (1-\epsilon ) e_{i 1}^{\frac{1}{\beta }} a_{i 1} \big )^{-(\alpha _i+ \epsilon )}\right\} ,\nonumber \\ \end{aligned}$$
(A.5)

which is integrable with respect to \(P(\varvec{S}\in \textrm{d}\varvec{s})\). Here we used (2.5) in the fourth step, and (2.2) in the last step. This completes the proof of Theorem 3.1.\(\square \)

Proof of Theorem 3.2

Combined with Corollary 3.1, for relation (3.6), it suffices to prove that

$$\begin{aligned} 1-\textrm{D}_{g_q} (L)\sim \int _{[0,1]} u^{\frac{\beta }{\sum _{i=1}^k \alpha _i}} g(\textrm{d}u)\cdot \left( 1-\textrm{VaR}_q(L) \right) . \end{aligned}$$
(A.6)

Note that for any \(0<q<1\),

$$\begin{aligned} 1-\textrm{VaR}_q(L)=1-F_L^\leftarrow (q)=\frac{1}{\left( 1/\overline{F_{\frac{1}{1-L}}}\right) ^\leftarrow \left( \frac{1}{1-q}\right) }. \end{aligned}$$

Since the distortion function g is left continuous, so is \(g_q\). Then, by Theorem 6 of Dhaene et al. (2012), we have

$$\begin{aligned} \frac{1-D_{g_q}(L)}{1-\textrm{VaR}_q(L)}= & {} \int _{[0,1]} \frac{1-F_L^{\leftarrow } (1-(1-q)u)}{1-F_{L}^{\leftarrow } (q)} g(\textrm{d}u)\nonumber \\= & {} \int _{(0,1]} \frac{ \left( {1}/{\overline{F_{\frac{1}{1-L}}}} \right) ^{\leftarrow } \left( \frac{1}{1-q} \right) }{ \left( {1}/{\overline{F_{\frac{1}{1-L}}}} \right) ^{\leftarrow } \left( \frac{1}{(1-q)u} \right) } g(\textrm{d}u). \end{aligned}$$
(A.7)

We first consider the convergence of the integrand in (A.7) as \(q\uparrow 1\). By \(\overline{F_i}\in \textrm{RV}_{-\alpha _i}, i=1,\dots ,k\), \(R\in \textrm{RV}_{-\beta }\), and \(E \left[ \prod _{i=1}^k \tilde{\nu }^S_{i}(A_{i})\right] >0\), Theorem 3.1 implies that \(1/\overline{F_{\frac{1}{1-L}}}\in \textrm{RV}_{\frac{1}{\beta }\sum _{i=1}^k\alpha _i}\). Then, applying Proposition 0.8(v) of Resnick (1987) gives that for any fixed \(u\in (0,1]\) and \(0\le \frac{1}{\beta }\sum _{i=1}^k\alpha _i\le \infty \),

$$\begin{aligned} \lim _{q \uparrow 1} \frac{ \left( {1}/{\overline{F_{\frac{1}{1-L}}}} \right) ^{\leftarrow } \left( \frac{1}{1-q} \right) }{ \left( {1}/{\overline{F_{\frac{1}{1-L}}}} \right) ^{\leftarrow } \left( \frac{1}{(1-q)u} \right) }= u^{\frac{\beta }{ \sum _{i=1}^k \alpha _i }}. \end{aligned}$$

Therefore, the desired relation (A.6) can be derived by applying the dominated convergence theorem. Indeed, for all \(u\in (0,1]\) and \(q\in (0,1)\),

$$\begin{aligned} \frac{ \left( {1}/{\overline{F_{\frac{1}{1-L}}}} \right) ^{\leftarrow } \left( \frac{1}{1-q} \right) }{ \left( {1}/{\overline{F_{\frac{1}{1-L}}}} \right) ^{\leftarrow } \left( \frac{1}{(1-q)u} \right) }\le 1, \end{aligned}$$

which is integrable with respect to \(g(\textrm{d}u)\) in \(u\in [0,1]\). It ends the proof of Theorem 3.2.\(\Box \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Yang, Y. & Zhang, Z. Asymptotics for credit portfolio losses due to defaults in a multi-sector model. Ann Oper Res (2024). https://doi.org/10.1007/s10479-024-05934-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10479-024-05934-5

Keywords

JEL Classification

Navigation