Skip to main content

Advertisement

Log in

Robust maximum flow network interdiction considering uncertainties in arc capacity and resource consumption

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This article discusses a robust network interdiction problem considering uncertainties in arc capacities and resource consumption. The problem involves two players: an adversary seeking to maximize the flow of a commodity through the network and an interdictor whose objective is to minimize this flow. The interdictor plays first and selects network arcs to interdict, subject to a resource constraint. The problem is formulated as a bilevel problem, and an upper bound single level mix-integer linear formulation is derived. The upper bound formulation is solved using three heuristics tailored for this problem and the network structure, based on Lagrangian relaxation and Benders’ decomposition. On average, each heuristic provides a reduction in run time of at least 85% compared to a state-of-the-art solver. Enhanced Benders’ decomposition achieves a solution with an optimality gap of less than 5% for all tested instances. Sensitivity analyses are conducted for the level of uncertainty in network parameters and the uncertainty budget. Robust decisions are also compared to decisions not accounting for uncertainty to evaluate the value of robustness, showing a reduction in simulation maximum flows by as much as 89.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Gurobi optimizer reference manual (2019) URL: https://www.gurobi.com

  2. https://networkx.org/

References

  • Abusorrah, A., Alabdulwahab, A., Li, Z., & Shahidehpour, M. (2017). Minimax-regret robust defensive strategy against false data injection attacks. IEEE Transactions on Smart Grid, 10(2), 2068–2079.

    Article  Google Scholar 

  • Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms, and applications. Prentice-Hall Inc.

    Google Scholar 

  • Ala, A., Alsaadi, F. E., Ahmadi, M., & Mirjalili, S. (2021). Optimization of an appointment scheduling problem for healthcare systems based on the quality of fairness service using whale optimization algorithm and nsga-ii. Scientific Reports, 11(1), 19,816.

    Article  Google Scholar 

  • Ala, A., & Chen, F. (2020). Alternative mathematical formulation and hybrid meta-heuristics for patient scheduling problem in health care clinics. Neural Computing and Applications, 32, 8993–9008.

    Article  Google Scholar 

  • Ala, A., Simic, V., Pamucar, D., & Tirkolaee, E. B. (2022). Appointment scheduling problem under fairness policy in healthcare services: Fuzzy ant lion optimizer. Expert Systems with Applications, 207, 117–949.

    Article  Google Scholar 

  • Altner, D. S., Ergun, Ö., & Uhan, N. A. (2010). The maximum flow network interdiction problem: Valid inequalities, integrality gaps, and approximability. Operations Research Letters, 38(1), 33–38.

    Article  Google Scholar 

  • Aminoshariae, A., Kulild, J., & Nagendrababu, V. (2021). Artificial intelligence in endodontics: Current applications and future directions. Journal of Endodontics, 47(9), 1352–1357.

    Article  Google Scholar 

  • Amjadian, A., & Gharaei, A. (2022). An integrated reliable five-level closed-loop supply chain with multi-stage products under quality control and green policies: Generalised outer approximation with exact penalty. International Journal of Systems Science: Operations & Logistics, 9(3), 429–449.

    Google Scholar 

  • Arentze, T., & Timmermans, H. (2005). Information gain, novelty seeking and travel: A model of dynamic activity-travel behavior under conditions of uncertainty. Transportation Research Part A: Policy and Practice, 39(2–3), 125–145.

    Google Scholar 

  • Askari, R., Sebt, M. V., & Amjadian, A. (2021). Logistics and supply chain management: 7th international conference, LSCM 2020, Tehran, Iran, December 23–24, 2020, Revised Selected Papers 7, (pp. 161–193). Springer.

  • Assimakopoulos, N. (1987). A network interdiction model for hospital infection control. Computers in Biology and Medicine, 17(6), 413–422.

    Article  Google Scholar 

  • Ayyildiz, E., Özçelik, G., & Gencer, C. T. (2018). Determining the most vital arcs on the shortest path for fire trucks in terrorist actions that will cause fire. Communications Series A1 Mathematics & Statistics, 68(1), 441–450.

    Google Scholar 

  • Azizi, E., & Seifi, A. (2023). Shortest path network interdiction with incomplete information: A robust optimization approach. Annals of Operations Research. https://doi.org/10.1007/s10479-023-05350-1

    Article  Google Scholar 

  • Baggio, A., Carvalho, M., Lodi, A., & Tramontani, A. (2021). Multilevel approaches for the critical node problem. Operations Research, 69(2), 486–508.

    Article  Google Scholar 

  • Bao, S., Zhang, C., Ouyang, M., & Miao, L. (2019). An integrated tri-level model for enhancing the resilience of facilities against intentional attacks. Annals of Operations Research, 283(1), 87–117.

    Article  Google Scholar 

  • Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4(1), 238–252.

    Article  Google Scholar 

  • Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization (Vol. 28). Princeton University Press.

    Book  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations Research Letters, 25(1), 1–13.

    Article  Google Scholar 

  • Ben-Tal, A., & Nemirovski, A. (2002). Robust optimization-methodology and applications. Mathematical Programming, 92(3), 453–480.

    Article  Google Scholar 

  • Bertsekas, D. P. (1991). Linear network optimization: algorithms and codes. MIT Press.

    Google Scholar 

  • Bertsimas, D., Brown, D. B., & Caramanis, C. (2011). Theory and applications of robust optimization. SIAM Review, 53(3), 464–501.

    Article  Google Scholar 

  • Bertsimas, D., Nasrabadi, E., & Stiller, S. (2013). Robust and adaptive network flows. Operations Research, 61(5), 1218–1242.

    Article  Google Scholar 

  • Bertsimas, D., & Sim, M. (2003). Robust discrete optimization and network flows. Mathematical Programming, 98(1–3), 49–71.

    Article  Google Scholar 

  • Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35–53.

    Article  Google Scholar 

  • Bingol, L. (2001). A Lagrangian heuristic for solving a network interdiction problem. Master’s thesis, Naval Postgraduate School Monterey, CA.

  • Borrero, J. S., Prokopyev, O. A., & Sauré, D. (2016). Sequential shortest path interdiction with incomplete information. Decision Analysis, 13(1), 68–98.

    Article  Google Scholar 

  • Borrero, J. S., Prokopyev, O. A., & Sauré, D. (2019). Sequential interdiction with incomplete information and learning. Operations Research, 67(1), 72–89.

    Article  Google Scholar 

  • Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.

    Book  Google Scholar 

  • Chaerani, D., & Roos, C. (2006). Modelling robust design problems. Annual International Conference of the German Operations Research Society (GOR), Karlsruhe.

  • Chaerani, D., & Roos, C. (2007). Operations research proceedings 2006 (pp. 209–214). Springer.

  • Cheng, C., Qi, M., Zhang, Y., & Rousseau, L. M. (2018). A two-stage robust approach for the reliable logistics network design problem. Transportation Research Part B: Methodological, 111, 185–202.

    Article  Google Scholar 

  • Chen, R. L. Y., Musselman, A., & Wu, J. (2016). A robust optimization approach for network interdiction. Tech. rep.

    Google Scholar 

  • Chen, A., Yang, H., Lo, H. K., & Tang, W. H. (2002). Capacity reliability of a road network: An assessment methodology and numerical results. Transportation Research Part B: Methodological, 36(3), 225–252.

    Article  Google Scholar 

  • Cormican, K. J. (1995). Computational methods for deterministic and stochastic network interdiction problems. Master’s thesis, Naval Postgraduate School Monterey, CA.

  • Costa, A., Georgiadis, D., Ng, T. S., & Sim, M. (2018). An optimization model for power grid fortification to maximize attack immunity. International Journal of Electrical Power & Energy Systems, 99, 594–602.

    Article  Google Scholar 

  • Dimitrov, N. B., Michalopoulos, D. P., Morton, D. P., Nehme, M. V., Pan, F., Popova, E., Schneider, E. A., & Thoreson, G. G. (2011). Network deployment of radiation detectors with physics-based detection probability calculations. Annals of Operations Research, 187(1), 207–228.

    Article  Google Scholar 

  • Fischetti, M., Ljubić, I., Monaci, M., & Sinnl, M. (2019). Interdiction games and monotonicity, with application to knapsack problems. INFORMS Journal on Computing, 31(2), 390–410.

    Article  Google Scholar 

  • Fisher, M. L. (1981). The Lagrangian relaxation method for solving integer programming problems. Management Science, 27(1), 1–18.

    Article  Google Scholar 

  • Fisher, M. L. (1985). An applications oriented guide to Lagrangian relaxation. Interfaces, 15(2), 10–21.

    Article  Google Scholar 

  • Gabrel, V., Murat, C., & Thiele, A. (2014). Recent advances in robust optimization: An overview. European Journal of Operational Research, 235(3), 471–483.

    Article  Google Scholar 

  • Gharaei, A., & Almehdawe, E. (2020). Economic growing quantity. International Journal of Production Economics, 223, 107–517.

    Article  Google Scholar 

  • Gharaei, A., Amjadian, A., Amjadian, A., Shavandi, A., Hashemi, A., Taher, M., & Mohamadi, N. (2023). An integrated lot-sizing policy for the inventory management of constrained multi-level supply chains: Null-space method. International Journal of Systems Science: Operations & Logistics, 10(1), 2083,254.

    Google Scholar 

  • Gharaei, A., Amjadian, A., & Shavandi, A. (2023). An integrated reliable four-level supply chain with multi-stage products under shortage and stochastic constraints. International Journal of Systems Science: Operations & Logistics, 10(1), 1958,023.

    Google Scholar 

  • Gharaei, A., Hoseini Shekarabi, S. A., & Karimi, M. (2020). Modelling and optimal lot-sizing of the replenishments in constrained, multi-product and bi-objective EPQ models with defective products: Generalised cross decomposition. International Journal of Systems Science: Operations & Logistics, 7(3), 262–274.

    Google Scholar 

  • Gharaei, A., Hoseini Shekarabi, S. A., & Karimi, M. (2023). Optimal lot-sizing of an integrated EPQ model with partial backorders and re-workable products: An outer approximation. International Journal of Systems Science: Operations & Logistics, 10(1), 2015,007.

    Google Scholar 

  • Gharaei, A., Hoseini Shekarabi, S. A., Karimi, M., Pourjavad, E., & Amjadian, A. (2021). An integrated stochastic EPQ model under quality and green policies: Generalised cross decomposition under the separability approach. International Journal of Systems Science: Operations & Logistics, 8(2), 119–131.

    Google Scholar 

  • Gharaei, A., Karimi, M., & Hoseini Shekarabi, S. A. (2019). An integrated multi-product, multi-buyer supply chain under penalty, green, and quality control polices and a vendor managed inventory with consignment stock agreement: The outer approximation with equality relaxation and augmented penalty algorithm. Applied Mathematical Modelling, 69, 223–254.

    Article  Google Scholar 

  • Gharaei, A., Karimi, M., & Hoseini Shekarabi, S. A. (2020). Joint economic lot-sizing in multi-product multi-level integrated supply chains: Generalized benders decomposition. International Journal of Systems Science: Operations & Logistics, 7(4), 309–325.

    Google Scholar 

  • Gharaei, A., Karimi, M., & Hoseini Shekarabi, S. A. (2023). Vendor-managed inventory for joint replenishment planning in the integrated qualitative supply chains: Generalised benders decomposition under separability approach. International Journal of Systems Science: Operations & Logistics, 10(1), 1962,,428.

    Google Scholar 

  • Goldberg, A. V., & Tarjan, R. E. (1988). A new approach to the maximum-flow problem. Journal of the ACM (JACM), 35(4), 921–940.

    Article  Google Scholar 

  • Gorissen, B. L., Yanıkoğlu, İ, & den Hertog, D. (2015). A practical guide to robust optimization. Omega, 53, 124–137.

    Article  Google Scholar 

  • Gottschalk, C., Koster, A. M., Liers, F., Peis, B., Schmand, D., & Wierz, A. (2018). Robust flows over time: Models and complexity results. Mathematical Programming, 171(1–2), 55–85.

    Article  Google Scholar 

  • Grépin, K. A., Ho, T. L., Liu, Z., Marion, S., Piper, J., Worsnop, C. Z., & Lee, K. (2021). Evidence of the effectiveness of travel-related measures during the early phase of the COVID-19 pandemic: A rapid systematic review. BMJ Global Health, 6(3), e004,537.

    Article  Google Scholar 

  • Guo, Q., An, B., Zick, Y., & Miao, C. (2016). Proceedings of the twenty-fifth international joint conference on artificial intelligence (IJCAI-16), pp. 2507–2513.

  • Han, S., Peng, Z., & Wang, S. (2014). The maximum flow problem of uncertain network. Information Sciences, 265, 167–175.

    Article  Google Scholar 

  • Hoseini Shekarabi, S. A., Gharaei, A., & Karimi, M. (2019). Modelling and optimal lot-sizing of integrated multi-level multi-wholesaler supply chains under the shortage and limited warehouse space: generalised outer approximation. International Journal of Systems Science: Operations & Logistics, 6(3), 237–257.

    Google Scholar 

  • Israeli, E., & Wood, R. K. (2002). Shortest-path network interdiction. Networks: An International Journal, 40(2), 97–111.

    Article  Google Scholar 

  • James, L. P., Salomon, J. A., Buckee, C. O., & Menzies, N. A. (2021). The use and misuse of mathematical modeling for infectious disease policymaking: Lessons for the COVID-19 pandemic. Medical Decision Making, 41(4), 379–385.

    Article  Google Scholar 

  • Johnson, M. P., Gutfraind, A., & Ahmadizadeh, K. (2014). Evader interdiction: Algorithms, complexity and collateral damage. Annals of Operations Research, 222(1), 341–359.

    Article  Google Scholar 

  • Kenney, M. C. (2003). Intelligence games: Comparing the intelligence capabilities of law enforcement agencies and drug trafficking enterprises. International Journal of Intelligence and CounterIntelligence, 16(2), 212–243.

    Article  Google Scholar 

  • Ketkov, S. S., Prokopyev, O. A., & Burashnikov, E. P. (2019). An approach to the distributionally robust shortest path problem. arXiv preprint arXiv:1910.08744.

  • Kosmas, D., Sharkey, T. C., Mitchell, J. E., Maass, K. L., & Martin, L. (2022). Multi-period max flow network interdiction with restructuring for disrupting domestic sex trafficking networks. Annals of Operations Research. https://doi.org/10.1007/s10479-022-05087-3

    Article  Google Scholar 

  • Laporte, G., Mesa, J. A., & Perea, F. (2010). A game theoretic framework for the robust railway transit network design problem. Transportation Research Part B: Methodological, 44(4), 447–459.

    Article  Google Scholar 

  • Lasdon, L. S. (2002). Optimization theory for large systems. Dover Publications Inc.

    Google Scholar 

  • Lee, C., Lee, K., Park, K., & Park, S. (2012). Branch-and-price-and-cut approach to the robust network design problem without flow bifurcations. Operations Research, 60(3), 604–610.

    Article  Google Scholar 

  • Lim, C., & Smith, J. C. (2007). Algorithms for discrete and continuous multicommodity flow network interdiction problems. IIE Transactions, 39(1), 15–26.

    Article  Google Scholar 

  • Li, X., & Ouyang, Y. (2011). Reliable sensor deployment for network traffic surveillance. Transportation Research Part B: Methodological, 45(1), 218–231.

    Article  Google Scholar 

  • Loh, K. H. (1991). Modelling strategic strikes against transportation networks. Master’s thesis, Naval Postgraduate School Monterey, CA.

  • Losada, C., Scaparra, M. P., Church, R. L., & Daskin, M. S. (2012). The stochastic interdiction median problem with disruption intensity levels. Annals of Operations Research, 201(1), 345–365.

    Article  Google Scholar 

  • Lozano, L., & Smith, J. C. (2019). A brief overview of interdiction and robust optimization. Optimization in Large Scale Problems: Industry 4.0 and Society 5.0 Applications. https://doi.org/10.1007/978-3-030-28565-4_7

    Article  Google Scholar 

  • Lunday, B. J., & Sherali, H. D. (2012). Network interdiction to minimize the maximum probability of evasion with synergy between applied resources. Annals of Operations Research, 196(1), 411–442.

    Article  Google Scholar 

  • MacKay, R. S., Johnson, S., & Sansom, B. (2020). How directed is a directed network? Royal Society open science, 7(9), 201,138.

    Article  Google Scholar 

  • Magliocca, N. R., McSweeney, K., Sesnie, S. E., Tellman, E., Devine, J. A., Nielsen, E. A., Pearson, Z., & Wrathall, D. J. (2019). Modeling cocaine traffickers and counterdrug interdiction forces as a complex adaptive system. Proceedings of the National Academy of Sciences, 116(16), 7784–7792.

    Article  Google Scholar 

  • Matisziw, T. C., & Murray, A. T. (2009). Modeling s-t path availability to support disaster vulnerability assessment of network infrastructure. Computers & Operations Research, 36(1), 16–26.

    Article  Google Scholar 

  • Meyer, A. D., & Anderson, D. P. (2008). The air national guard and the war on drugs: Non-state actors before 9/11. Air Power History, 55(3), 12–29.

    Google Scholar 

  • Minoux, M. (2009). On robust maximum flow with polyhedral uncertainty sets. Optimization Letters, 3(3), 367–376.

    Article  Google Scholar 

  • Mirzaei, M., Al-e, S. M. J. M., Shirazi, M. A., et al. (2021). A maximum-flow network interdiction problem in an uncertain environment under information asymmetry condition: Application to smuggling goods. Computers & Industrial Engineering, 162, 107–708.

    Article  Google Scholar 

  • Monaci, M., Pferschy, U., & Serafini, P. (2013). Exact solution of the robust knapsack problem. Computers & operations research, 40(11), 2625–2631.

    Article  Google Scholar 

  • Morton, D. P., Pan, F., & Saeger, K. J. (2007). Models for nuclear smuggling interdiction. IIE Transactions, 39(1), 3–14.

    Article  Google Scholar 

  • Nguyen, D. H., & Smith, J. C. (2022). Network interdiction with asymmetric cost uncertainty. European Journal of Operational Research, 297(1), 239–251.

    Article  Google Scholar 

  • Noyan, N., Rudolf, G., & Lejeune, M. (2018). Distributionally robust optimization with decision-dependent ambiguity set. Optimization Online http://www.optimization-online.org/DBHTML/2018/09/6821.html.

  • Pan, F., & Morton, D. P. (2008). Minimizing a stochastic maximum-reliability path. Networks: An International Journal, 52(3), 111–119.

    Article  Google Scholar 

  • Parvaresh, F., Husseini, S. M., Golpayegany, S. H., & Karimi, B. (2014). Hub network design problem in the presence of disruptions. Journal of Intelligent Manufacturing, 25(4), 755–774.

    Article  Google Scholar 

  • Paul, J. A., & Wang, X. J. (2019). Robust location-allocation network design for earthquake preparedness. Transportation Research Part B: Methodological, 119, 139–155.

    Article  Google Scholar 

  • Peng, P., Snyder, L. V., Lim, A., & Liu, Z. (2011). Reliable logistics networks design with facility disruptions. Transportation Research Part B: Methodological, 45(8), 1190–1211.

    Article  Google Scholar 

  • Rahmaniani, R., Crainic, T. G., Gendreau, M., & Rei, W. (2017). The benders decomposition algorithm: A literature review. European Journal of Operational Research, 259(3), 801–817.

    Article  Google Scholar 

  • Reddy, K. N., Kumar, A., Choudhary, A., & Cheng, T. E. (2022). Multi-period green reverse logistics network design: An improved benders-decomposition-based heuristic approach. European Journal of Operational Research, 303(2), 735–752.

    Article  Google Scholar 

  • Rocco, C. M. S., & Ramirez-Marquez, J. E. (2010). A bi-objective approach for shortest-path network interdiction. Computers & Industrial Engineering, 59(2), 232–240.

    Article  Google Scholar 

  • Rodgers, N., Tiňo, P., & Johnson, S. (2023). Strong connectivity in real directed networks. Proceedings of the National Academy of Sciences, 120(12), e2215752,120.

    Article  Google Scholar 

  • Royset, J. O., & Wood, R. K. (2007). Solving the bi-objective maximum-flow network-interdiction problem. INFORMS Journal on Computing, 19(2), 175–184.

    Article  Google Scholar 

  • Sadana, U., & Delage, E. (2020). The value of randomized strategies in distributionally robust risk averse network interdiction games. arXiv preprint arXiv:2003.07915.

  • Schrijver, A., et al. (2003). Combinatorial optimization: Polyhedra and efficiency (Vol. 24). Springer.

    Google Scholar 

  • Smith, J. C., & Song, Y. (2019). A survey of network interdiction models and algorithms. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2019.06.024

    Article  Google Scholar 

  • Snyder, L. V., Scaparra, M. P., Daskin, M. S., & Church, R. L. (2006). Models, methods, and applications for innovative decision making (INFORMS), pp. 234–257.

  • Soyster, A. L. (1973). Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research, 21(5), 1154–1157.

    Article  Google Scholar 

  • Steinrauf, R. L. (1991). Network interdiction models. Master’s thesis, Naval Postgraduate School Monterey, CA.

  • Stozhkov, V., Boginski, V., Prokopyev, O. A., & Pasiliao, E. L. (2017). A simple greedy heuristic for linear assignment interdiction. Annals of Operations Research, 249, 39–53.

    Article  Google Scholar 

  • Sullivan, K. M., Morton, D. P., Pan, F., & Cole Smith, J. (2014). Securing a border under asymmetric information. Naval Research Logistics (NRL), 61(2), 91–100.

    Article  Google Scholar 

  • Sumalee, A., Uchida, K., & Lam, W. H. (2011). Stochastic multi-modal transport network under demand uncertainties and adverse weather condition. Transportation Research Part C: Emerging Technologies, 19(2), 338–350.

    Article  Google Scholar 

  • Taleizadeh, A. A., Safaei, A. Z., Bhattacharya, A., & Amjadian, A. (2022). Online peer-to-peer lending platform and supply chain finance decisions and strategies. Annals of Operations Research, 315(1), 397–427.

    Article  Google Scholar 

  • Towle, E., & Luedtke, J. (2018). New solution approaches for the maximum-reliability stochastic network interdiction problem. Computational Management Science, 15(3–4), 455–477.

    Article  Google Scholar 

  • Uygun, A. (2002). Network interdiction by lagrandian relaxation and branch-and-bound. Master’s thesis, Naval Postgraduate School Monterey; CA.

  • Wada, K., Usui, K., Takigawa, T., & Kuwahara, M. (2018). An optimization modeling of coordinated traffic signal control based on the variational theory and its stochastic extension. Transportation Research Part B: Methodological, 117, 907–925.

    Article  Google Scholar 

  • Wei, N., & Walteros, J. L. (2022). Integer programming methods for solving binary interdiction games. European Journal of Operational Research, 302(2), 456–469.

    Article  Google Scholar 

  • Wood, R. K. (1993). Deterministic network interdiction. Mathematical and Computer Modelling, 17(2), 1–18.

    Article  Google Scholar 

  • Wood, R. K. (2010). Bilevel network interdiction models: Formulations and solutions. Wiley.

    Google Scholar 

  • Yuan, W., Wang, J., Qiu, F., Chen, C., Kang, C., & Zeng, B. (2016). Robust optimization-based resilient distribution network planning against natural disasters. IEEE Transactions on Smart Grid, 7(6), 2817–2826.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation through grants CMMI-1826320/1826337: Collaborative Research: Real-Time Stochastic Matching Models for Freight Electronic Marketplace, CMMI-1562109/1562291: Collaborative Research: Non-Additive Network Routing and Assignment Models, and CMMI-1254921: CAREER: Integrated Multiresolution Transportation Network Modeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darshan Chauhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Lagrangian relaxation sub-problems

The sub-problems of the Lagrangian Dual (presented in Sect. 4.2) and their solutions are:

Sub-problem 1:

$$\begin{aligned}&\min _{\alpha ,\beta ,\delta } \quad \left( \sum _{(i,j) \in A'} ({u}_{ij} + \lambda ''_{ij}\hat{u}_{ij})\beta _{ij} + (\lambda 'r_{ij}+\lambda '''_{ij}\hat{r}_{ij})\delta _{ij} \right) - \lambda '\Delta \\&\quad \alpha _i - \alpha _j + \delta _{ij} + \beta _{ij} \ge 0 \quad \forall \,\,\, (i,j) \in A \\&\quad \alpha _t - \alpha _s + \delta _{ts} + \beta _{ts} \ge 1 \\&\quad \alpha _s = 0, \,\, \alpha _t = 1, \,\,\delta _{ts}=0,\,\,\beta _{ts}=0 \\&\quad \alpha _i \in \{0,1\} \quad \forall \,\,\, i \in N \\&\quad \delta _{ij}, \beta _{ij} \in \{0,1\} \quad \forall \,\,\, (i,j) \in A' \end{aligned}$$

The dual of the sub-problem 1 results in a maximum flow problem with updated capacities, as in Bingol (2001).

$$\begin{aligned} SP_1&= \max _{x} \quad x_{ts} - \lambda '\Delta \\&\quad \sum _{(i,j)\in FS_i} x_{ij} - \sum _{(j,i)\in RS_i} x_{ji} = 0 \quad \forall \,\,\, i \in N \\ x_{ij}&\le \min ({u}_{ij}+\lambda ''_{ij}\hat{u}_{ij}\,,\,\lambda 'r_{ij}+\lambda '''_{ij}\hat{r}_{ij}) \quad \forall \,\, (i,j) \in A'\\ x_{ij}&\ge 0 \quad \forall \,\, (i,j) \in A' \end{aligned}$$

Sub-problem 2:

$$\begin{aligned} SP_2&= \min _{\mu } \quad \left( \sum _{(i,j) \in A'}(1-\lambda ''_{ij})\mu _{ij}\right) \\ \mu _{ij}&\in [0,\hat{u}_{ij}] \quad \forall \,\,\, (i,j) \in A' \end{aligned}$$

The solution to the above problem is trivial.

$$\begin{aligned} \mu _{ij}&= {\left\{ \begin{array}{ll} \hat{u}_{ij} &{} ; \text {if}\, \lambda ''_{ij} \ge 1\\ 0 &{} \text {; otherwise} \end{array}\right. } \,\,\, \forall \,\, (i,j) \in A' \end{aligned}$$

Sub-problem 3:

$$\begin{aligned} SP_3&= \min _{\theta } \quad \left( \Gamma -\sum _{(i,j)\in A'}\lambda ''_{ij}\right) \theta \\ \theta&\in [0,\theta _U] \end{aligned}$$

The solution to the above problem is trivial.

$$\begin{aligned} \theta&= {\left\{ \begin{array}{ll} \theta _U &{} ; \text {if}\, \sum \limits _{(i,j) \in A'} \lambda ''_{ij} \ge \Gamma \\ 0 &{} ; \text {otherwise} \end{array}\right. } \end{aligned}$$

Sub-problem 4:

$$\begin{aligned} SP_4&= \min _{\sigma } \quad \left( \sum _{(i,j) \in A'}(\lambda '-\lambda '''_{ij})\sigma _{ij}\right) \\ \sigma _{ij}&\in [0,\hat{r}_{ij}] \quad \forall \,\,\, (i,j) \in A' \end{aligned}$$

The solution to the above problem is trivial.

$$\begin{aligned} \sigma _{ij}&= {\left\{ \begin{array}{ll} \hat{r}_{ij} &{} ; \text {if}\, \lambda '''_{ij} \ge \lambda ' \\ 0 &{} ; \text {otherwise} \end{array}\right. } \,\,\, \forall \,\, (i,j) \in A' \end{aligned}$$

Sub-problem 5:

$$\begin{aligned} SP_5&= \min _{\zeta } \quad \left( \Pi \lambda '-\sum _{(i,j)\in A'}\lambda '''_{ij}\right) \zeta \\ \zeta&\in [0,\zeta _U] \end{aligned}$$

The solution to the above problem is trivial.

$$\begin{aligned} \zeta&= {\left\{ \begin{array}{ll} \zeta _U &{} ; \text {if}\, \sum \limits _{(i,j) \in A'} \lambda '''_{ij} \ge \Pi \lambda ' \\ 0 &{} ; \text {otherwise} \end{array}\right. } \end{aligned}$$

Note that without the upper bounds found in Sect. 4.1, the sub-problems 2–5 could result in unbounded solutions.

Appendix B Simultaneous penalty heuristic for Benders’ decomposition master problem

A heuristic is designed for quick computation of the master problem of Benders’ decomposition. It should be noted that the heuristic solution provides and approximate solution for the master problem. The equivalent formulation of the master problem of Benders’ decomposition as noted in Eqs. 8189, is given as:

$$\begin{aligned}&\text {Master Problem:} \quad \quad \min _{z,\alpha ,\beta ,\delta } z \end{aligned}$$
(B1)
$$\begin{aligned}&\left( \sum _{(i,j) \in A'} (u_{ij} + \hat{u}_{ij}\gamma ^o_{ij})\beta _{ij} \right) - z \le 0 \quad \forall \,\,\, o \in O \end{aligned}$$
(B2)
$$\begin{aligned}&\left( \sum _{(i,j) \in A'} r_{ij}\delta _{ij} \right) + \left( \sum _{(i,j) \in S} \hat{r}_{ij}\delta _{ij} \right) \le \Delta \quad \forall \,\,\, \{ S \, |\, S \subseteq A',|S |= \Pi \} \end{aligned}$$
(B3)
$$\begin{aligned}&\alpha _i - \alpha _j + \delta _{ij} + \beta _{ij} \ge 0 \quad \forall \,\,\, (i,j) \in A \end{aligned}$$
(B4)
$$\begin{aligned}&\alpha _s = 0, \,\, \alpha _t = 1, \,\,\delta _{ts}=0,\,\,\beta _{ts}=0 \end{aligned}$$
(B5)
$$\begin{aligned}&z \in (-\infty ,\infty ) \end{aligned}$$
(B6)
$$\begin{aligned}&\alpha _i \in \{0,1\} \quad \forall \,\, i \in N \end{aligned}$$
(B7)
$$\begin{aligned}&\beta _{ij}, \delta _{ij} \in \{0,1\} \quad \forall \,\, (i,j) \in A' \end{aligned}$$
(B8)

where, O is the set of Benders’ decomposition optimality cuts, and \(\gamma ^o_{ij}\) represents \(\gamma _{ij}\) values for the cut o. Equation B3 is the resource robustness constraint for the RNIP, written as a set of combinatorially many constraints instead of a single constraint with maximization, which was dualized in order to obtain the final RNIP model formulation (refer MODEL 2 in Sect. 3.4).

The motivation for the heuristic is to account for \( |O |\) constraints (in Eq. B2) using a single constraint. This would reduce the master problem to a network interdiction problem with resource consumption uncertainty only (NIPRCU). NIPRCU can be solved by first finding the min-cut of the network using representative capacities, and determining the arc set available for interdiction (\(A_I\)). Then, determining \(\delta \) (the interdiction decision) variables is a robust knapsack problem with arc capacities as item values, resource consumption as item weights, and \(\Delta \) is the capacity of the knapsack (solution procedure proposed by Lee et al. (2012) is used for solving the robust knapsack problem). Once, \(\delta \) variables are determined, the \(\beta \) variables can be easily determined, as they are forward arcs of the minimum cut which are not interdicted.

Calculating representative arc capacities of the network with respect to \({o^{th}}\) optimality cut:

The method simultaneously penalizes the presence of optimality cuts in the set \(O\backslash \{o\}\) with respect to the \(o^{th}\) optimality cut to calculate the representative arc capacities for the network. The penalty with respect to the \(o^{th}\) optimality cut is calculated as:

$$\begin{aligned} cap\_penalty^o = {\left\{ \begin{array}{ll} \displaystyle {\frac{\sum \limits _{(i,j) \in A'}\gamma ^o_{ij}\hat{u}_{ij}}{\sum \limits _{(i,j) \in A'}\gamma ^o_{ij}}} &{} \text {; if } \sum \limits _{(i,j) \in A'}\gamma ^o_{ij} > 0 \\ 0&{} \text {; otherwise} \end{array}\right. } \end{aligned}$$
(B9)

The representative arc capacities of the network with respect to the \(o^{th}\) optimality cut (\(\tilde{u}^o\)) are then given as:

$$\begin{aligned} \tilde{u}^o_{ij} = {\left\{ \begin{array}{ll} u_{ij} + \hat{u}_{ij} &{} \text {; if } \gamma ^o_{ij} = 1 \\ u_{ij} &{} \text {; if } \gamma ^o_{ij} = 0 \text { and } \sum \limits _{q \in O\backslash \{o\}}\gamma ^q_{ij} = 0 \\ u_{ij} + \max \{0, \hat{u}_{ij} - cap\_penalty^o\} &{} \text {; if } \gamma ^o_{ij} = 0 \text { and }\sum \limits _{q \in O\backslash \{o\}}\gamma ^q_{ij} > 0 \\ \end{array}\right. } \end{aligned}$$
(B10)

Steps for solving the Benders’ Master Problem using the simultaneous penalty heuristic:

For each \(o \in O\),

  1. 1.

    Calculate the representative arc capacities for the network (\(\tilde{u}^o\)) with respect to optimality cut o.

  2. 2.

    Determine the min-cut (\(N_s,N_t\)) of the network. The variable \(\alpha ^o\) and the interdiction arc set (\(A_I\)) for the network are given as:

    $$\begin{aligned} \alpha ^o_i&= {\left\{ \begin{array}{ll} 1 &{} ; \text {if}\, i \in N_t \\ 0 &{} ; \text {if}\,i \in N_s \end{array}\right. } \\ A_I&= \big \{(i,j) \in A' \,\, \big |\,\, \alpha ^o_j-\alpha ^o_i = 1 \text { and } r_{ij}\le \Delta \text { and } \gamma ^o_{ij}=0 \big \} \end{aligned}$$
  3. 3.

    Initialize \(\delta ^o\) variables by solving the robust knapsack problem with parameters \(c=\tilde{u}^o\), \(w = r\), \(\hat{w} = \hat{r}\), \(b = \Delta \), \(N = A_I\), and \(\Gamma = \Pi \) (refer Bertsimas and Sim 2003)

  4. 4.

    The value of \(\zeta ^o\) is the \(\Pi ^{th}\) largest value of \(\hat{r}_{ij}\delta ^o_{ij}\).

  5. 5.

    The values of variables \(\sigma ^o\) are given as: \(\sigma ^o_{ij}= \max \{0, \hat{r}_{ij} - \zeta ^o \}\)

  6. 6.

    Determine the \(\beta ^o\) variables as follows:

    $$\begin{aligned} \beta ^o_{ij} = {\left\{ \begin{array}{ll} 1 &{} ; \text {if}\, \alpha ^o_j - \alpha ^o_i = 1{ and}\delta ^o_{ij} = 1\\ 0 &{} ; \text {otherwise} \end{array}\right. } \end{aligned}$$
    (B11)
  7. 7.

    The value of \(z^o\) is \(\sum \limits _{(i,j)\in A'}\tilde{u}^o_{ij}\beta ^o_{ij}\)

The solution of the master problem is then given as:

$$\begin{aligned} z^*&= \max (z^o) \\ \alpha ^*&= \{\alpha ^o \, |\, z^o = z^* \} \\ \beta ^*&= \{\beta ^o \, |\, z^o = z^* \} \\ \delta ^*&= \{\delta ^o \, |\, z^o = z^* \} \\ \zeta ^*&= \{\zeta ^o \, |\, z^o = z^* \} \\ \sigma ^*&= \{\sigma ^o \, |\, z^o = z^* \} \\ \end{aligned}$$

Appendix C Monte-Carlo simulation for evaluating value of robustness

Algorithm 1
figure a

Monte Carlo simulation scheme

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, D., Unnikrishnan, A., Boyles, S.D. et al. Robust maximum flow network interdiction considering uncertainties in arc capacity and resource consumption. Ann Oper Res 335, 689–725 (2024). https://doi.org/10.1007/s10479-023-05812-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-023-05812-6

Keywords

Navigation