Skip to main content
Log in

Availability contracts under hierarchical maintenance

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Availability contracting is a prominent procurement strategy among many defense and other capital equipment suppliers and their customers. Under availability contracting, the revenue generated for a service provider is a function of equipment/system availability over the predetermined contract period. A major challenge in implementing availability contracting is predicting the availability of equipment, defining the target availability, and determining the best contract duration based on the target availability. In this paper, we extend the classical operational availability model for estimating equipment availability under hierarchical maintenance, which is frequently used for complex equipment such as aircraft. Under an availability contract, bounds have been proposed on system-level operational availability. The current study also develops optimization models for finding the optimal availability contract duration under different scenarios: stochastic and non-stochastic contract durations; contract written at parts level, system level; minimizing total maintenance costs with minimum level of target operational availability as a constraint etc. The study also shows that the optimal contract duration is a non-decreasing function of spares on hand, and the inherent availability of system part. The results from the study have been validated using numerical study with both simulated and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  • Anastasopoulos, P. C., Labi, S., & McCullouch, B. G. (2009). Analyzing the duration and prolongation of performance-based contracts through hazard-based duration and zero-inflated random parameters Poisson models. Transportation Research Record, 2136(1), 11–19.

    Article  Google Scholar 

  • Anonymous, & Federal Aviation Administration. (2009). Flight standards information management system. CH80. http://fsims.faa.gov/PICResults.aspx?mode=EBookContents, 3, Chapters 18 & 43.

  • Arts, J., & Basten, R. (2018). Design of multi-component periodic maintenance programs with single-component models. IISE Transactions, 50(7), 606–615.

    Article  Google Scholar 

  • Barlow, R. E., & Proschan, F. (1965). Mathematical theory of reliability. Wiley.

    Google Scholar 

  • Buchanan, N., & Klingner, D. E. (2007). Performance-based contracting: Are we following the mandate? Journal of Public Procurement, 7(3), 301–332. https://doi.org/10.1108/JOPP-07-03-2007-B001

    Article  Google Scholar 

  • Cochran, J. K., & Lewis, T. P. (2002). Computing small-fleet aircraft availabilities including redundancy and spares. Computers and Operations Research, 29(5), 529–540. https://doi.org/10.1016/S0305-0548(00)00094-0

    Article  Google Scholar 

  • Datta, P. P., Srivastava, A., & Roy, R. (2013). A simulation study on maintainer resource utilization of a fast jet aircraft maintenance line under availability contract. Computers in Industry, 64(5), 543–555. https://doi.org/10.1016/j.compind.2013.02.011

    Article  Google Scholar 

  • Deng, Q., Santos, B. F., & Curran, R. (2020). A practical dynamic programming based methodology for aircraft maintenance check scheduling optimization. European Journal of Operational Research, 281(2), 256–273. https://doi.org/10.1016/j.ejor.2019.08.025

    Article  Google Scholar 

  • Doğan, D. C., & İç, Y. T. (2021). Reliability centered maintenance analysis using analytic hierarchy process for electro-mechanical actuators. Aerotecnica Missili & Spazio, 100(4), 321–335.

    Article  Google Scholar 

  • Drent, C., Kapodistria, S., & Resing, J. A. C. (2019). Condition-based maintenance policies under imperfect maintenance at scheduled and unscheduled opportunities. Queueing Systems, 93, 269–308.

    Article  Google Scholar 

  • Ebeling, C. E. (2019). An introduction to reliability and maintainability engineering. Waveland Press.

    Google Scholar 

  • Eltoukhy, A. E. E., Chan, F. T. S., Chung, S. H., Niu, B., & Wang, X. P. (2017). Heuristic approaches for operational aircraft maintenance routing problem with maximum flying hours and man-power availability considerations. Industrial Management and Data Systems, 117(10), 2142–2170. https://doi.org/10.1108/IMDS-11-2016-0475

    Article  Google Scholar 

  • Fabig, C., & Winter, E. (2018). A multi-level modeling approach for simulation-based capacity planning and scheduling of aircraft maintenance projects. In Winter simulation conference (WSC) (pp. 3252–3263). IEEE Publications. https://doi.org/10.1109/WSC.2018.8632421

  • Faughaber, K. (1993). DMAS small PAA utility. HQ USAF/LGSS.

    Google Scholar 

  • Frishammar, J., & Parida, V. (2019). Circular business model transformation: A roadmap for incumbent firms. California Management Review, 61(2), 5–29.

    Article  Google Scholar 

  • Gavranis, A., & Kozanidis, G. (2017). Mixed integer bi-objective quadratic programming for maximum-value minimum-variability fleet availability of a unit of mission aircraft. Computers and Industrial Engineering, 110, 13–29. https://doi.org/10.1016/j.cie.2017.05.010

    Article  Google Scholar 

  • Geary, S. (2006). Ready for Combat. DC Velocity, 4(7), 75–80.

  • Hockley, C. J., Smith, J. C., & Lacey, L. J. (2011). Contracting for availability and capability in the defence environment. Complex Engineering Service Systems: Concepts and Research, 237–256.

  • Haloui, I., Ponzoni Carvalho Chanel, C., & Haït, A. (2020). Towards a hierarchical modelling approach for planning aircraft tail assignment and predictive maintenance. In the 13th International Scheduling and Planning Applications work-shop (SPARK).

  • Haynes, S., Herrmann, J. W., & Zimmerman, P. (2018). Using discrete event simulation to improve aircraft engine reliability forecasts. In 2018 Annual Reliability and Maintainability Symposium (RAMS) (pp. 1–6). IEEE.

  • Hur, M., Keskin, B. B., & Schmidt, C. P. (2018). End-of-life inventory control of aircraft spare parts under performance based logistics. International Journal of Production Economics, 204, 186–203. https://doi.org/10.1016/j.ijpe.2018.07.028

    Article  Google Scholar 

  • Husniah, H., Pasaribu, U. S., Cakravastia, A., & Iskandar, B. P. (2014). Performance-based maintenance contract for equipments used in mining industry. In 2014 IEEE international conference on management of innovation and technology (pp. 543–548). IEEE.

  • Ingram, M. D. (2020). Explaining weapon system sustainment’s impact to aircraft availability.

  • Isaacson, K. E., Boren, P., Tsai, C. L., & Pyles, R. (1988). Dyna-METRIC version 4. RAND Corporation Santa Monica.

    Google Scholar 

  • Jamali, N., Feylizadeh, M. R., & Liu, P. (2021). Prioritization of aircraft maintenance unit strategies using fuzzy Analytic Network Process: A case study. Journal of Air Transport Management, 93, 102057.

    Article  Google Scholar 

  • Jin, T. (2012). Demystifying system operational availability in performance-based logistics contracts. Phalanx, 45(4), 35–37.

    Google Scholar 

  • Jin, T., & Tian, Y. (2012). Optimizing reliability and service parts logistics for a time-varying installed base. European Journal of Operational Research, 218(1), 152–162. https://doi.org/10.1016/j.ejor.2011.10.026

    Article  Google Scholar 

  • Jin, T., Tian, Z., & Xie, M. (2015). A game-theoretical approach for optimizing maintenance, spares and service capacity in performance contracting. International Journal of Production Economics, 161, 31–43. https://doi.org/10.1016/j.ijpe.2014.11.010

    Article  Google Scholar 

  • Jin, T., & Wang, P. (2012). Planning performance based contracts considering reliability and uncertain system usage. Journal of the Operational Research Society, 63(10), 1467–1478. https://doi.org/10.1057/jors.2011.144

    Article  Google Scholar 

  • Jin, T., Xiang, Y., & Cassady, R. (2013). Understanding operational availability in performance-based logistics and maintenance services. In 2013 Proceedings annual reliability and maintainability symposium (RAMS) (pp. 1–6). IEEE.

  • Jordan, J. A., Etemadi, A., & Grenn, M. W. (2021). Predicting KC-135R aircraft availability with aircraft metrics. IEEE Transactions on Engineering Management, 69(6), 3864–3873. https://doi.org/10.1109/TEM.2021.3059372

    Article  Google Scholar 

  • Kim, S. H., Cohen, M. A., & Netessine, S. (2007). Performance contracting in after-sales service supply chains. Management Science, 53(12), 1843–1858. https://doi.org/10.1287/mnsc.1070.0741

    Article  Google Scholar 

  • Kleemann, F. C., Glas, A., & Essig, M. (2012). Public procurement through performance-based logistics: Conceptual underpinnings and empirical insights. Journal of Public Procurement, 12(2), 151–188. https://doi.org/10.1108/JOPP-12-02-2012-B001

    Article  Google Scholar 

  • Klevan, P. (2014). Government Acquisition Website http://www.acquisition.gov/comp/aap/documents/appendices/appendix%2012%20-%20navypbl50505.pdf. Accessed 20 July 2014.

  • Kumar, D., Chattopadhyay, G., & Pannu, H. S. (2004). Total cost of ownership for railway assets: A case study on boxn wagons of Indian railways. In Proceedings of the 5th Asia-Pacific industrial engineering and management systems conference (pp. 12–15).

  • Lancelot, E. (2010). Performance based contracts in the road sector: towards improved efficiency in the management of maintenance and rehabilitation-Brazil's experience. The World Bank Group, Washington D.C.

  • Leighton, J. M. (2017). Common support equipment and its impact on aircraft availability. MS thesis, AFIT-ENS-MS-17-M-141. School of Systems and Logistics, Air Force Institute of Technology (AU), Wright-Patterson AFB OH.

  • Lie, C. H., Hwang, C. L., & Tillman, F. A. (1977). Availability of maintained systems: A state-of-the-art survey. AIIE Transactions, 9(3), 247–259. https://doi.org/10.1080/05695557708975153

    Article  Google Scholar 

  • Mirzahosseinian, H., & Piplani, R. (2011). A study of repairable parts inventory system operating under performance-based contract. European Journal of Operational Research, 214(2), 256–261. https://doi.org/10.1016/j.ejor.2011.04.035

    Article  Google Scholar 

  • Öner, K. B., Kiesmüller, G. P., & van Houtum, G. J. (2010). Optimization of component reliability in the design phase of capital goods. European Journal of Operational Research, 205(3), 615–624. https://doi.org/10.1016/j.ejor.2010.01.030

    Article  Google Scholar 

  • Palm, C. (1938). Analysis of the Erlang traffic formula for busy-signal arrangements. Ericsson Technics, 5(9), 39–58.

    Google Scholar 

  • Parida, V., Burström, T., Visnjic, I., & Wincent, J. (2019). Orchestrating industrial ecosystem in circular economy: A two-stage transformation model for large manufacturing companies. Journal of Business Research, 101, 715–725.

    Article  Google Scholar 

  • Pohya, A. A., Wehrspohn, J., Meissner, R., & Wicke, K. (2021). A modular framework for the life cycle based evaluation of aircraft technologies, maintenance strategies, and operational decision making using discrete event simulation. Aerospace, 8(7), 187.

    Article  Google Scholar 

  • Rana, A. (2016). Optimal maintenance level of equipment with multiple components. Journal of Quality in Maintenance Engineering, 22(2), 180–187.

    Article  Google Scholar 

  • Settanni, E., Thenent, N. E., Newnes, L. B., Parry, G., & Goh, Y. M. (2017). Mapping a product-service-system delivering defence avionics availability. International Journal of Production Economics, 186, 21–32. https://doi.org/10.1016/j.ijpe.2017.01.018

    Article  Google Scholar 

  • Sheng, J., & Prescott, D. (2017). A hierarchical coloured Petri net model of fleet maintenance with cannibalisation. Reliability Engineering and System Safety, 168, 290–305. https://doi.org/10.1016/j.ress.2017.05.043

    Article  Google Scholar 

  • Sheng, J., & Prescott, D. (2019). Using a novel hierarchical coloured Petri net to model and optimise fleet spare inventory, cannibalisation and preventive maintenance. Reliability Engineering and System Safety, 191, 106579. https://doi.org/10.1016/j.ress.2019.106579

    Article  Google Scholar 

  • Sherbrooke, C. (1992). Optimal inventory modeling of systems: Multi-echelon techniques (p. 274). Wiley.

  • Wang, H., & Pham, H. (2003). Optimal imperfect maintenance models. In Handbook of reliability engineering (pp. 397–414). Springer.

  • Wang, J., Zhao, X., & Guo, X. (2019). Optimizing wind turbine’s maintenance policies under performance-based contract. Renewable Energy, 135, 626–634.

    Article  Google Scholar 

  • Wei, X., Guo, L., Wang, X., Song, Q., & Li, L. (2008). Availability guarantee in survivable WDM mesh networks: A time perspective. Information Sciences, 178(11), 2406–2415.

    Article  Google Scholar 

  • Wei, X., Guo, L., Wang, X., Song, Q., & Li, L. (2008). Availability guarantee in survivable WDM mesh networks: A time perspective. Using discrete event simulation to improve aircraft engine reliability forecasts.

  • Wei, Y., Wu, D., & Terpenny, J. (2018). Predictive maintenance for aircraft engines using data fusion. In IIE annual conference. Proceedings (pp. 895–900). Institute of Industrial and Systems Engineers (IISE).

  • Xiang, Y., Zhu, Z., Coit, D. W., & Feng, Q. (2017). Condition-based maintenance under performance-based contracting. Computers & Industrial Engineering, 111, 391–402.

    Article  Google Scholar 

  • Xin, C., & Wang, L. (2022). Analysis of aviation maintenance scheme based on hierarchical clustering. Industrial Engineering and Innovation Management, 5(4), 49–52.

    Google Scholar 

  • Zanjani, M. K., & Nourelfath, M. (2014). Integrated spare parts logistics and operations planning for maintenance service providers. International Journal of Production Economics, 158, 44–53. https://doi.org/10.1016/j.ijpe.2014.07.012

    Article  Google Scholar 

  • Zhang, C., Li, Q., & Liu, Y. (2020). Optimal replacement policy with minimal repair and preventive maintenance of an aircraft structure subjected to corrosion. Soft Computing, 24(1), 375–384. https://doi.org/10.1007/s00500-019-03919-2

    Article  Google Scholar 

  • Zhang, J., Zhao, X., Song, Y., & Qiu, Q. (2022). Joint optimization of condition-based maintenance and spares inventory for a series–parallel system with two failure modes. Computers & Industrial Engineering, 168, 108094.

    Article  Google Scholar 

  • Zorn, W. L., Deckro, R. F., & Lehmkuhl, L. J. (1999). Modeling diminishing marginal returns in ahierarchical inventory system of reparable spare parts. Annals of Operations Research, 91, 319–337. https://doi.org/10.1023/A:1018962126187

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradipta Patra.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of Theorem 1

For proving the lower bound in Theorem 1, we use the Cauchy–Schwartz inequality. The inequality is given as follows:

$$ \sum\limits_{i = 1}^{n} {a_{i} b_{i} } \le \left( {\sum\limits_{i = 1}^{n} {a_{i}^{2} } } \right)^{\frac{1}{2}} \left( {\sum\limits_{i = 1}^{n} {b_{i}^{2} } } \right)^{\frac{1}{2}} $$
(A1)

The \(a{\prime} s\) and \(b{\prime} s\) are arbitrary sequences of real numbers.

For this proof, we define \(P_{1}\) as follows:

$$ \log_{e} \left( {\frac{1}{{P_{1} }}} \right) = \sum\limits_{i = 1}^{M} {\log_{e} \left( {1 + \frac{{MTTRS_{i} }}{T} \times \left( {\frac{T}{{\theta_{i} }}} \right)^{{\beta_{i} }} } \right)} $$
(A2)

From Eq. (17), following equation (A3) is obtained:

$$ \frac{1}{{P_{0} }} = \frac{1}{{P_{1} }} \times K $$
(A3)

Considering \(a_{i} =\)\(\log_{e} \left( {1 + \frac{{MTTRS_{i} }}{T} \times \left( {\frac{T}{{\theta_{i} }}} \right)^{{\beta_{i} }} } \right)\) and \(b_{i} = 1\), (A4) is obtained:

$$ \log_{e} \left( {\frac{1}{{P_{1} }}} \right) \le \left( {\left( {M \times \sum\limits_{i = 1}^{M} {\left( {\log_{e} \left( {1 + \frac{{MTTRS_{i} }}{T} \times \left( {\frac{T}{{\theta_{i} }}} \right)^{{\beta_{i} }} } \right)} \right)}^{2} } \right)^{\frac{1}{2}} } \right) $$
(A4)

From (A4), Eq. (A5) is obtained:

$$ \left( {\frac{1}{{P_{1} }}} \right) \le \exp \left( {\left( {M \times \sum\limits_{i = 1}^{M} {\left( {\log_{e} \left( {1 + \frac{{MTTRS_{i} }}{T} \times \left( {\frac{T}{{\theta_{i} }}} \right)^{{\beta_{i} }} } \right)} \right)}^{2} } \right)^{\frac{1}{2}} } \right) = P_{2} $$
(A5)

Since \(K > 0\), on multiplying both sides of (A5) with \(K\), the sign of the inequality is preserved and Eq. (A6) is obtained:

$$ \frac{1}{{P_{0} }} = \frac{1}{{P_{1} }} \times K \le K \times P_{2} $$
(A6)

Equation (A6) leads to lower bound of Theorem 1. For the upper bound of Theorem 1, Mahler’s inequality is used:

We have \(\prod\limits_{i = 1}^{N} {\left( {x_{i} + y_{i} } \right)^{\frac{1}{N}} } \ge \prod\limits_{i = 1}^{N} {\left( {x_{i} } \right)^{\frac{1}{N}} } + \prod\limits_{i = 1}^{N} {\left( {y_{i} } \right)^{\frac{1}{N}} }\) where \(x_{i} \ge 0,y_{i} \ge 0\) for all i.

This inequality can be rewritten as:

$$ \prod\limits_{i = 1}^{N} {\left( {x_{i} + y_{i} } \right)} \ge \left( {\prod\limits_{i = 1}^{N} {\left( {x_{i} } \right)^{\frac{1}{N}} } + \prod\limits_{i = 1}^{N} {\left( {y_{i} } \right)^{\frac{1}{N}} } } \right)^{N} $$
(A7)

Taking \(x_{i} = 1,\,\,y_{i} = \frac{{MTTRS_{i} }}{T} \times \left( {\frac{T}{{\theta_{i} }}} \right)^{{\beta_{i} }}\), Eq. (A8) is obtained:

$$ \frac{1}{{P_{1} }} \ge \left( {1 + \prod\limits_{i = 1}^{M} {\left( {\frac{{MTTRS_{i} }}{T} \times \left( {\frac{T}{{\theta_{i} }}} \right)^{{\beta_{i} }} } \right)^{\frac{1}{M}} } } \right)^{M} = P_{3} $$
(A8)

Again, since \(K > 0\), it can be seen that, multiplying both sides of (A8) with \(K\) leads to the upper bound of Theorem 1.

Validity of bounds:

It can be seen that \(0 < \frac{1}{K} < 1\).

Also \(\left( {1 + \prod\limits_{i = 1}^{M} {\left( {\frac{{MTTRS_{i} }}{T} \times \left( {\frac{T}{{\theta_{i} }}} \right)^{{\beta_{i} }} } \right)^{\frac{1}{M}} } } \right)^{M} = P_{3} > 1\). Hence, it is clear that \(\frac{1}{{P_{3} }} < 1\). Again, it can be seen that \(\frac{1}{{P_{3} }} > 0\). Using these, it can be trivially shown that the upper bound is valid i.e. takes values between 0 and 1.

For the lower bound, the following is obtained:

$$ \begin{aligned} \log_{e} \left( {1 + \frac{{MTTRS_{i} }}{T} \times \left( {\frac{T}{{\theta_{i} }}} \right)^{{\beta_{i} }} } \right) > 0 \Rightarrow \left( {\log_{e} \left( {1 + \frac{{MTTRS_{i} }}{T} \times \left( {\frac{T}{{\theta_{i} }}} \right)^{{\beta_{i} }} } \right)} \right)^{2} > 0 \hfill \\ \Rightarrow M \times \sum\limits_{i = 1}^{M} {\left( {\log_{e} \left( {1 + \frac{{MTTRS_{i} }}{T} \times \left( {\frac{T}{{\theta_{i} }}} \right)^{{\beta_{i} }} } \right)} \right)^{2} > 0} \hfill \\ \Rightarrow \left( {M \times \sum\limits_{i = 1}^{M} {\left( {\log_{e} \left( {1 + \frac{{MTTRS_{i} }}{T} \times \left( {\frac{T}{{\theta_{i} }}} \right)^{{\beta_{i} }} } \right)} \right)^{2} } } \right)^{1/2} > 0 \hfill \\ \Rightarrow \exp \left( {M \times \sum\limits_{i = 1}^{M} {\left( {\log_{e} \left( {1 + \frac{{MTTRS_{i} }}{T} \times \left( {\frac{T}{{\theta_{i} }}} \right)^{{\beta_{i} }} } \right)} \right)^{2} } } \right)^{1/2} > 1 \Rightarrow P_{2} > 1 \hfill \\ \end{aligned} $$

Using this, it can be shown that the lower bound is also valid.

Proof of Theorem 2

Differentiating Eq. (16) w.r.t.\(T\), following equation (A9) is obtained:

$$ \frac{{\partial A_{0}^{ - 1} }}{\partial T} = - \frac{Z}{{T^{2} }} + \frac{1}{T} \times \frac{\partial Z}{{\partial T}} + \left( {\beta - 1} \right) \times \frac{MTTRS}{{\theta^{\beta } }} \times T^{\beta - 2} $$
(A9)
$$ \frac{{\partial^{2} A_{0}^{ - 1} }}{{\partial T^{2} }} = \left( {\beta - 1} \right) \times \left( {\beta - 2} \right) \times \frac{MTTRS}{{\theta^{\beta } }} \times T^{\beta - 3} + \frac{1}{T} \times \frac{{\partial^{2} Z}}{{\partial T^{2} }} + \frac{2Z}{{T^{3} }} - \frac{2}{{T^{2} }} \times \frac{\partial Z}{{\partial T}} $$
(A10)

Equating (A9) to zero, it can be seen that:

$$ \frac{MTTRS}{{\theta^{\beta } }} \times \left( {\beta - 1} \right) \times T^{\beta } + T \times \left( {\frac{\partial Z}{{\partial T}}} \right) = Z $$
(A11)

Substituting \(\frac{\partial Z}{{\partial T}}\) from Eq. (A11) in Eq. (A10), it can be seen that:

We have

$$ \frac{{\partial^{2} A_{0}^{ - 1} }}{{\partial T^{2} }} = \left\{ {\left( {\beta - 1} \right) \times \beta \times \frac{MTTRS}{{\theta^{\beta } }} \times T^{\beta - 3} + \frac{1}{T} \times \frac{{\partial^{2} Z}}{{\partial T^{2} }}} \right\} > 0\quad {\text{when}}\quad \beta > 1,\quad T > 0. $$
(A12)

At all values of \(T\) that satisfy Eq. (A11), \(A_{0}^{ - 1}\) is convex. Thus, unique minimum is obtained. Hence, the theorem is proved.

The Corollary is a special case of Theorem 2. When \(Z = a + bT\), it is seen that \(\frac{\partial Z}{{\partial T}} = b\) and \(\frac{{\partial^{2} Z}}{{\partial T^{2} }} = 0\). Using these, the Corollary can be proved easily.

Proof of Theorem 3

From Eq. (17), the following Eq. (A13) is obtained:

$$ \log_{e} \left( {\frac{1}{{P_{0} }}} \right) = \sum\limits_{i = 1}^{M} {\log_{e} \left\{ {1 + \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times T^{{\beta_{i} - 1}} } \right\}} + \log_{e} \left( {1 + \frac{Z}{T}} \right) $$
(A13)

Differentiating (A13) w.r.t.\(T\), Eq. (A14) is obtained as follows:

$$\begin{aligned} \frac{{\partial \log_{e} \left( {\frac{1}{{P_{0} }}} \right)}}{\partial T} &= \left\{ {\sum\limits_{i = 1}^{M} {\frac{1}{{\left( {1 + \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times T^{{\beta_{i} - 1}} } \right)}}} \times \left( {\beta_{i} - 1} \right) \times T^{{\beta_{i} - 2}} \times \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }}} \right\} \\& \quad + \frac{1}{{\left( {1 + \frac{Z}{T}} \right)}} \times \left( { - \frac{Z}{{T^{2} }} + \frac{1}{T} \times \frac{\partial Z}{{\partial T}}} \right) \end{aligned}$$
(A14)

Differentiating (A14) once again w.r.t \(T\) and simplifying leads to Eq. (A15) as follows:

$$ \begin{aligned} \frac{{\partial^{2} \log_{e} \left( {\frac{1}{{P_{0} }}} \right)}}{{\partial T^{2} }}& = \left\{ {\sum\limits_{i = 1}^{M} {\frac{1}{{\left( {1 + \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times T^{{\beta_{i} - 1}} } \right)^{2} }}} \times \left( {\beta_{i} - 1} \right) \times T^{{\beta_{i} - 3}} }\right. \\ & \quad \left.{\times \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left[ {\left( {\beta_{i} - 2} \right) - T^{{\beta_{i} - 1}} \times \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }}} \right]} \right\} \hfill \\ & \quad + \frac{1}{{\left( {1 + \frac{Z}{T}} \right)^{2} }} \times \left\{ {\left( {\frac{2Z}{{T^{3} }} + \frac{{Z^{2} }}{{T^{4} }}} \right) - \frac{1}{T} \times \left( {2 + \frac{\partial Z}{{\partial T}}} \right) \times \frac{1}{T} }\right. \\ & \quad \left.{ \times \frac{\partial Z}{{\partial T}} + \left( {1 + \frac{Z}{T}} \right) \times \frac{1}{T} \times \frac{{\partial^{2} Z}}{{\partial T^{2} }}} \right\} \hfill \\ \end{aligned} $$
(A15)

Equating (A14) to zero leads to Eq. (A16):

$$\begin{aligned} \left( {1 + \frac{Z}{T}} \right)& \times \left\{ {\sum\limits_{i = 1}^{M} {\frac{1}{{\left( {1 + \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times T^{{\beta_{i} - 1}} } \right)}}} \times \left( {\beta_{i} - 1} \right) \times T^{{\beta_{i} - 2}} \times \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }}} \right\} \\ & \quad - \frac{Z}{{T^{2} }} = - \frac{1}{T} \times \frac{\partial Z}{{\partial T}} \end{aligned}$$
(A16)

Using (A16) in (A15), it can be seen that:

$$ \begin{aligned} \frac{{\partial^{2} \log_{e} \left( {\frac{1}{{P_{0} }}} \right)}}{{\partial T^{2} }} = \left\{ \begin{aligned} \sum\limits_{i = 1}^{M} {\frac{1}{{\left( {1 + \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times T^{{\beta_{i} - 1}} } \right)^{2} }}} \times \left( {\beta_{i} - 1} \right) \times T^{{\beta_{i} - 3}} \times \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \hfill \\ \quad\times \left( {1 + \frac{Z}{T}} \right)\left[ {\left( {\beta_{i} - 2} \right)\left( {1 + \frac{Z}{T}} \right) + \left( {2 + \frac{\partial Z}{{\partial T}}} \right) + T^{{\beta_{i} - 1}} }\right. \hfill \\ \quad\times \left.{\frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left\{ {1 - \left( {\frac{Z}{T} - \frac{\partial Z}{{\partial T}}} \right)} \right\}} \right] \hfill \\ \end{aligned} \right\} \hfill \quad + \frac{1}{{\left( {1 + \frac{Z}{T}} \right)^{2} }} \times \left\{ {\frac{Z}{{T^{3} }} \times \left( {\frac{Z}{T} - \frac{\partial Z}{{\partial T}}} \right) + \left( {1 + \frac{Z}{T}} \right) \times \frac{1}{T} \times \frac{{\partial^{2} Z}}{{\partial T^{2} }}} \right\} \hfill \\ \end{aligned} $$
(A17)

The R.H.S. expression in Eq. (A17) is positive because \(1 - \frac{Z}{T} + \frac{\partial Z}{{\partial T}} > 0\) by properties of \(Z\left( T \right)\). Further, \(\frac{Z}{T} - \frac{\partial Z}{{\partial T}} > 0\) for \(Z = a + bT\). Hence, at all the values of \(T\) satisfying Eq. (A16), it can be seen that \(\log_{e} \left( {\frac{1}{{P_{0} }}} \right)\) is convex. Since \(\log_{e} \left( {\frac{1}{{P_{0} }}} \right)\) is convex at all stationary points, it implies there is only one such point and unique minimum is attained at that point. Hence, Theorem 3 is proved.

Proof of Theorem 4

Equation (16) is rewritten as follows:

$$ A_{0}^{ - 1} = 1 + \frac{Z}{T} + \left\{ {\frac{{T^{\beta - 1} }}{{\theta^{\beta } }} \times \left( {\left( {\frac{{1 - A_{inh} }}{{A_{inh} }}} \right)\tau + MLDT(s)} \right)} \right\} $$
(A18)

From the derivation of Theorem 2, using \(Z = a + bT,a > 0,b > 0\), it can be shown that:

$$ T^{*} = \left( {\frac{a}{\beta - 1}} \right)^{1/\beta } \times \theta \times \left( {\left( {\frac{{1 - A_{inh} }}{{A_{inh} }}} \right)\tau + MLDT(s)} \right)^{ - 1/\beta } $$
$$\begin{aligned} \frac{{\partial T^{*} }}{\partial s}& = \left\{ {\left( {\frac{a}{\beta - 1}} \right)^{1/\beta } \times \theta \times \left( { - 1/\beta } \right) \times \left( {\left( {\frac{{1 - A_{inh} }}{{A_{inh} }}} \right)\tau + MLDT(s)} \right)^{ - ((1 + \beta )/\beta )} }\right. \\ & \quad \left.{\times \frac{\partial MLDT(s)}{{\partial s}}} \right\} \ge 0 \end{aligned}$$

Also, \(\frac{{\partial T^{*} }}{{\partial A_{inh} }} = \Big\{ \left( {\frac{a}{\beta - 1}} \right)^{1/\beta } \times \theta \times \left( { - 1/\beta } \right) \times \left( {\left( {\frac{{1 - A_{inh} }}{{A_{inh} }}} \right)\tau + MLDT(s)} \right)^{ - ((1 + \beta )/\beta )} \times \tau \times - \left( {\frac{1}{{A_{inh} }}} \right)^{2} \Big\} > 0\).

Proof of Theorem 5

Equation (16) is rewritten by replacing \(T\) with \(E\left( T \right)\) as follows:

$$ A_{0}^{ - 1} = 1 + \frac{Z}{E\left( T \right)} + \left\{ {\left( {E\left( T \right)} \right)^{\beta - 1} \times \frac{MTTRS}{{\theta^{\beta } }}} \right\} $$
(A19)
$$ \frac{{\partial A_{0}^{ - 1} }}{\partial C} = \left( {\beta - 1} \right) \times \left( {E\left( T \right)} \right)^{\beta - 2} \times \frac{\partial E\left( T \right)}{{\partial C}} \times \frac{MTTRS}{{\theta^{\beta } }} + \frac{1}{E\left( T \right)} \times \frac{\partial Z}{{\partial C}} - \frac{\partial E\left( T \right)}{{\partial C}} \times \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} $$
(A20)
$$ \begin{aligned} & \frac{{\partial^{2} A_{0}^{ - 1} }}{{\partial C^{2} }} = \left( {\beta - 1} \right) \times \left( {\beta - 2} \right) \times \left( {E\left( T \right)} \right)^{\beta - 3} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} \times \frac{MTTRS}{{\theta^{\beta } }} \hfill \\ &\quad + \,\left( {\beta - 1} \right) \times \left( {E\left( T \right)} \right)^{\beta - 2} \times \left( {\frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }}} \right) \times \frac{MTTRS}{{\theta^{\beta } }} \hfill \\ & \quad - \frac{\partial Z}{{\partial C}} \times \frac{1}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{\partial E\left( T \right)}{{\partial C}} + \frac{1}{E\left( T \right)} \times \frac{{\partial^{2} Z}}{{\partial C^{2} }} \hfill \\ &\quad - \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }} - \frac{1}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{\partial E\left( T \right)}{{\partial C}} \times \frac{\partial Z}{{\partial C}} + \frac{2Z}{{\left( {E\left( T \right)} \right)^{3} }} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} \hfill \\ \end{aligned} $$
(A21)

By equating the first derivative in (A20) to zero, Eq. (A22) is obtained:

$$ \begin{aligned} \left( {\beta - 1} \right) \times \left( {\beta - 2} \right) \times \left( {E\left( T \right)} \right)^{\beta - 3} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} \times \frac{MTTRS}{{\theta^{\beta } }} = \hfill \\ \left( {\beta - 2} \right) \times \frac{Z}{{\left( {E\left( T \right)} \right)^{3} }} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} - \left( {\beta - 2} \right) \times \frac{1}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{\partial Z}{{\partial C}} \times \frac{\partial E\left( T \right)}{{\partial C}} \hfill \\ \end{aligned} $$
(A22)

Substituting the expression from Eqs. (A22) in (A21), it can be seen that:

$$ \begin{aligned} \frac{{\partial^{2} A_{0}^{ - 1} }}{{\partial C^{2} }}& = \,\left( {\beta - 1} \right) \times \left( {E\left( T \right)} \right)^{\beta - 2} \times \left( {\frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }}} \right) \times \frac{MTTRS}{{\theta^{\beta } }} + \frac{1}{E\left( T \right)} \times \frac{{\partial^{2} Z}}{{\partial C^{2} }} \hfill \\ &\quad - \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }} - \frac{\beta }{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{\partial E\left( T \right)}{{\partial C}} \times \frac{\partial Z}{{\partial C}} + \beta \times \frac{Z}{{\left( {E\left( T \right)} \right)^{3} }} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} \hfill \\ \end{aligned} $$
(A23)

The first term on RHS of Eq. (A23) is non-negative for \(0 < \beta < 1\). Also \(\frac{\partial Z}{{\partial C}} = b\frac{\partial E\left( T \right)}{{\partial C}} > 0;\frac{{\partial^{2} Z}}{{\partial C^{2} }} = b\frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }} \le 0\). Grouping the 4th and 5th terms of (A23) and simplifying leads to \(\frac{\beta }{{\left( {E\left( T \right)} \right)^{2} }} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} \times \frac{a}{E\left( T \right)} > 0\). Again grouping 2nd and 3rd terms leads to \(- \frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }} \times \frac{1}{E\left( T \right)} \times \frac{a}{E\left( T \right)} \ge 0\). Hence, \(\frac{{\partial^{2} A_{0}^{ - 1} }}{{\partial C^{2} }} > 0\) and \(A_{0}^{ - 1}\) has a unique minimum at \(C\) satisfying Eq. (A22).

Proof of Theorem 6

Equation (17) is rewritten by replacing \(T\) with \(E\left( T \right)\) and taking the natural logarithm as follows:

$$ \log_{e} \left( {\frac{1}{{P_{0} }}} \right) = \left\{ {\sum\limits_{i = 1}^{M} {\log_{e} \left\{ {1 + \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 1}} } \right\}} } \right\} + \log_{e} \left( {1 + \frac{Z}{E\left( T \right)}} \right) $$
(A24)
$$ \begin{aligned} \frac{{\partial \log_{e} \left( {\frac{1}{{P_{0} }}} \right)}}{\partial C} &= \left\{ {\sum\limits_{i = 1}^{M} {\frac{1}{{\left\{ {1 + \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 1}} } \right\}}}} }\right. \\ &\quad \left.{\times \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {\beta_{i} - 1} \right) \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 2}} \times \frac{\partial E\left( T \right)}{{\partial C}}} \right\} \hfill \\ &\quad +\, \frac{1}{{\left( {1 + \frac{Z}{E\left( T \right)}} \right)}} \times \left\{ {\frac{1}{E\left( T \right)} \times \frac{\partial Z}{{\partial C}} - \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{\partial E\left( T \right)}{{\partial C}}} \right\} \hfill \\ \end{aligned} $$
(A25)
$$ \frac{{\partial^{2} \log_{e} \left( {\frac{1}{{P_{0} }}} \right)}}{{\partial C^{2} }} = A + B $$
(A26)
$$ \begin{aligned} A &= \sum\limits_{i = 1}^{M} {\frac{1}{{\left\{ {1 + \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 1}} } \right\}}}} \times \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \hfill \\ &\times \left\{ \begin{aligned} \left( {\beta_{i} - 1} \right) \times \left( {\beta_{i} - 2} \right) \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 3}} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} + \hfill \\ \left( {\beta_{i} - 1} \right) \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 2}} \times \frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }} \hfill \\ \end{aligned} \right\} \hfill \\ &\quad - \frac{1}{{\left\{ {1 + \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 1}} } \right\}^{2} }} \times \left\{ {\frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {\beta_{i} - 1} \right) \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 2}} \times \frac{\partial E\left( T \right)}{{\partial C}}} \right\}^{2} \hfill \\ \end{aligned} $$
(A27)
$$ \begin{aligned} B& = - \frac{1}{{\left( {1 + \frac{Z}{E\left( T \right)}} \right)^{2} }} \times \left\{ { - \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{\partial E\left( T \right)}{{\partial C}} + \frac{1}{E\left( T \right)} \times \frac{\partial Z}{{\partial C}}} \right\}^{2} + \frac{1}{{\left( {1 + \frac{Z}{E\left( T \right)}} \right)}} \hfill \\ &\quad \times\left\{ {\frac{1}{E\left( T \right)} \times \frac{{\partial^{2} Z}}{{\partial C^{2} }} - \frac{2}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{\partial E\left( T \right)}{{\partial C}} \times \frac{\partial Z}{{\partial C}} - \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }} + \frac{2Z}{{\left( {E\left( T \right)} \right)^{3} }} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} } \right\} \hfill \\ \end{aligned} $$
(A28)

Simplifying, Eq. (A29) is obtained:

$$ \begin{aligned} A& = \sum\limits_{i = 1}^{M} {\frac{1}{{\left\{ {1 + \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 1}} } \right\}^{2} }}} \times \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {\beta_{i} - 1} \right) \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 3}} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} \times \hfill \\ &\quad \left\{ {\left( {\beta_{i} - 2} \right) - \left( {E\left( T \right)} \right)^{{\beta_{i} - 1}} \times \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }}} \right\} + \hfill \\ &\quad \sum\limits_{i = 1}^{M} {\frac{1}{{\left\{ {1 + \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 1}} } \right\}}} \times \left\{ {\frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {\beta_{i} - 1} \right) \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 2}} } \right\} \times \frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }}} \hfill \\ \end{aligned} $$
(A29)
$$\begin{aligned} B &= \frac{1}{{\left( {1 + \frac{Z}{E\left( T \right)}} \right)^{2} }} \\ & \quad\times \left\{ \begin{aligned} &\frac{1}{E\left( T \right)} \times \frac{{\partial^{2} Z}}{{\partial C^{2} }} - \frac{2}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{\partial E\left( T \right)}{{\partial C}} \times \frac{\partial Z}{{\partial C}} - \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }} + \frac{2Z}{{\left( {E\left( T \right)} \right)^{3} }} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} \hfill \\ &\quad+ \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{{\partial^{2} Z}}{{\partial C^{2} }} + \frac{{Z^{2} }}{{\left( {E\left( T \right)} \right)^{4} }} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} - \frac{{Z^{2} }}{{\left( {E\left( T \right)} \right)^{3} }} \times \frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }} - \frac{1}{{\left( {E\left( T \right)} \right)^{2} }} \times \left( {\frac{\partial Z}{{\partial C}}} \right)^{2} \hfill \\ \end{aligned} \right\} \end{aligned}$$
(A30)

Equating (A25) to zero, the following is obtained:

$$ \begin{aligned}& \left\{ {\sum\limits_{i = 1}^{M} {\frac{1}{{\left\{ {1 + \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 1}} } \right\}}}} \times \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {\beta_{i} - 1} \right) \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 2}} } \right\} \hfill \\ &\quad = \frac{1}{{\frac{\partial E\left( T \right)}{{\partial C}} \times \left( {1 + \frac{Z}{E\left( T \right)}} \right)}} \times \left\{ { - \frac{1}{E\left( T \right)} \times \frac{\partial Z}{{\partial C}} + \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{\partial E\left( T \right)}{{\partial C}}} \right\} \hfill \\ \end{aligned} $$
(A31)

Substituting (A31) in the second part of the expression in (A29) and simplifying leads to:

$$ \frac{{\partial^{2} \log_{e} \left( {\frac{1}{{P_{0} }}} \right)}}{{\partial C^{2} }} = A_{1} + A_{2} - \frac{1}{{\left( {1 + \frac{Z}{E\left( T \right)}} \right)^{2} }} \times \frac{1}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{\partial Z}{{\partial C}} \times \left( {2 \times \frac{\partial E\left( T \right)}{{\partial C}} + \frac{\partial Z}{{\partial C}}} \right) $$
(A32)
$$ \begin{aligned} A_{1} &= \sum\limits_{i = 1}^{M} {\frac{1}{{\left\{ {1 + \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 1}} } \right\}^{2} }}} \times \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {\beta_{i} - 1} \right) \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 3}} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2}\hfill \\ &\quad \times \left\{ {\left( {\beta_{i} - 2} \right) - \left( {E\left( T \right)} \right)^{{\beta_{i} - 1}} \times \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }}} \right\} \hfill \\ \end{aligned} $$
(A33)
$$ \begin{aligned}A_{2} &= \frac{1}{{\left( {1 + \frac{Z}{E\left( T \right)}} \right)^{2} }} \\ & \quad \times \left\{ \begin{aligned} &- \frac{1}{E\left( T \right)} \times \frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }} \times \frac{\partial Z}{{\partial E\left( T \right)}} - \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }} \times \frac{\partial Z}{{\partial E\left( T \right)}} + \frac{1}{E\left( T \right)} \times \frac{{\partial^{2} Z}}{{\partial C^{2} }} \hfill \\ &\quad + \frac{2Z}{{\left( {E\left( T \right)} \right)^{3} }} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} + \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{{\partial^{2} Z}}{{\partial C^{2} }} + \frac{{Z^{2} }}{{\left( {E\left( T \right)} \right)^{4} }} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} \hfill \\ \end{aligned} \right\} \end{aligned}$$
(A34)

Equation (A31) can be written differently as follows:

$$ \begin{aligned} &\frac{1}{{\left( {1 + \frac{Z}{E\left( T \right)}} \right)}} \times \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{\partial E\left( T \right)}{{\partial C}} \hfill \\ &\qquad - \left\{ {\sum\limits_{i = 1}^{M} {\frac{1}{{\left\{ {1 + \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 1}} } \right\}}}} \times \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {\beta_{i} - 1} \right) \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 2}} \times \frac{\partial E\left( T \right)}{{\partial C}}} \right\} \hfill \\ &\quad = \frac{1}{{\left( {1 + \frac{Z}{E\left( T \right)}} \right)}} \times \frac{1}{E\left( T \right)} \times \frac{\partial Z}{{\partial C}} \hfill \\ \end{aligned} $$
(A35)

Substituting (A35) in (A32), following is obtained:

$$ \frac{{\partial^{2} \log_{e} \left( {\frac{1}{{P_{0} }}} \right)}}{{\partial C^{2} }} = A_{1} + A_{2} + A_{3} - A_{4} $$
(A36)
$$\begin{aligned} A_{3} &= \left\{ {\sum\limits_{i = 1}^{M} {\frac{1}{{\left\{ {1 + \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 1}} } \right\}}}} \times \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {\beta_{i} - 1} \right) \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 2}} \times \frac{\partial E\left( T \right)}{{\partial C}}} \right\} \\ & \quad \times \frac{{\left\{ {\frac{\partial Z}{{\partial C}} + 2 \times \frac{\partial E\left( T \right)}{{\partial C}}} \right\}}}{{\left( {E\left( T \right)} \right) \times \left( {1 + \frac{Z}{E\left( T \right)}} \right)}}\end{aligned} $$
(A37)
$$ A_{4} = \left\{ {\frac{1}{{\left( {1 + \frac{Z}{E\left( T \right)}} \right)}} \times \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{\partial E\left( T \right)}{{\partial C}}} \right\} \times \frac{{\left\{ {\frac{\partial Z}{{\partial C}} + 2 \times \frac{\partial E\left( T \right)}{{\partial C}}} \right\}}}{{\left( {E\left( T \right)} \right) \times \left( {1 + \frac{Z}{E\left( T \right)}} \right)}} $$
(A38)
$$\begin{aligned} A_{2} - A_{4}& = \frac{1}{{\left( {1 + \frac{Z}{E\left( T \right)}} \right)^{2} }} \\ & \quad \times \left\{ \begin{aligned} &- \frac{1}{E\left( T \right)} \times \frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }} \times \frac{\partial Z}{{\partial E\left( T \right)}} - \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }} \times \frac{\partial Z}{{\partial E\left( T \right)}} + \frac{1}{E\left( T \right)} \times \frac{{\partial^{2} Z}}{{\partial C^{2} }} \hfill \\ &\quad + \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{{\partial^{2} Z}}{{\partial C^{2} }} + \frac{{Z^{2} }}{{\left( {E\left( T \right)} \right)^{4} }} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} - \frac{Z}{{\left( {E\left( T \right)} \right)^{3} }} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right) \times \left( {\frac{\partial Z}{{\partial C}}} \right) \hfill \\ \end{aligned} \right\} \end{aligned}$$
(A39)

Using \(\frac{\partial E[T]}{{\partial C}} > 0\) and \(\frac{{\partial^{2} E[T]}}{{\partial C^{2} }} \le 0\) along with the assumptions in Theorem 6, it can be seen that the 1st and 3rd terms on RHS of (A39) cancels. Similarly the 2nd and 4th terms cancel. Grouping last two terms leads to

$$ \,\frac{Z}{{\left( {E\left( T \right)} \right)^{3} }} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} \left\{ {\frac{Z}{E\left( T \right)} - \frac{\partial Z}{{\partial E\left( T \right)}}} \right\} > 0.\;{\text{Hence}}.\;A_{2} - A_{4} > 0 $$
$$ \begin{gathered} A_{1} + A_{3} = \left\{ {\sum\limits_{{i = 1}}^{M} {\frac{1}{{\left\{ {1 + \frac{{MTTRS_{i} }}{{\theta _{i}^{{\beta _{i} }} }} \times \left( {E\left( T \right)} \right)^{{\beta _{i} - 1}} } \right\}}}} \times \frac{{MTTRS_{i} }}{{\theta _{i}^{{\beta _{i} }} }} \times \left( {\beta _{i} - 1} \right) \times \left( {E\left( T \right)} \right)^{{\beta _{i} - 3}} \times \frac{{\partial E\left( T \right)}}{{\partial C}}} \right\} \times \hfill \\ \frac{1}{{\left( {1 + \frac{Z}{{E\left( T \right)}}} \right)}} \times \left\{ \begin{gathered} \left( {1 + \frac{Z}{{E\left( T \right)}}} \right) \times \left( {\beta _{i} - 2} \right) \times \frac{{\partial E\left( T \right)}}{{\partial C}} + \left\{ {\frac{{\partial Z}}{{\partial C}} + 2 \times \frac{{\partial E\left( T \right)}}{{\partial C}}} \right\} + \hfill \\ \frac{{MTTRS_{i} }}{{\theta _{i}^{{\beta _{i} }} }} \times \left( {E\left( T \right)} \right)^{{\beta _{i} - 1}} \times \left\{ {\frac{{\partial Z}}{{\partial C}} + \frac{{\partial E\left( T \right)}}{{\partial C}} \times \left( {1 - \frac{Z}{{E\left( T \right)}}} \right)} \right\} \hfill \\ \end{gathered} \right\} \hfill \\ \end{gathered} $$
(A40)

Using \(\frac{\partial E[T]}{{\partial C}} > 0\) and \(\frac{{\partial^{2} E[T]}}{{\partial C^{2} }} \le 0\) along with the assumptions in Theorem 6, it can be seen that \(A_{1} + A_{3} > 0\).

Thus, it is seen that \(\frac{{\partial^{2} \log_{e} \left( {\frac{1}{{P_{0} }}} \right)}}{{\partial C^{2} }} > 0\) at the points where Eq. (A25) is zero i.e. stationary points. Hence, \(\log_{e} \left( {\frac{1}{{P_{0} }}} \right)\) has a unique minimum for some \(C\).

Appendix B

We extend the theorems in our paper for the quadratic form of \(Z\left( T \right) = a + bT^{2}\) or \(Z(T) = a + b\left( {E\left( T \right)} \right)^{2}\) where \(a > 0;b > 0\).

Theorem 1 is not influenced by the functional form of \(Z\left( T \right)\).

Theorem 2B. Since the Theorem 2has been derived for a general increasing, convex function \(Z\left( T \right)\) the derivation steps upto Eq. (A12) remains the same.

$$ \frac{MTTRS}{{\theta^{\beta } }} \times \left( {\beta - 1} \right) \times T^{\beta } + T \times \left( {\frac{\partial Z}{{\partial T}}} \right) = Z $$
(A11)

When we consider the special case of \(Z\left( T \right) = a + bT^{2}\) we have:

$$ \frac{\partial Z}{{\partial T}} = 2bT;\frac{{\partial^{2} Z}}{{\partial T^{2} }} = 2b $$
(B1)

Substituting these in Eq. (A11), we see that the first order condition is given by the following equation:

$$ \frac{MTTRS}{{\theta^{\beta } }}\left( {\beta - 1} \right)T^{\beta } + bT^{2} = a $$
(B2)

Thus we do not obtain a closed form expression for the optimal contract duration unless \(\beta = 2\). The optimal contract duration for other \(\beta\) values may be obtained by using numerical methods.

When we substitute the values from (B1) in the Eq. (A12) we get the following:

$$ \frac{{\partial^{2} A_{0}^{ - 1} }}{{\partial T^{2} }} = \frac{MTTRS}{{\theta^{\beta } }}\beta \left( {\beta - 1} \right)T^{\beta - 3} + \frac{2b}{T} $$
(B3)

The right hand side of the above equation is positive for \(\beta > 1\).

Thus theorem 2 holds for the new quadratic form of \(Z\left( T \right)\).

Theorem 3B. Similar to Theorem 2, since all the Eqs. [(A13)–(A17)] in Theorem 3have been derived for a general \(Z\left( T \right)\), they remain same for the new quadratic form of \(Z\left( T \right)\).

$$ \begin{aligned} \frac{{\partial^{2} \log_{e} \left( {\frac{1}{{P_{0} }}} \right)}}{{\partial T^{2} }} \hfill \\ \quad = \left\{ \begin{aligned} \sum\limits_{i = 1}^{M} {\frac{1}{{\left( {1 + \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times T^{{\beta_{i} - 1}} } \right)^{2} }}} \times \left( {\beta_{i} - 1} \right) \times T^{{\beta_{i} - 3}} \times \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \hfill \\ \left( {1 + \frac{Z}{T}} \right)\left[ {\left( {\beta_{i} - 2} \right)\left( {1 + \frac{Z}{T}} \right) + \left( {2 + \frac{\partial Z}{{\partial T}}} \right) + T^{{\beta_{i} - 1}} \times \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left\{ {1 - \left( {\frac{Z}{T} - \frac{\partial Z}{{\partial T}}} \right)} \right\}} \right] \hfill \\ \end{aligned} \right\} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \frac{1}{{\left( {1 + \frac{Z}{T}} \right)^{2} }} \times \left\{ {\frac{Z}{{T^{3} }} \times \left( {\frac{Z}{T} - \frac{\partial Z}{{\partial T}}} \right) + \left( {1 + \frac{Z}{T}} \right) \times \frac{1}{T} \times \frac{{\partial^{2} Z}}{{\partial T^{2} }}} \right\} \hfill \\ \end{aligned} $$
(A17)

In the Eq. (A17), the last term \(\frac{1}{{\left( {1 + \frac{Z}{T}} \right)^{2} }} \times \left\{ {\frac{Z}{{T^{3} }} \times \left( {\frac{Z}{T} - \frac{\partial Z}{{\partial T}}} \right) + \left( {1 + \frac{Z}{T}} \right) \times \frac{1}{T} \times \frac{{\partial^{2} Z}}{{\partial T^{2} }}} \right\}\) with values substituted from (B1) above converts to the following:

\(\frac{1}{{\left( {1 + \frac{a}{T} + bT} \right)^{2} }} \times \left( {\frac{{a^{2} }}{{T^{4} }} + \frac{2b}{T} + \frac{2ab}{{T^{2} }} + b^{2} } \right)\). This is greater than 0 since \(a > 0;b > 0;T > 0\).

Since \(\beta_{i} > 2\) the only other term that we need to consider in Eq. (A17) is \(\left\{ {1 - \left( {\frac{Z}{T} - \frac{\partial Z}{{\partial T}}} \right)} \right\}\).

Since \(\frac{Z\left( T \right)}{T} < 1\), as per properties of the \(Z\left( T \right)\) function, the term \(\left\{ {1 - \left( {\frac{Z}{T} - \frac{\partial Z}{{\partial T}}} \right)} \right\}\) is also positive. However, let us check the feasibility of this under the new values in (B1).

On substituting the values from (B1) in \(\left\{ {1 - \left( {\frac{Z}{T} - \frac{\partial Z}{{\partial T}}} \right)} \right\}\) we get the following: \(\left\{ {1 - \left( {\frac{Z}{T} - \frac{\partial Z}{{\partial T}}} \right)} \right\} > 0 \Leftrightarrow T > \frac{{\sqrt {1 + 4ab} - 1}}{2b} > 0\). Hence \(\left\{ {1 - \left( {\frac{Z}{T} - \frac{\partial Z}{{\partial T}}} \right)} \right\} > 0.\)

Hence, \(\frac{{\partial^{2} \log_{e} \left( {\frac{1}{{P_{0} }}} \right)}}{{\partial T^{2} }} > 0\) in Eq. (A17). Thus Theorem 3 is also satisfied under the new \(Z\left( T \right) = a + bT^{2}\).

Theorem 4B. The optimal contract duration \(T^{*}\) is obtained from equation the Eq. (B2) as follows:

$$ \frac{MTTRS}{{\theta^{\beta } }}\left( {\beta - 1} \right)\left( {T^{*} } \right)^{\beta } + b\left( {T^{*} } \right)^{2} = a $$
(B4)

This may be further re-written as follows:

$$ \frac{{\left\{ {\left( {\frac{{1 - A_{inh} }}{{A_{inh} }}} \right)\tau + MLDT(s)} \right\}}}{{\theta^{\beta } }}\left( {\beta - 1} \right)\left( {T^{*} } \right)^{\beta } + b\left( {T^{*} } \right)^{2} = a $$
(B5)

By performing \(\frac{{\partial T^{*} }}{\partial s}\) on Eq. (B5) and simplifying we obtain the following relation:

$$ \begin{aligned}\frac{{\partial T^{*} }}{\partial s} &= \frac{{ - \left\{ {\frac{{\left( {\beta - 1} \right)}}{{\theta^{\beta } }} \times \left( {T^{*} } \right)^{\beta } \times \frac{\partial MLDT(s)}{{\partial s}}} \right\}}}{{\left\{ {2bT^{*} + \left\{ {\left( {\frac{{1 - A_{inh} }}{{A_{inh} }}} \right)\tau + MLDT(s)} \right\} \times \frac{{\left( {\beta - 1} \right)}}{{\theta^{\beta } }} \times \beta \times \left( {T^{*} } \right)^{\beta - 1} } \right\}}} \ge 0\\ & \quad {\text{When}}\quad \beta > 1;a > 0;b > 0 \end{aligned}$$

By performing \(\frac{{\partial T^{*} }}{{\partial A_{inh} }}\) on Eq. (B5) and simplifying we obtain the following relation:

$$\begin{aligned} \frac{{\partial T^{*} }}{{\partial A_{inh} }} &= \frac{{\left\{ {\frac{{\left( {\beta - 1} \right)}}{{\theta^{\beta } }} \times \left( {T^{*} } \right)^{\beta } \times \tau \times \left( {\frac{1}{{A_{inh} }}} \right)^{2} } \right\}}}{{\left\{ {2bT^{*} + \left\{ {\left( {\frac{{1 - A_{inh} }}{{A_{inh} }}} \right)\tau + MLDT(s)} \right\} \times \frac{{\left( {\beta - 1} \right)}}{{\theta^{\beta } }} \times \beta \times \left( {T^{*} } \right)^{\beta - 1} } \right\}}} > 0\\ & \quad {\text{when}}\quad \beta > 1;a > 0;b > 0 \end{aligned}$$

Thus Theorem 4 is also satisfied under the new \(Z\left( T \right) = a + bT^{2}\).

Theorem 5B. For Theorem 5we consider \(Z(T) = a + b\left( {E\left( T \right)} \right)^{2}\) where \(a > 0;b > 0\). Similar to the previous theorems, Eqs. (A19)–(A23) have been derived for a general \(Z\left( T \right)\). So we will substitute the new functional form of \(Z\left( T \right)\) and its derivatives in Eq. (A23) and draw conclusions from there.

$$ \begin{aligned} \frac{{\partial^{2} A_{0}^{ - 1} }}{{\partial C^{2} }} = \,\left( {\beta - 1} \right) \times \left( {E\left( T \right)} \right)^{\beta - 2} \times \left( {\frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }}} \right) \times \frac{MTTRS}{{\theta^{\beta } }} + \frac{1}{E\left( T \right)} \times \frac{{\partial^{2} Z}}{{\partial C^{2} }} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }} - \frac{\beta }{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{\partial E\left( T \right)}{{\partial C}} \times \frac{\partial Z}{{\partial C}} + \beta \times \frac{Z}{{\left( {E\left( T \right)} \right)^{3} }} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} \hfill \\ \end{aligned} $$
(A23)

The first term in Eq. (A23) is positive for \(0 < \beta < 1\).

Using \(\frac{\partial Z}{{\partial E\left( T \right)}} = 2bE\left( T \right);\frac{\partial Z}{{\partial C}} = 2bE\left( T \right)\frac{\partial E\left( T \right)}{{\partial C}};\frac{{\partial^{2} Z}}{{\partial C^{2} }} = 2b\left\{ {E\left( T \right)\frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }} + \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} } \right\}\) in the remaining terms of Eq. (A23) and simplifying we get the following:

$$ \frac{2b}{{E\left( T \right)}} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} + \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} \times \frac{\beta }{E\left( T \right)} \times \left( {\frac{a}{{\left( {E\left( T \right)} \right)^{2} }} - b} \right) + \frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }} \times \left\{ { - \frac{a}{{\left( {E\left( T \right)} \right)^{2} }} + b} \right\} $$
(B6)

In the Eq. (B6), the first term is positive. The 2nd and 3rd terms are positive provided \(E\left( T \right) < \sqrt{\frac{a}{b}} \). Consequently, Eq. (A23) is positive under \(Z(T) = a + b\left( {E\left( T \right)} \right)^{2}\) provided \(E\left( T \right) < \sqrt{\frac{a}{b}} \). This is not a very restrictive condition. Hence, Theorem 5 is also satisfied under the new \(Z\left( T \right) = a + b\left( {E\left( T \right)} \right)^{2}\).

Theorem 6B. For Theorem 6we consider \(Z(T) = a + b\left( {E\left( T \right)} \right)^{2}\) where \(a > 0;b > 0\). Similar to the previous theorems, Eqs. (A24)–(A40) have been derived for a general \(Z\left( T \right)\). So we will substitute the new functional form of \(Z\left( T \right)\) and its derivatives in Eqs. (A39)–(A40) and draw conclusions from there.

$$ \frac{{\partial^{2} \log_{e} \left( {\frac{1}{{P_{0} }}} \right)}}{{\partial C^{2} }} = A_{1} + A_{2} + A_{3} - A_{4} $$
(A36)
$$ \begin{aligned} A_{1} = \sum\limits_{i = 1}^{M} {\frac{1}{{\left\{ {1 + \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 1}} } \right\}^{2} }}} \times \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {\beta_{i} - 1} \right) \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 3}} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} \times \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\left\{ {\left( {\beta_{i} - 2} \right) - \left( {E\left( T \right)} \right)^{{\beta_{i} - 1}} \times \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }}} \right\} \hfill \\ \end{aligned} $$
(A33)
$$\begin{aligned} A_{2} &= \frac{1}{{\left( {1 + \frac{Z}{E\left( T \right)}} \right)^{2} }} \\ & \quad \times \left\{ \begin{aligned} - \frac{1}{E\left( T \right)} \times \frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }} \times \frac{\partial Z}{{\partial E\left( T \right)}} - \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }} \times \frac{\partial Z}{{\partial E\left( T \right)}} + \frac{1}{E\left( T \right)} \times \frac{{\partial^{2} Z}}{{\partial C^{2} }} \hfill \\ + \frac{2Z}{{\left( {E\left( T \right)} \right)^{3} }} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} + \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{{\partial^{2} Z}}{{\partial C^{2} }} + \frac{{Z^{2} }}{{\left( {E\left( T \right)} \right)^{4} }} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} \hfill \\ \end{aligned} \right\} \end{aligned}$$
(A34)
$$\begin{aligned} A_{3} &= \left\{ {\sum\limits_{i = 1}^{M} {\frac{1}{{\left\{ {1 + \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 1}} } \right\}}}} \times \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {\beta_{i} - 1} \right) \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 2}} \times \frac{\partial E\left( T \right)}{{\partial C}}} \right\} \\ &\quad \times \frac{{\left\{ {\frac{\partial Z}{{\partial C}} + 2 \times \frac{\partial E\left( T \right)}{{\partial C}}} \right\}}}{{\left( {E\left( T \right)} \right) \times \left( {1 + \frac{Z}{E\left( T \right)}} \right)}} \end{aligned}$$
(A37)
$$ A_{4} = \left\{ {\frac{1}{{\left( {1 + \frac{Z}{E\left( T \right)}} \right)}} \times \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{\partial E\left( T \right)}{{\partial C}}} \right\} \times \frac{{\left\{ {\frac{\partial Z}{{\partial C}} + 2 \times \frac{\partial E\left( T \right)}{{\partial C}}} \right\}}}{{\left( {E\left( T \right)} \right) \times \left( {1 + \frac{Z}{E\left( T \right)}} \right)}} $$
(A38)
$$ \begin{aligned}A_{2} - A_{4} &= \frac{1}{{\left( {1 + \frac{Z}{E\left( T \right)}} \right)^{2} }} \\&\quad \times \left\{ \begin{aligned} - \frac{1}{E\left( T \right)} \times \frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }} \times \frac{\partial Z}{{\partial E\left( T \right)}} - \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }} \times \frac{\partial Z}{{\partial E\left( T \right)}} + \frac{1}{E\left( T \right)} \times \frac{{\partial^{2} Z}}{{\partial C^{2} }} \hfill \\ + \frac{Z}{{\left( {E\left( T \right)} \right)^{2} }} \times \frac{{\partial^{2} Z}}{{\partial C^{2} }} + \frac{{Z^{2} }}{{\left( {E\left( T \right)} \right)^{4} }} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} - \frac{Z}{{\left( {E\left( T \right)} \right)^{3} }} \times \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right) \times \left( {\frac{\partial Z}{{\partial C}}} \right) \hfill \\ \end{aligned} \right\} \end{aligned}$$
(A39)

Using \(\frac{\partial Z}{{\partial E\left( T \right)}} = 2bE\left( T \right);\frac{\partial Z}{{\partial C}} = 2bE\left( T \right)\frac{\partial E\left( T \right)}{{\partial C}};\frac{{\partial^{2} Z}}{{\partial C^{2} }} = 2b\left\{ {E\left( T \right)\frac{{\partial^{2} E\left( T \right)}}{{\partial C^{2} }} + \left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} } \right\}\) in \(A_{2} - A_{4}\) and simplifying the following results are seen:

$$ A_{2} - A_{4} = \frac{1}{{\left( {1 + \frac{Z}{E\left( T \right)}} \right)^{2} }} \times \left\{ {\left( {\frac{\partial E\left( T \right)}{{\partial C}}} \right)^{2} \times \left[ {\frac{aZ}{{\left( {E\left( T \right)} \right)^{4} }} + \frac{2b}{{E\left( T \right)}} + \frac{bZ}{{\left( {E\left( T \right)} \right)^{2} }}} \right]} \right\} > 0 $$

Hence \(A_{2} - A_{4} > 0\).

$$ \begin{aligned} A_{1} + A_{3} = \left\{ {\sum\limits_{i = 1}^{M} {\frac{1}{{\left\{ {1 + \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 1}} } \right\}}}} \times \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {\beta_{i} - 1} \right) \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 3}} \times \frac{\partial E\left( T \right)}{{\partial C}}} \right\} \times \hfill \\ \frac{1}{{\left( {1 + \frac{Z}{E\left( T \right)}} \right)}} \times \left\{ \begin{aligned} \left( {1 + \frac{Z}{E\left( T \right)}} \right) \times \left( {\beta_{i} - 2} \right) \times \frac{\partial E\left( T \right)}{{\partial C}} + \left\{ {\frac{\partial Z}{{\partial C}} + 2 \times \frac{\partial E\left( T \right)}{{\partial C}}} \right\} + \hfill \\ \frac{{MTTRS_{i} }}{{\theta_{i}^{{\beta_{i} }} }} \times \left( {E\left( T \right)} \right)^{{\beta_{i} - 1}} \times \left\{ {\frac{\partial Z}{{\partial C}} + \frac{\partial E\left( T \right)}{{\partial C}} \times \left( {1 - \frac{Z}{E\left( T \right)}} \right)} \right\} \hfill \\ \end{aligned} \right\} \hfill \\ \end{aligned} $$
(A40)

We know that \(\frac{\partial Z}{{\partial C}} = 2bE\left( T \right)\frac{\partial E\left( T \right)}{{\partial C}};\frac{\partial E\left( T \right)}{{\partial C}} > 0\). We also consider that \(\beta_{i} > 2\). Looking at the feasibility of \(\frac{Z}{E\left( T \right)} < 1\) we find that this is true provided \(E\left( T \right) > \frac{{\sqrt {1 + 4ab} - 1}}{2b} > 0\) which is reasonable.

Since all the terms in Eq. (A40) are positive, it can be seen that \(A_{1} + A_{3} > 0\).

Thus \(\frac{{\partial^{2} \log_{e} \left( {\frac{1}{{P_{0} }}} \right)}}{{\partial C^{2} }} > 0\) and Theorem 6 is true for \(Z(T) = a + b\left( {E\left( T \right)} \right)^{2}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, P., Kumar, U.D. Availability contracts under hierarchical maintenance. Ann Oper Res (2023). https://doi.org/10.1007/s10479-023-05504-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10479-023-05504-1

Keywords

Navigation