Skip to main content
Log in

Effects of production capacity and substitutability on optimal pricing and inventory policies

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Manufacturers produce substitutable products to meet the different needs of consumers. Meanwhile, to formulate the optimal production strategy, manufacturers have to deal with demand uncertainty and capacity constraints. This study employs a stochastic model of a monopolistic manufacturer with limited capacity to sell two types of substitutable products: high- and low-end products. We then develop an expected profit function and solve for the optimal prices, safety stocks, and expected profit. Additionally, this study uses cost functions related to the substitutability (quality) to extend our basic model and investigate how the manufacturer makes decisions. The optimal results are derived under capacity constraints. The findings show that when the cost of low-end products is high, with an increasing substitutability, the manufacturer should reduce the price of high-end products and raise the price of low-end products. Otherwise, the manufacturer should conduct an opposite modification. In addition, different capacity constraints moderate the effects of demand uncertainty on the safety stocks, and the safety stock of high-end products may decrease in demand uncertainty. The results also reveal that, the manufacturer should raise the allocation ratio of high-end products if the capacity increases. With a higher substitutability, the manufacturer may allocate more capacity to high-end products. In the case of low-end products’ quality decision, a tighter capacity results in a higher optimal substitutability. Considering two products’ quality decisions, however, a moderately tight capacity leads to the highest quality level of low-end products, and the quality of high-end products always remains at a very high level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agrawal, V., & Seshadri, S. (2000). Impact of uncertainty and risk aversion on price and order quantity in the newsvendor problem. Manufacturing and Service Operations Management, 2(4), 410–423.

    Article  Google Scholar 

  • Arya, A., Mittendorf, B., & Sappington, D. E. (2007). The bright side of supplier encroachment. Marketing Science, 26(5), 651–659.

    Article  Google Scholar 

  • Bansal, S., & Transchel, S. (2014). Managing supply risk for vertically differentiated co-products. Production and Operations Management, 23(9), 1577–1598.

    Article  Google Scholar 

  • Bassok, Y., Anupindi, R., & Akella, R. (1999). Single-period multiproduct inventory models with substitution. Operations Research, 47(4), 632–642.

    Article  Google Scholar 

  • Bilginer, O., & Erhun, F. (2015). Production and sales planning in capacitated new product introductions. Production and Operations Management, 24(1), 42–53.

    Article  Google Scholar 

  • Casimir, R. J. (2002). The value of information in the multi-item newsboy problem. Omega-International Journal of Management Science, 30(1), 45–50.

    Article  Google Scholar 

  • Cai, G. G. (2010). Channel selection and coordination in dual-channel supply chains. Journal of Retailing, 86(1), 22–36.

    Article  Google Scholar 

  • Cai, X. , Li, J., Chen, S. , & Tang, X. (2020). Joint pricing and inventory control in a make-to-stock queue with delay-sensitive customers. Journal of the Operational Research Society, pp. 1–13.

  • Chen, X., Pang, Z., & Pan, L. (2014). Coordinating inventory control and pricing strategies for perishable products. Operations Research, 62(2), 284–300.

    Article  Google Scholar 

  • Chen, X., Feng, Y., Keblis, M. F., & Xu, J. (2015). Optimal inventory policy for two substitutable products with customer service objectives. European Journal of Operational Research, 246(1), 76–85.

    Article  Google Scholar 

  • Choi, T., Li, D., Yan, H., & Chiu, C. (2008). Channel coordination in supply chains with agents having mean-variance objectives. Omega-International Journal of Management Science, 36(4), 565–576.

    Article  Google Scholar 

  • Dasci, A., & Guler, K. (2019). Dynamic strategic procurement from capacitated suppliers. Production and Operations Management, 28(4), 990–1009.

    Article  Google Scholar 

  • Economictimes. (2021). https://economictimes.indiatimes.com/industry/cons-products/electronics/apple-supplier-boe-may-lose-millions-of-iphone-14-oled-panel-orders/articleshow/91721315.cms.

  • Fu, Q., Q. Wang, X. Xu., and Z. Lian. 2017. “A two-product newsvendor system with a flexible product.” International Journal of Production Economics 590–601.

  • Goyal, M., & Netessine, S. (2007). Strategic technology choice and capacity investment under demand uncertainty. Management Science, 53(2), 192–207.

    Article  Google Scholar 

  • Gümüs, M., Kaminsky, P., & Mathur, S. (2016). The impact of product substitution and retail capacity on the timing and depth of price promotions: Theory and evidence. International Journal of Production Research, 54(7), 2108–2135.

    Article  Google Scholar 

  • Ha, A. Y., Tong, S., & Zhang, H. (2011). Sharing demand information in competing supply chains with production diseconomies. Management Science, 57(3), 566–581.

    Article  Google Scholar 

  • Ha, A., Long, X., & Nasiry, J. (2016). Quality in supply chain encroachment. Manufacturing and Service Operations Management, 18(2), 280–298.

    Article  Google Scholar 

  • Hsiao, L., & Chen, Y. (2014). Strategic motive for introducing internet channels in a supply chain. Production and Operations Management, 23(1), 36–47.

    Article  Google Scholar 

  • IHS Markit. (2021). Semiconductor shortage update: Nearly one million vehicles delayed. https://ihsmarkit.com/research-analysis/semiconductor-shortage-update-one-million-vehicles-delayed.html.

  • Lai, G., H. Liu., W. Xiao., & X Zhao. (2022) Fulfilled by Amazon’: A strategic perspective of competition at the E-commerce platform. Manufacturing and Service Operations Management, 24(3).

  • Lessan, J., & Karabati, S. (2018). A market potential-based, multi-unit auction for pricing and capacity allocation. Computers and Operations Research, 91, 237–246.

    Article  Google Scholar 

  • Li, B., Guo, X., & Liang, L. (2021). Optimal pricing decision and capacity allocation of intelligence-based opaque selling in airline revenue management. Annals of Operations Research, pp 1–18.

  • Liu, B., Cai, G. G., & Tsay, A. A. (2015). Advertising in asymmetric competing supply chains. Production and Operations Management, 23(11), 1845–1858.

    Article  Google Scholar 

  • Liu, J., Pang, Z., & L. Q. (2020). Dynamic pricing and inventory management with demand learning: A bayesian approach. Computers and Operations Research, 124, 1–16.

    Article  Google Scholar 

  • Mills, E. S. (1959). Uncertainty and price theory. Quarterly Journal of Economics, 73(1), 116–130.

    Article  Google Scholar 

  • Moorthy, K. S. (1988). Product and price competition in a duopoly. Marketing Science, 7(2), 141–168.

    Article  Google Scholar 

  • Netessine, S., Dobson, G., & Shumsky, R. A. (2002). Flexible service capacity: optimal investment and the impact of demand correlation. Operations Research, 50(2), 375–388.

    Article  Google Scholar 

  • Petruzzi, N. C., & Dada, M. (1999). Pricing and the news vendor problem: A review with extensions. Operations Research, 47(2), 183–194.

    Article  Google Scholar 

  • Qing, Q., Deng, T., & Wang, H. (2017). Capacity allocation under downstream competition and bargaining. European Journal of Operational Research, 261(1), 97–107.

    Article  Google Scholar 

  • Qin, J., Wang, K., Wang, Z., & Xia, L. (2020). Revenue sharing contracts for horizontal capacity sharing under competition. Annals of Operations Research, 291, 731–760.

    Article  Google Scholar 

  • Reuters. (2021). Japan’s Subaru to suspend production in Indiana on chip shortage. https://www.reuters.com/business/autos-transportation/japans-subaru-suspend-production-indiana-chip-shortage-2021-04-20/.

  • SAMMOBILE. (2019). https://www.sammobile.com/news/apple-1-billion-penalty-samsung-iphone/.

  • Seyyed-Mahdi, H., Ebrahimi, S., & Jokar, A. (2021). Sustainable supply chain coordination under competition and green effort scheme. Journal of the Operational Research Society, 72(2), 304–319.

    Article  Google Scholar 

  • Sitompul, C., Aghezzaf, E., Dullaert, W., & Van Landeghem, H. (2008). Safety stock placement problem in capacitated supply chains. International Journal of Production Research, 46(17), 4709–4727.

    Article  Google Scholar 

  • Suwanruji, P., & Enns, S. T. (2006). Evaluating the effects of capacity constraints and demand patterns on supply chain replenishment strategies. International Journal of Production Research, 44(21), 4607–4629.

    Article  Google Scholar 

  • Tomlin, B., & Wang, Y. (2008). Pricing and operational recourse in coproduction systems. Management Science, 54(3), 522–537.

    Article  Google Scholar 

  • Transchel, S. (2017). Inventory management under price-based and stockout-based substitution. European Journal of Operational Research, 262(3), 996–1008.

    Article  Google Scholar 

  • Whitin, T. M. (1955). Inventory control and price theory. Management Science, 2(1), 61–68.

    Article  Google Scholar 

  • Xu, C., Zhao, D., Min, J., & Hao, J. (2021). An inventory model for nonperishable items with warehouse mode selection and partial backlogging under trapezoidal-type demand. Journal of the Operational Research Society, 72(4), 744–763.

    Article  Google Scholar 

  • Yan, Y., Q, Zhao., Z, Qin., & G, Sun. (2022). Integration of development and advertising strategies for multi-attribute products under competition. European Journal of Operational Research 300(2), 490-503

  • Yu, Y., Shou, B., Ni, Y., & Chen, L. (2017). Optimal production, pricing, and substitution policies in continuous review production-inventory systems. European Journal of Operational Research, 260(2), 631–649.

    Article  Google Scholar 

  • Yang, H., Luo, J., & Zhang, Q. (2017). Supplier encroachment under nonlinear pricing with imperfect substitutes: Bargaining power versus revenue-sharing. European Journal of Operational Research, 267(3), 1089–1101.

    Article  Google Scholar 

  • Zabel, E. (1970). Monopoly and uncertainty. The Review of Economic Studies, 37(2), 205–219.

    Article  Google Scholar 

  • Zhang, Z., Wu, J., & Wei, F. (2018). Refurbishment or quality recovery: Joint quality and pricing decisions for new product development. International Journal of Production Research, 57(8), 2327–2343.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and the anonymous referees for their constructive suggestions on the early version of the paper. This research is supported by the Beijing Natural Science Foundation (Grant Number 9212010) and the National Natural Science Foundation of China (Grant Number 72271234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zepeng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 1

For given \({{\mathrm{s}}_{1}}^{*},{{\mathrm{s}}_{2}}^{*}\), we can get the Hessian matrix \(H\) of \({\mathbb{E}}(\Pi \left({p}_{1},{p}_{2}\right))\) is

$$\left[\begin{array}{cc}-2\left(m+{b}_{1}\right)& 2m\\ 2m& -2\left(m+{b}_{2}\right)\end{array}\right].$$

Then, we have the first-order determinant of \(H\) is \(-2\left(m+{b}_{1}\right)<0\), the second-order determinant is \(4\left(m+{b}_{1}\right)\left(m+{b}_{2}\right)-4{m}^{2}>0\).Thus, matrix \(H\) is negative definite, and \({\mathbb{E}}(\Pi \left({p}_{1},{p}_{2}\right))\) is an concave function in \({p}_{1}\) and \({p}_{2}\) for given \({{\mathrm{s}}_{1}}^{*}\) and \({{\mathrm{s}}_{2}}^{*}\). Based on the features of multivariate function, \({\mathbb{E}}(\Pi \left({p}_{1},{p}_{2}\right))\) has a unique optimal solution. Then, according to \(\frac{{\mathbb{E}}(\Pi \left({p}_{1},{p}_{2}\right))}{\partial {p}_{i}}=0\), we have

$${{p}_{i}}^{*}=\frac{{a}_{i}+{b}_{i}{c}_{i}+m\left({c}_{i}-{c}_{j}+2{{p}_{j}}^{*}\right)+{\mu }_{i}}{2({b}_{i}+m)}-\frac{{S}_{i}\left({{s}_{i}}^{*}\right)}{2\left({b}_{i}+m\right)}.$$

For given \({{p}_{1}}^{*},{{p}_{2}}^{*}\), we can get the Hessian matrix \(\overline{H }\) of \({\mathbb{E}}(\Pi \left({s}_{1},{s}_{2}\right))\) is

$$\left[\begin{array}{cc}-\left({p}_{1}+h+{g}_{1}\right){f}_{1}\left({s}_{1}\right)& 0\\ 0& -\left({p}_{2}+h+{g}_{2}\right){f}_{2}\left({s}_{2}\right)\end{array}\right].$$

Then, we have the first-order determinant of \(\overline{H }\) is \(-\left({p}_{1}+h+{g}_{1}\right){f}_{1}\left({s}_{1}\right)<0\), the second-order determinant is \(\left({p}_{1}+h+{g}_{1}\right){f}_{1}\left({s}_{1}\right)\left({p}_{2}+h+{g}_{2}\right){f}_{2}\left({s}_{2}\right)>0\).Thus, matrix \(\overline{H }\) is negative definite, and the profit function \({\mathbb{E}}(\Pi \left({s}_{1},{s}_{2}\right))\) has a unique optimal solution. Based on \(\frac{{\mathbb{E}}(\Pi \left({s}_{1},{s}_{2}\right))}{\partial {p}_{i}}=0\), we have

$$\frac{1-{F}_{i}({{s}_{i}}^{*})}{{F}_{i}({{s}_{i}}^{*})}=\frac{{c}_{i}+h}{{{p}_{i}}^{*}-{c}_{i}+{g}_{i}}.$$

In the case of low capacity, the optimal solution can be obtained on the bounded boundary. As \({{s}_{1}}^{*}+{{s}_{2}}^{*}+1-{b}_{1}{{p}_{1}}^{*}-{b}_{2}{{p}_{2}}^{*}>Q\), the optimal \({p}_{1},{p}_{2},{s}_{1},{s}_{2}\) must satisfy \({s}_{1}+{s}_{2}+1-{b}_{1}{p}_{1}-{b}_{2}{p}_{2}=Q\). Hence, we use the Lagrange function to change the original problem, and derive

$$\mathcal{L}({p}_{1},{p}_{2},{s}_{2},{s}_{2},\uplambda )={(p}_{1}-{c}_{1})({Q}_{1}+{\mu }_{1})-({c}_{1}+h){I}_{1}({s}_{1})$$
$$-{(p}_{1}-{c}_{1}+{g}_{1}){S}_{1}({s}_{1})+{(p}_{2}-{c}_{2})({Q}_{2}+{\mu }_{2})-\left({c}_{2}+h\right){I}_{2}\left({s}_{2}\right)$$
$$-{(p}_{2}-{c}_{2}+{g}_{2}){S}_{2}({s}_{2})+\uplambda ({ s}_{1}+{s}_{2}+1-{b}_{1}{p}_{1}-{b}_{2}{p}_{2}-q).$$

Since the conditions of the optimal solution are

$$\frac{\partial {\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2},\uplambda ))}{\partial {p}_{i}}=0$$
$$\frac{\partial {\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2},\uplambda ))}{\partial {s}_{i}}=0$$
$$\frac{\partial {\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2},\uplambda ))}{\partial\uplambda }=0,$$

we have

$${a}_{i}+m\left({c}_{i}-{c}_{j}-2{{p}_{i}}^{*}+2{{p}_{j}}^{*}\right)+{b}_{i}\left({c}_{i}-2{{p}_{i}}^{*}-\uplambda \right)+{\mu }_{1}-{S}_{i}\left({{s}_{i}}^{*}\right)=0$$
$$\uplambda -\left({{p}_{i}}^{*}+{g}_{i}-{c}_{i}\right)\left(1-F\left({{s}_{i}}^{*}\right)\right)+\left({c}_{i}+h\right)F\left({{s}_{i}}^{*}\right)=0$$
$${{s}_{1}}^{*}+{{s}_{2}}^{*}+1-{b}_{1}{{p}_{1}}^{*}-{b}_{2}{{p}_{2}}^{*}=Q.$$

Then, according to function characters that any positively liner combination of concave functions is concave. We can get \(\mathcal{L}({p}_{1},{p}_{2},{s}_{2},{s}_{2},\uplambda )\) is a concave function, and it has a unique solution. Thus, there exist unique optimal \({{p}_{1}}^{*},{{p}_{2}}^{*}, {{s}_{1}}^{*},{{s}_{2}}^{*}\) to maximize the expected profit.

From these calculations, we can find out that, the capacity constraint (\(\sum_{i=\mathrm{1,2}}{s}_{i}-{b}_{i}{p}_{i}+1\le Q)\) is ignored, if \(\uplambda =0\). However, if \(\uplambda >0\), the optimal solution is solved on the boundary. In other words, \(\uplambda =0\) represents that, the capacity is ample, and \(\uplambda >0\) represents that, the capacity is constrained. Based on the different value of \(\uplambda \), the optimal solution can be got in the boundary or on the boundary. Then, there are always unique solutions to maximize the profit, and the value of \(\uplambda \) is affected by \(Q\). \(\hfill\square\)

Proof of Lemma 2

When the manufacturer only produces product 2, the expected profit function is.

\({\Pi }_{2}({p}_{2},{s}_{2})={(p}_{2}-{c}_{2})({a}_{2}-{b}_{2}{p}_{2}+{\mu }_{2})-\left({c}_{2}+h\right){I}_{2}\left({s}_{2}\right) -{(p}_{2}-{c}_{2}+{g}_{2}){S}_{2}({s}_{2}\)).

According to the Envelope Theorem, we derive

$$\frac{\partial ({\mathbb{E}}{\Pi }^{*}-{\mathbb{E}}{{\Pi }_{2}}^{*})}{\partial {a}_{1}}={\left.\frac{\partial ({\mathbb{E}}\Pi -{\Pi }_{2})}{\partial {a}_{1}}\right|}_{{p}_{1}={{p}_{1}}^{*},{p}_{2}={{p}_{2}}^{*},{s}_{1}={{s}_{1}}^{*},{s}_{2}={{s}_{2}}^{*}, {p}_{2}=\overline{{p }_{2}},{s}_{2}=\overline{{s }_{2}}}$$
$$=\overline{{p }_{2}}-{{p}_{2}}^{*}+{{p}_{1}}^{*}-{c}_{1,}$$

where \(\overline{{p }_{1}}\) and \(\overline{{s }_{1}}\) indicate the optimal solutions of \({\Pi }_{2}\). Since \(\overline{{p }_{2}}\) is the price, which is not under competition, \(\overline{{p }_{2}}>{{p}_{2}}^{*}\), and we have \(\overline{{p }_{2}}-{{p}_{2}}^{*}+{{p}_{1}}^{*}-{c}_{1}>0\), \({\mathbb{E}}{\Pi }^{*}-{\mathbb{E}}{{\Pi }_{2}}^{*}\) monotonically decreases in \({a}_{1}\). If \({a}_{1}=0\), \({\Pi }^{*}<{{\Pi }_{2}}^{*}\), there is no demand for product 1, and producing product 1 hurts the manufacturer’s profit. If \({a}_{1}=1\), \({\Pi }^{*}>{{\Pi }_{2}}^{*}\), since the demand for product 2 is zero, and \({{\Pi }_{2}}^{*}\) is equal to zero. Hence, there exists a value of \({a}_{1}\)(\({a}_{11}\)) such that \({\Pi }^{*}-{\mathbb{E}}{{\Pi }_{2}}^{*}=0\). Meanwhile, we have

$$ \frac{\partial ({\mathbb{E}}{\Pi }^{*}-{\mathbb{E}}{{\Pi }_{1}}^{*})}{\partial {a}_{1}}= {\left.\frac{\partial ({\mathbb{E}}\Pi -{\Pi }_{1})}{\partial {a}_{1}}\right|}_{{p}_{1} ={{p}_{1}}^{*},{p}_{2}={{p}_{2}}^{*},{s}_{1}={{s}_{1}}^{*},{s}_{2}={{s}_{2}}^{*}, {p}_{1} =\overline{{p }_{1}},{s}_{1}=\overline{{s }_{1}}}={c}_{2}-{{p}_{1}}^{*}+{{p}_{2}}^{*} +\overline{{p }_{1}}>0.$$

The same process can be employed to demonstrate that there exists a value of \({a}_{1}\)(\({a}_{12}\)) such that \({\Pi }^{*}-{\mathbb{E}}{{\Pi }_{1}}^{*}=0\).

Moreover, when \({a}_{11}<{a}_{12}\), the intersection of \({\Pi }^{*}\) and function \({{\Pi }_{2}}^{*}\)(i.e. \({a}_{11}\)) is on the left of the intersection of \({\Pi }^{*}\) and function \({{\Pi }_{1}}^{*}\)(i.e., \({a}_{12}\)). Then, based on the properties of the three profit functions, the function values of \({\Pi }^{*}\) are greater than the those of \({{\Pi }_{1}}^{*}\) and \({{\Pi }_{2}}^{*}\), when \({a}_{1}\) is in the range of \([{a}_{11},{a}_{12}]\). \(\hfill\square\)

Proof of Proposition 1 (i)

Based on optimal values, we have.

$$\frac{\partial {\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2}))}{\partial {{p}_{1}}^{*}}=0$$
$$\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2}))}{\partial {{{p}_{1}}^{*}}^{2}}=-2\left({b}_{1}+m\right)<0.$$

Thus, \(\frac{\partial {\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2}))}{\partial {{p}_{1}}^{*}}\) decreases in \({{p}_{1}}^{*}\). Additionally, we have

$$\frac{\partial {\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2}))/\partial {p}_{1}}{\partial m}={c}_{1}-{c}_{2}-2{p}_{1}+2{p}_{2},$$

which means that, if \({c}_{1}-{c}_{2}-2{p}_{1}+2{p}_{2}>0\), \(\frac{\partial {\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2}))}{\partial {p}_{1}}\) increases in \(m\). Thus, an increasing \(m\) leads to a higher value of \(\frac{\partial {\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2}))}{\partial {p}_{1}}\). However, to ensure optimal values, namely, \(\frac{\partial {\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2}))}{\partial {{p}_{1}}^{*}}=0\), a higher \({{p}_{1}}^{*}\) should be obtained to decrease the value of \(\frac{\partial {\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2}))}{\partial {p}_{1}}\), since \(\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2}))}{\partial {{{p}_{1}}^{*}}^{2}}<0\). Conversely, if \({c}_{1}-{c}_{2}-2{p}_{1}+2{p}_{2}<0\), \(\frac{\partial {\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2}))}{\partial {p}_{1}}\) decreases in \(m\), a higher \(m\) leads to a lower \({{p}_{1}}^{*}\). Hence, to analyse how substitutability affect the optimal prices, we use the following equation:

$$\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2}))}{\partial {p}_{1}\partial m}={c}_{1}-{c}_{2}-2{p}_{1}+2{p}_{2},$$

where \({p}_{1}>{c}_{1}\), \({p}_{2}>{c}_{2}\). \({c}_{1}-{c}_{2}-2{p}_{1}+2{p}_{2}<0\) can be rewritten as \({p}_{1}-{p}_{2}<\frac{{c}_{1}-{c}_{2}}{2}\), and \(\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2}))}{\partial {p}_{1}\partial m}<0\). Thus, \({{p}_{1}}^{*}\) strictly decreases in \(m\). When \({c}_{1}-{c}_{2}-2{p}_{1}+2{p}_{2}>0\), which can be rewritten as \({p}_{1}-{p}_{2}>\frac{{c}_{1}-{c}_{2}}{2}\), \(\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2}))}{\partial {p}_{1}\partial m}>0\), \({{p}_{1}}^{*}\) strictly increases in \(m\). Using the same calculation, we obtain the change in the low-end product with respect to \(m\) and the same result in the case of low capacity. \(\hfill\square\)

Proof of Proposition 1 (ii)

$$\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2}))}{\partial {p}_{1}\partial {c}_{2}}=\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2}))}{\partial {p}_{2}\partial {c}_{1}}=-m,$$

where \(-m<0\). Thus, \(\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2}))}{\partial {p}_{1}\partial {c}_{2}}=\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2}))}{\partial {p}_{2}\partial {c}_{1}}<0\). \({{p}_{1}}^{*}\) strictly decreases in \({c}_{2}\), and \({{p}_{2}}^{*}\) strictly decreases in \({c}_{1}\).\(\hfill\square\)

Proof of Proposition 2

By applying the Envelope Theorem, we have.

$$\frac{\partial {\mathbb{E}}(\Pi \left({{p}_{1}}^{*},{{p}_{2}}^{*},{{s}_{1}}^{*},{{s}_{2}}^{*}\right))}{\partial m}={\left.\frac{\partial {\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{2},{s}_{2})}{\partial m}\right|}_{{p}_{1}={{p}_{1}}^{*},{p}_{2}={{p}_{2}}^{*},{s}_{1}={{s}_{1}}^{*},{s}_{2}={{s}_{2}}^{*}}.$$

Then,

$$\frac{\partial {\mathbb{E}}(\Pi ({{p}_{1}}^{*},{{p}_{2}}^{*},{{s}_{1}}^{*},{{s}_{2}}^{*})}{\partial m}={\left.-\left({p}_{1}-{p}_{2}\right)(-{c}_{1}+{c}_{2}+{p}_{1}-{p}_{2})\right|}_{{p}_{1}={{p}_{1}}^{*},{p}_{2}={{p}_{2}}^{*},{s}_{1}={{s}_{1}}^{*},{s}_{2}={{s}_{2}}^{*}},$$

where \({{p}_{1}}^{*}-{{p}_{2}}^{*}>0\). When \(-{c}_{1}+{c}_{2}+{{p}_{1}}^{*}-{{p}_{2}}^{*}<0\), we get \({{p}_{1}}^{*}-{c}_{1}<{{p}_{2}}^{*}-{c}_{2}\), and \(-\left({{p}_{1}}^{*}-{{p}_{2}}^{*}\right)\left(-{c}_{1}+{c}_{2}+{{p}_{2}}^{*}-{{p}_{2}}^{*}\right)=\frac{\partial {\mathbb{E}}(\Pi ({{p}_{1}}^{*},{{p}_{2}}^{*},{{s}_{1}}^{*},{{s}_{2}}^{*})}{\partial m}>0\). Therefore, \(\partial {\mathbb{E}}(\Pi ({{p}_{1}}^{*},{{p}_{2}}^{*},{{s}_{1}}^{*},{{s}_{2}}^{*})\) increases in \(m\). When \(-{c}_{1}+{c}_{2}+{{p}_{1}}^{*}-{{p}_{2}}^{*}>0\), which can be rewritten as \({{p}_{1}}^{*}-{c}_{1}>{{p}_{2}}^{*}-{c}_{2}\), \(-\left({{p}_{1}}^{*}-{{p}_{2}}^{*}\right)\left(-{c}_{1}+{c}_{2}+{{p}_{2}}^{*}-{{p}_{2}}^{*}\right)=\frac{\partial {\mathbb{E}}(\Pi ({{p}_{1}}^{*},{{p}_{2}}^{*},{{s}_{1}}^{*},{{s}_{2}}^{*})}{\partial m}>0\), \(\partial {\mathbb{E}}(\Pi ({{p}_{1}}^{*},{{p}_{2}}^{*},{{s}_{1}}^{*},{{s}_{2}}^{*})\) decreases in \(m\).

Using the same calculation, we obtain the same process and result in low-capacity situations. \(\hfill\square\)

Proof of Proposition 3

When capacity is low, the optimal solution will be obtained on the boundary. Since \({s}_{1}+{s}_{2}+1-{b}_{1}{p}_{1}-{b}_{2}{p}_{2}=Q\), we can transfer the original function to \({\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1}))\). Then, we have.

$$\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1})).}{\partial {p}_{1}\partial {b}_{2}}=-{b}_{1}{p}_{2}({p}_{2}+{g}_{2}+h){f}_{2}\left({s}_{2}\right)$$
$$\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1})).}{\partial {p}_{1}\partial {g}_{2}}={b}_{1}(1-{F}_{2}\left({s}_{2}\right))$$
$$\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1})).}{\partial {p}_{1}\partial h}=-{b}_{1}{F}_{2}\left({s}_{2}\right),$$

\(1-{F}_{2}\left({s}_{2}\right)>0\). We get \(\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1})).}{\partial {p}_{1}\partial m}<0\)\(\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1})).}{\partial {p}_{1}\partial {g}_{2}}>0\), \(\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1})).}{\partial {p}_{1}\partial h}<0\); thus, \({{p}_{1}}^{*}\) strictly decreases in \({b}_{2}\), increases in \({g}_{2}\), and increases in \(h\)where , .

Similarly, since \(\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1}))}{\partial {s}_{1}\partial {g}_{2}}=-\left(1-{F}_{2}\left({s}_{2}\right)\right)<0\), \({{s}_{1}}^{*}\) strictly decreases in \({g}_{2}\).

$$\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1}))}{\partial {s}_{1}\partial h}={F}_{2}\left({s}_{2}\right)-{F}_{1}\left({s}_{1}\right),$$

where \({s}_{2}=Q-{ s}_{1}-1+{b}_{1}{p}_{1}+{b}_{2}{p}_{2}\). When \({F}_{2}\left({s}_{2}\right)>{F}_{1}\left({s}_{1}\right)\), \(\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1}))}{\partial {s}_{1}\partial h}>0\), and \({{s}_{1}}^{*}\) increases in \(h\). When \({F}_{2}\left({s}_{2}\right)<{F}_{1}\left({s}_{1}\right)\), \(\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1}))}{\partial {s}_{1}\partial h}<0\), and \({{s}_{1}}^{*}\) decreases in \(h\). \(\hfill\square\)

Proof of Proposition 4

If capacity is high, the profit function is \({\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2}))\). Then, we have.

$$\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2}))}{\partial {p}_{1}\partial m}={c}_{1}-{c}_{0}-k-\frac{3}{2} {m}^{2}c-2\left({p}_{1}-{p}_{2}\right).$$

By defining.

$${\mathrm{G}}_{1}\left(m\right)={c}_{1}-{c}_{0}-k-\frac{3}{2} {m}^{2}c-2\left({p}_{1}-{p}_{2}\right),$$

we obtain

$${{\mathrm{G}}_{1}}^{\mathrm{^{\prime}}}\left(m\right)=-3mc<0,$$
$${\mathrm{G}}_{1}\left(0\right)={c}_{1}-{c}_{0}-k-2\left({p}_{1}-{p}_{2}\right),$$
$$\underset{m\to 1}{\mathrm{lim}}{\mathrm{G}}_{1}\left(m\right)={c}_{1}-{c}_{0}-\frac{3}{2}c-2\left({p}_{1}-{p}_{2}\right)-k<0.$$

Since \(m\in [\mathrm{0,1})\), \({{G}_{1}}^{^{\prime}}\left(m\right)<0\) and \({G}_{1}\left(m\right)\) decreases in \(m\), if \({G}_{1}\left(0\right)>0\), which yields \({c}_{1}-{c}_{0}-k-2\left({p}_{1}-{p}_{2}\right)>0\), we obtain \({m}_{1,}\) as \({G}_{1}\left({m}_{1}\right)=0\).

$$\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1},{s}_{2}))}{\partial {p}_{2}\partial m}={c}_{1}-{c}_{0}+c{b}_{2}m+\frac{3}{2} {m}^{2}c+2\left({p}_{1}-{p}_{2}\right)+\theta .$$

By defining.

$${\mathrm{G}}_{2}\left(m\right)={c}_{1}-{c}_{0}+c{b}_{2}m+\frac{3}{2} {m}^{2}c+2\left({p}_{1}-{p}_{2}\right)+\theta ,$$

we have

$${{\mathrm{G}}_{2}}^{\mathrm{^{\prime}}}\left(m\right)=c\left({b}_{1}+3m\right)>0,$$
$${\mathrm{G}}_{2}\left(0\right)={c}_{0}-{c}_{1}+2\left({p}_{1}-{p}_{2}\right)+\theta ,$$
$$\underset{m\to 1}{\mathrm{lim}}{\mathrm{G}}_{1}\left(m\right)={c}_{0}-{c}_{1}-c{b}_{2}+\frac{3}{2}c+2\left({p}_{1}-{p}_{2}\right)>0.$$

In \(m\in [\mathrm{0,1})\), \({{\mathrm{G}}_{2}}^{^{\prime}}\left(m\right)>0\); thus, \({\mathrm{G}}_{2}\left(m\right)\) increases in \(m\). Hence, when \({G}_{2}\left(0\right)<0\)(i.e. \({c}_{0}-{c}_{1}+2\left({p}_{1}-{p}_{2}\right)+\theta >0\)), we obtain \({m}_{2}\), as \({G}_{2}\left({m}_{2}\right)=0\).

When capacity is low, the optimal solution will be obtained on the boundary. Since \({s}_{1}+{s}_{2}+1-{b}_{1}{p}_{1}-{b}_{2}{p}_{2}+(\theta -k)({\tau }_{1}+{\tau }_{2})=Q\), we can transfer the original function to \({\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1}))\).

$$\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1}))}{\partial {p}_{1}\partial m}={c}_{1}-{c}_{0}-\frac{3}{2} {m}^{2}c-2\left({p}_{1}-{p}_{2}\right)-c{b}_{1}m-k$$

By defining.

$${{\mathrm{G}}_{1}\left(m\right)}^{\mathrm{^{\prime}}}={c}_{1}-{c}_{0}-\frac{3}{2} {m}^{2}c-2\left({p}_{1}-{p}_{2}\right)-c{b}_{1}m-k,$$

we obtain

$${{{\mathrm{G}}_{1}}^{\mathrm{^{\prime}}}\left(m\right)}^{\mathrm{^{\prime}}}=-c\left({b}_{1}+3m\right)<0,$$
$${{\mathrm{G}}_{1}\left(0\right)}^{\mathrm{^{\prime}}}={c}_{1}-{c}_{0}-2\left({p}_{1}-{p}_{2}\right)-k,$$
$$\underset{m\to 1}{\mathrm{lim}}{{\mathrm{G}}_{1}\left(m\right)}^{^{\prime}}=\left({c}_{1}-{c}_{0}-\frac{3}{2}c\right)-2\left({p}_{1}-{p}_{2}\right)-c{b}_{1}<0.$$

Since \(m\in [\mathrm{0,1})\), \({{{\mathrm{G}}_{1}}^{^{\prime}}\left(m\right)}^{^{\prime}}<0\), and \({G}_{1}\left(m\right)\) decreases in \(m\), if \({{\mathrm{G}}_{1}\left(0\right)}^{^{\prime}}>0\), which yields \({c}_{1}-{c}_{0}-2\left({p}_{1}-{p}_{2}\right)-k>0\), we get \({m}_{1},\) as \({G}_{1}\left({m}_{1}\right)=0\).

$$\frac{{\partial }^{2}{\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{1}))}{\partial {p}_{2}\partial m}={c}_{0}-{c}_{1}+\frac{3}{2} {m}^{2}c+2\left({p}_{1}-{p}_{2}\right)+\theta .$$

By defining

$${{\mathrm{G}}_{2}\left(m\right)}^{\mathrm{^{\prime}}}={c}_{0}-{c}_{1}+\frac{3}{2} {m}^{2}c+2\left({p}_{1}-{p}_{2}\right)+\theta ,$$

we get

$${{{G}_{2}}^{\mathrm{^{\prime}}}\left(m\right)}^{\mathrm{^{\prime}}}=3cm>0,$$
$${{\mathrm{G}}_{2}\left(0\right)}^{\mathrm{^{\prime}}}={c}_{0}-{c}_{1}+2\left({p}_{1}-{p}_{2}\right)+\theta ,$$
$$\underset{m\to 1}{\mathrm{lim}}{{\mathrm{G}}_{2}\left(m\right)}^{^{\prime}}={c}_{0}-{c}_{1}+\frac{3}{2}c+2\left({p}_{1}-{p}_{2}\right)+\theta >0.$$

In \(m\in [\mathrm{0,1})\), \({{{G}_{2}}^{^{\prime}}\left(m\right)}^{^{\prime}}>0\); thus, \({{\mathrm{G}}_{2}\left(m\right)}^{^{\prime}}\) increases in \(m\). Hence, when \({{\mathrm{G}}_{2}\left(0\right)}^{^{\prime}}<0\) (i.e. \({c}_{0}-{c}_{1}+2\left({p}_{1}-{p}_{2}\right)+\theta >0\)), we obtain \({m}_{2},\) as \({{G}_{2}\left({m}_{2}\right)}^{^{\prime}}=0\).

Finally, we transfer \({c}_{1}-{c}_{0}-2\left({p}_{1}-{p}_{2}\right)-k>0\) and \({c}_{0}-{c}_{1}+2\left({p}_{1}-{p}_{2}\right)+\theta >0\) to \(\left({p}_{1}-{p}_{2}\right)<\frac{{c}_{1}-{c}_{0}-k}{2}\) and \(\left({p}_{1}-{p}_{2}\right)<\frac{{c}_{1}-{c}_{0}-\theta }{2}\). \(\hfill\square\)

Proof of Proposition 5

Based on the Envelope Theorem, we get

$$\frac{\partial {\mathbb{E}}(\Pi ({{p}_{1}}^{*},{{p}_{2}}^{*},{{s}_{1}}^{*},{{s}_{2}}^{*})}{\partial m}={\left.\frac{\partial {\mathbb{E}}(\Pi ({p}_{1},{p}_{2},{s}_{2},{s}_{2})}{\partial m}\right|}_{{p}_{1}={{p}_{1}}^{*},{p}_{2}={{p}_{2}}^{*},{s}_{1}={{s}_{1}}^{*},{s}_{2}={{s}_{2}}^{*}}.$$

Then,

$$\frac{\partial {\mathbb{E}}(\Pi ({{p}_{1}}^{*},{{p}_{2}}^{*},{{s}_{1}}^{*},{{s}_{2}}^{*})}{\partial m}=\left({c}_{1}-{p}_{1}\right)\left(k+{p}_{1}-{p}_{2}\right)+\left({p}_{2}-{c}_{0}-\frac{1}{2} {m}^{2}c\right)\left({p}_{1}-{p}_{2}+\theta \right)$$
$$-cm({a}_{2}-k+m{p}_{1}+{b}_{2}{p}_{2}-m{p}_{2}{u}_{2}+m\theta {|}_{{p}_{1}={{p}_{1}}^{*},{p}_{2}={{p}_{2}}^{*},{s}_{1}={{s}_{1}}^{*},{s}_{2}={{s}_{2}}^{*}}.$$

By defining

$${\mathrm{G}}_{3}\left(m\right)=\left({c}_{1}-{p}_{1}\right)\left(k+{p}_{1}-{p}_{2}\right)+\left({p}_{2}-{c}_{0}-\frac{1}{2} {m}^{2}c\right)\left({p}_{1}-{p}_{2}+\theta \right)-cm({a}_{2}-k+m{p}_{1}+{b}_{2}{p}_{2}-m{p}_{2}{u}_{2}+m\theta ,$$

we have

$${\mathrm{G}}_{3}^{\mathrm{^{\prime}}}\left(m\right)=-c[{a}_{2}+3m\left({p}_{1}-{p}_{2}+\theta \right)-{b}_{2}{p}_{2}+{s}_{2}+{\mu }_{2}-k]<0,$$
$${\mathrm{G}}_{3}\left(0\right)=\left({c}_{1}-{p}_{1}\right)\left({p}_{1}-{p}_{2}+k\right)-({c}_{0}-{p}_{2})\left({p}_{1}-{p}_{2}+\theta \right),$$
$$\underset{m\to 1}{\mathrm{lim}}{\mathrm{G}}_{3}\left(m\right)=\left({p}_{1}-{p}_{2}+k\right)\left({c}_{1}-{p}_{1}\right)+\left({p}_{2}-{c}_{0}-\frac{c}{2}\right)\left({p}_{1}-{p}_{2}+\theta \right)c-\left[{a}_{2}-k+{p}_{1}-{p}_{2}-{b}_{2}{p}_{2}-{s}_{2}+{\mu }_{2}+\theta \right]<0.$$

Since \(m\in [\mathrm{0,1})\), \({\mathrm{G}}_{3}^{^{\prime}}\left(m\right)<0\), and \({\mathrm{G}}_{3}\left(m\right)\) decreases in \(m\), if \({\mathrm{G}}_{3}\left(0\right)>0\), we get \({m}^{*},\) as \(\mathrm{G}\left(m\right)=0\). Observing \(\left({p}_{1}-{p}_{2}+k\right)\left({c}_{1}-{p}_{1}\right)-({c}_{0}-{p}_{2})\left({p}_{1}-{p}_{2}+\theta \right)\), we can obtain that \({\mathrm{G}}_{3}\left(0\right)\) strictly greater than 0 when \(\left({c}_{1}-{p}_{1}\right)>({c}_{0}-{p}_{2})\), i.e., \({p}_{1}-{p}_{2}>{c}_{1}-{c}_{0}\).

If capacity is low, the optimal solution will be obtained in \({s}_{1}+{s}_{2}+1-{b}_{1}{p}_{1}-{b}_{2}{p}_{2}+(\theta -k)({\tau }_{1}+{\tau }_{2}))=Q\). By same calculations, we also can get that when there exists a \({m}^{*}\) to maximize the profit function when \(\left({c}_{1}-{p}_{1}\right)>({c}_{0}-{p}_{2})\), i.e., \({p}_{1}-{p}_{2}>{c}_{1}-{c}_{0}\). \(\hfill\square\)

Proof of Lemma 3

For given \({{p}_{i}}^{*}({{s}_{i}}^{*} or {{\tau }_{i}}^{*})\), we can get the Hessian matrix \({H}_{1}\), \({H}_{2}\) \({H}_{3}\) respectively are.

$$\left[\begin{array}{cc}-2\left(m+{b}_{1}\right)& 2m\\ 2m& -2\left(m+{b}_{2}\right)\end{array}\right],$$
$$\left[\begin{array}{cc}-\left({p}_{1}+h+{g}_{1}\right){f}_{1}\left({s}_{1}\right)& 0\\ 0& -\left({p}_{2}+h+{g}_{2}\right){f}_{2}\left({s}_{2}\right)\end{array}\right],$$
$$\left[\begin{array}{cc}{N}_{1}& ck\left({\tau }_{1}+{\tau }_{2}\right)\\ ck\left({\tau }_{1}+{\tau }_{2}\right)& {N}_{2}\end{array}\right],$$

where \({N}_{i}=-c({a}_{i}\left({b}_{i}+m\right){p}_{i}-m{p}_{j}-k{\tau }_{j}+{u}_{i}+3\theta {\tau }_{j}+{I}_{i}\left({s}_{i}\right)-{S}_{i}({s}_{i})\), \(i\ne j\in \{1, 2\}\). Obviously, \({H}_{1}\), \({H}_{2}\) are negative definite. The first-order determinant of \({H}_{3}\) is \({N}_{1}<0\), and the second-order determinant is \({N}_{1}{N}_{2}-ck{\left({\tau }_{1}+{\tau }_{2}\right)}^{2}>0\). Thus, matrix \({H}_{3}\) is negative definite as well.

Based on the constraint, we use the Lagrange function to change the \({\mathbb{E}}\left(\Pi \left({p}_{1},{p}_{2},{s}_{1},{s}_{2},{\tau }_{1},{\tau }_{2}\right)\right)\), and derive

$${\mathcal{L}}^{\mathrm{^{\prime}}}({p}_{1},{p}_{2},{s}_{1},{s}_{2},{\tau }_{1},{\tau }_{2},\uplambda )={(p}_{1}-{c}_{1})({Q}_{1}+{\mu }_{1})-({c}_{1}+h){I}_{1}({s}_{1})-{(p}_{1}-{c}_{1}+{g}_{1}){S}_{1}({s}_{1})$$
$$+{(p}_{2}-{c}_{2})({Q}_{2}+{\mu }_{2})-\left({c}_{2}+h\right){I}_{2}\left({s}_{2}\right)-{(p}_{2}-{c}_{2}+{g}_{2}){S}_{2}({s}_{2})$$
$$+\uplambda ({ s}_{1}+{s}_{2}+1-{b}_{1}{p}_{1}-{b}_{2}{p}_{2}-Q+(\theta -k)({\tau }_{1}+{\tau }_{2})).$$

Since the conditions of the optimal solution are

$$\frac{\partial {\mathbb{E}}\left(\Pi \left({p}_{1},{p}_{2},{s}_{1},{s}_{2},{\tau }_{1},{\tau }_{2}\right)\right)}{\partial {p}_{i}}=0$$
$$\frac{\partial {\mathbb{E}}\left(\Pi \left({p}_{1},{p}_{2},{s}_{1},{s}_{2},{\tau }_{1},{\tau }_{2}\right)\right)}{\partial {s}_{i}}=0$$
$$\frac{\partial {\mathbb{E}}\left(\Pi \left({p}_{1},{p}_{2},{s}_{1},{s}_{2},{\tau }_{1},{\tau }_{2}\right)\right)}{\partial {\tau }_{i}}=0$$
$$\frac{\partial \left(\Pi \left({p}_{1},{p}_{2},{s}_{1},{s}_{2},{\tau }_{1},{\tau }_{2}\right)\right)}{\partial\uplambda }=0,$$

we have

$$\begin{array}{c}{{p}_{i}}^{*}=\frac{2{a}_{i}+4m{{p}_{j}}^{*}+{b}_{i}\left(c{{{\tau }_{i}}^{*}}^{2}-2\lambda \right)+cm\left({{{\tau }_{i}}^{*}}^{2}-{{{\tau }_{j}}^{*}}^{2}\right)+2\left({u}_{i}-2k{{\tau }_{j}}^{*}+\theta {{\tau }_{j}}^{*}\right)-2{S}_{i}\left({{s}_{i}}^{*}\right)}{4({b}_{i}+m)},\\ \left(2\left({{p}_{i}}^{*}+{g}_{i}\right)-c{{{\tau }_{i}}^{*}}^{2}\right)\left(1-{F}_{i}\left({{s}_{i}}^{*}\right)\right)-\left({{{\tau }_{i}}^{*}}^{2}+2h\right){F}_{i}\left({{s}_{i}}^{*}\right)=\lambda ,\\ \frac{\begin{array}{c}ck{{\tau }_{j}}^{*}\left({{\tau }_{i}}^{*}+2{{\tau }_{j}}^{*}\right)-2{{\tau }_{j}}^{*}-2c{{\tau }_{i}}^{*}\left({a}_{i}-{b}_{i}{{p}_{i}}^{*}+m\left({{p}_{i}}^{*}-{{p}_{j}}^{*}\right)+{u}_{i}\right)+\\ \left(2{p}_{i}-3c{{{\tau }_{i}}^{*}}^{2}\right)\theta +2c{{\tau }_{i}}^{*}({S}_{i}\left({{s}_{i}}^{*}\right)+{I}_{i}\left({{s}_{i}}^{*}\right))\end{array}}{2(\theta -k)}=\lambda ,\\ {{s}_{1}}^{*}+{{s}_{2}}^{*}+1-{b}_{1}{{p}_{1}}^{*}-{b}_{2}{{p}_{2}}^{*}+\left(\theta -k\right)\left({{\tau }_{i}}^{*}+{{\tau }_{j}}^{*}\right)=Q.\end{array}$$

Finally, according to \({H}_{1}\), \({H}_{2}\) \({H}_{3}\) and the characters of \({\mathcal{L}}^{\mathrm{^{\prime}}}({p}_{1},{p}_{2},{s}_{1},{s}_{2},{\tau }_{1},{\tau }_{2},\uplambda )\), we can easily get there exist unique optimal \({{p}_{i}}^{*},{{s}_{i}}^{*}, {{\tau }_{i}}^{*}\) to maximize \({\mathbb{E}}\left(\Pi \left({p}_{1},{p}_{2},{s}_{1},{s}_{2},{\tau }_{1},{\tau }_{2}\right)\right)\) and the logic is similar to Lemma 1. \(\hfill\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Wang, Z. & Zhao, C. Effects of production capacity and substitutability on optimal pricing and inventory policies. Ann Oper Res 326, 341–367 (2023). https://doi.org/10.1007/s10479-023-05255-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-023-05255-z

Keywords

Navigation