Skip to main content
Log in

Scheduling operating rooms of multiple hospitals considering transportation and deterioration in mass-casualty incidents

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In mass casualty incidents, patients need to be evacuated to nearby hospitals as soon as possible, and a surge in demand for emergency medical services then occurs. It would result in ambulance offload delays, i.e., no emergency operating room is available when the ambulance arrives at a hospital, and thus the patients cannot be treated immediately. In this paper, we aim to solve a combinatorial problem of patient-to-hospital assignment and patient surgery sequence considering patient deterioration and ambulance offload delay during a mass casualty incident. A mixed-integer programming model is proposed. The objective is to minimize the completion time of all patients’ surgeries. For solving such a problem, some structural properties of our studied problem are derived, and a heuristic is developed to solve the single operating room scheduling problem considering ambulance offload delay and patient deterioration based on these structural properties. A hybrid Firefly Algorithm-Variable Neighborhood Search algorithm incorporating the heuristic method is proposed to solve it. Our proposed algorithm can solve the problem within a short computation time, and the computational results demonstrate the superiority of our proposed algorithm over the compared algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almehdawe, E., Jewkes, B., & He, Q.-M. (2013). A Markovian queueing model for ambulance offload delays. European Journal of Operational Research, 226(3), 602–614.

    Google Scholar 

  • Almehdawe, E., Jewkes, B., & He, Q.-M. (2016). Analysis and optimization of an ambulance offload delay and allocation problem. Omega, 65, 148–158.

    Google Scholar 

  • Barbarosoǧlu, G., & Arda, Y. (2004). A two-stage stochastic programming framework for transportation planning in disaster response. Journal of the Operational Research Society, 55(1), 43–53.

    Google Scholar 

  • Bernstein, S. L., Aronsky, D., Duseja, R., Epstein, S., Handel, D., Hwang, U., et al. (2009). The effect of emergency department crowding on clinically oriented outcomes. Academic Emergency Medicine, 16(1), 1–10.

    Google Scholar 

  • Besiou, M., Pedraza-Martinez, A. J., & Van Wassenhove, L. N. (2018). OR applied to humanitarian operations. European Journal of Operational Research, 269(2), 397–405.

    Google Scholar 

  • Carter, A. J., Overton, J., Terashima, M., & Cone, D. C. (2014). Can emergency medical services use turnaround time as a proxy for measuring ambulance offload time? The Journal of Emergency Medicine, 47(1), 30–35.

    Google Scholar 

  • Cone, D. C., Middleton, P. M., & Marashi Pour, S. (2012). Analysis and impact of delays in ambulance to emergency department handovers. Emergency Medicine Australasia, 24(5), 525–533.

    Google Scholar 

  • Cooney, D. R., Millin, M. G., Carter, A., Lawner, B. J., Nable, J. V., & Wallus, H. J. (2011). Ambulance diversion and emergency department offload delay: Resource document for the national association of EMS physicians position statement. Prehospital Emergency Care, 15(4), 555–561.

    Google Scholar 

  • Cooney, D. R., Wojcik, S., Seth, N., Vasisko, C., & Stimson, K. (2013). Evaluation of ambulance offload delay at a university hospital emergency department. International Journal of Emergency Medicine, 6(1), 1–4.

    Google Scholar 

  • Crilly, J., Keijzers, G., Tippett, V., O’Dwyer, J., Lind, J., Bost, N., et al. (2015). Improved outcomes for emergency department patients whose ambulance off-stretcher time is not delayed. Emergency Medicine Australasia, 27(3), 216–224.

    Google Scholar 

  • Dean, M. D., & Nair, S. K. (2014). Mass-casualty triage: Distribution of victims to multiple hospitals using the SAVE model. European Journal of Operational Research, 238(1), 363–373.

    Google Scholar 

  • Denton, B., Viapiano, J., & Vogl, A. (2007). Optimization of surgery sequencing and scheduling decisions under uncertainty. Health Care Management Science, 10(1), 13–24.

    Google Scholar 

  • Eun, J., Kim, S.-P., Yih, Y., & Tiwari, V. (2019). Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches. Omega, 86, 137–153.

    Google Scholar 

  • Farahani, R. Z., Lotfi, M. M., Baghaian, A., Ruiz, R., & Rezapour, S. (2020). Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations. European Journal of Operational Research, 287(3), 787–819.

    Google Scholar 

  • Fiedrich, F., Gehbauer, F., & Rickers, U. (2000). Optimized resource allocation for emergency response after earthquake disasters. Safety Science, 35(1–3), 41–57.

    Google Scholar 

  • Frykberg, E. R. (2005). Triage: Principles and practice. Scandinavian Journal of Surgery, 94(4), 272–278.

    Google Scholar 

  • Garner, A. (2003). Documentation and tagging of casualties in multiple casualty incidents. Emergency Medicine (fremantle, WA), 15(5–6), 475–479.

    Google Scholar 

  • Gu, J., Zhou, Y., Das, A., Moon, I., & Lee, G. M. (2018). Medical relief shelter location problem with patient severity under a limited relief budget. Computers & Industrial Engineering, 125, 720–728.

    Google Scholar 

  • Hansen, P., & Mladenović, N. (2001). Variable neighborhood search: Principles and applications. European Journal of Operational Research, 130(3), 449–467.

    Google Scholar 

  • Hupert, N., Hollingsworth, E., & Xiong, W. (2007). Is overtriage associated with increased mortality? Insights from a simulation model of mass casualty trauma care. Disaster Medicine and Public Health Preparedness, 1(S1), S14–S24.

    Google Scholar 

  • Ingolfsson, A., Budge, S., & Erkut, E. (2008). Optimal ambulance location with random delays and travel times. Health Care Management Science, 11(3), 262–274.

    Google Scholar 

  • Ito, M., Kobayashi, F., & Takashima, R. (2018). Minimizing conditional-value-at-risk for a single operating room scheduling problems. In Proceedings of the International MultiConference of Engineers and Computer Scientists (Vol. 2).

  • Jacobson, E. U., Argon, N. T., & Ziya, S. (2012). Priority assignment in emergency response. Operations Research, 60(4), 813–832.

    Google Scholar 

  • Jenkins, J. L., McCarthy, M. L., Sauer, L. M., Green, G. B., Stuart, S., Thomas, T. L., & Hsu, E. B. (2008). Mass-casualty triage: Time for an evidence-based approach. Prehospital and Disaster Medicine, 23(1), 3–8.

    Google Scholar 

  • Kamali, B., Bish, D., & Glick, R. (2017). Optimal service order for mass-casualty incident response. European Journal of Operational Research, 261(1), 355–367.

    Google Scholar 

  • Kim, C. H., Park, J. O., Park, C. B., Kim, S. C., Kim, S. J., & Hong, K. J. (2014). Scientific framework for research on disaster and mass casualty incident in Korea: Building consensus using Delphi method. Journal of Korean Medical Science, 29(1), 122–128.

    Google Scholar 

  • Laan, C. M., Vanberkel, P. T., Boucherie, R. J., & Carter, A. J. (2016). Offload zone patient selection criteria to reduce ambulance offload delay. Operations Research for Health Care, 11, 13–19.

    Google Scholar 

  • Lee, K., Lei, L., Pinedo, M., & Wang, S. (2013). Operations scheduling with multiple resources and transportation considerations. International Journal of Production Research, 51(23–24), 7071–7090.

    Google Scholar 

  • Lei, D., & Guo, X. (2016). Variable neighborhood search for the second type of two-sided assembly line balancing problem. Computers & Operations Research, 72, 183–188.

    Google Scholar 

  • Lei, L., Pinedo, M., Qi, L., Wang, S., & Yang, J. (2015). Personnel scheduling and supplies provisioning in emergency relief operations. Annals of Operations Research, 235(1), 487–515.

    Google Scholar 

  • Leo, G., Lodi, A., Tubertini, P., & Di Martino, M. (2016). Emergency department management in Lazio, Italy. Omega, 58, 128–138.

    Google Scholar 

  • Li, M., Vanberkel, P., & Carter, A. J. E. (2019). A review on ambulance offload delay literature. Health Care Management Science, 22(4), 658–675.

    Google Scholar 

  • Łukasik, S., & Żak, S. (2009). Firefly algorithm for continuous constrained optimization tasks. In International conference on computational collective intelligence (pp. 97–106).

  • Majedi, M. (2008). A queueing model to study ambulance offload delays. University of Waterloo.

    Google Scholar 

  • Marichelvam, M. K., Prabaharan, T., & Yang, X. S. (2013). A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling problems. IEEE Transactions on Evolutionary Computation, 18(2), 301–305.

    Google Scholar 

  • Marques, I., Captivo, M. E., & Vaz Pato, M. (2012). An integer programming approach to elective surgery scheduling. Or Spectrum, 34(2), 407–427.

    Google Scholar 

  • Melton, R. J., & Riner, R. M. (1981). Revising the rural hospital disaster plan: A role for the EMS system in managing the multiple casualty incident. Annals of Emergency Medicine, 10(1), 39–44.

    Google Scholar 

  • Mete, H. O., & Zabinsky, Z. B. (2010). Stochastic optimization of medical supply location and distribution in disaster management. International Journal of Production Economics, 126(1), 76–84.

    Google Scholar 

  • Mills, A. F., Argon, N. T., & Ziya, S. (2013). Resource-based patient prioritization in mass-casualty incidents. Manufacturing & Service Operations Management, 15(3), 361–377.

    Google Scholar 

  • Mills, A. F., Argon, N. T., & Ziya, S. (2018). Dynamic distribution of patients to medical facilities in the aftermath of a disaster. Operations Research, 66(3), 716–732.

    Google Scholar 

  • Rachel Lu, J., Tsai, T., & Liu, S. P. (2011). Building a Hospital Alliance—Taiwan Landseed Medical Alliance. Asian Case Research Journal, 15(01), 123–148.

    Google Scholar 

  • Repoussis, P. P., Paraskevopoulos, D. C., Vazacopoulos, A., & Hupert, N. (2016). Optimizing emergency preparedness and resource utilization in mass-casualty incidents. European Journal of Operational Research, 255(2), 531–544.

    Google Scholar 

  • Sacco, W. J., Navin, D. M., Fiedler, K. E., Waddell, R. K., II., Long, W. B., & Buckman, R. F., Jr. (2005). Precise formulation and evidence-based application of resource-constrained triage. Academic Emergency Medicine, 12(8), 759–770.

    Google Scholar 

  • Sun, Y., & Li, X. (2011). Optimizing surgery start times for a single operating room via simulation. In Proceedings of the 2011 winter simulation conference (WSC) (pp. 1306–1313).

  • Sun, H., Wang, Y., & Xue, Y. (2021). A bi-objective robust optimization model for disaster response planning under uncertainties. Computers & Industrial Engineering, 155, 107213.

    Google Scholar 

  • Sung, I., & Lee, T. (2016). Optimal allocation of emergency medical resources in a mass casualty incident: Patient prioritization by column generation. European Journal of Operational Research, 252(2), 623–634.

    Google Scholar 

  • Taherkhani, M., & Safabakhsh, R. (2016). A novel stability-based adaptive inertia weight for particle swarm optimization. Applied Soft Computing, 38, 281–295.

    Google Scholar 

  • Vallada, E., & Ruiz, R. (2011). A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times. European Journal of Operational Research, 211(3), 612–622.

    Google Scholar 

  • Wang, D., Liu, F., Yin, Y., Wang, J., & Wang, Y. (2015). Prioritized surgery scheduling in face of surgeon tiredness and fixed off-duty period. Journal of Combinatorial Optimization, 30(4), 967–981.

    Google Scholar 

  • Wilson, D. T., Hawe, G. I., Coates, G., & Crouch, R. S. (2013). A multi-objective combinatorial model of casualty processing in major incident response. European Journal of Operational Research, 230(3), 643–655.

    Google Scholar 

  • Xiang, Y., & Zhuang, J. (2016). A medical resource allocation model for serving emergency victims with deteriorating health conditions. Annals of Operations Research, 236(1), 177–196.

    Google Scholar 

  • Xiao, G., van Jaarsveld, W., Dong, M., & van de Klundert, J. (2018). Models, algorithms and performance analysis for adaptive operating room scheduling. International Journal of Production Research, 56(4), 1389–1413.

    Google Scholar 

  • Yan, K., Jiang, Y., Qiu, J., Zhong, X., Wang, Y., Deng, J., et al. (2017). The equity of China’s emergency medical services from 2010–2014. International Journal for Equity in Health, 16(1), 10.

    Google Scholar 

  • Yang, X.-S. (2010). Nature-inspired metaheuristic algorithms. Luniver press.

    Google Scholar 

  • Yang, X.-S., Hosseini, S. S. S., & Gandomi, A. H. (2012). Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Applied Soft Computing, 12(3), 1180–1186.

    Google Scholar 

  • Ye, Y. (2018). Based on pre-hospital emergency investigation to explore the configuration of emergency vehicles in China. Hainan Medical University.

    Google Scholar 

  • Zheng, Y. J., Chen, S. Y., & Ling, H. F. (2015). Evolutionary optimization for disaster relief operations: a survey. Elsevier Science Publishers B. V.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 72071057, 71922009, and 72188101), the Basic scientific research Projects in central colleges and Universities (JZ2022HGQA0135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjuan Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, the proof of Lemma 2 in Sect. 4.2 is presented.

Proof

Given that an operating room has been assigned a set of patients, there exist two schedules for the operating room. We assume that \({\pi }^{*}\) is an optimized schedule where patient i precedes patient j to start the surgery, while in \({\pi }^{^{\prime}}\) schedule, patient j precedes patient i to start the surgery. That is, \({\pi }^{*}=(\dots ,{I}_{A},{I}_{i},{I}_{j},{I}_{B},\dots )\), and \({\pi }^{^{\prime}}=(\dots ,{I}_{A},{I}_{j},{I}_{i},{I}_{B},\dots )\).

For \({\pi }^{*}\) and \({\pi }^{^{\prime}}\) schedule, the surgery start time of patient A is given as \({S}_{A}({\pi }^{*})={S}_{A}({\pi }^{^{\prime}})={S}_{A}\), and the surgery duration of patient A is \({p}_{A}^{*}={p}_{A}^{^{\prime}}={p}_{A}\), and thus the complete time of patient A is \({C}_{A}({\pi }^{*})={C}_{A}({\pi }^{^{\prime}})={C}_{A}\).

For \({\pi }^{*}\), \({S}_{i}({\pi }^{*})=\mathrm{max}\{{S}_{A}({\pi }^{*})+{T}_{h},{C}_{A}({\pi }^{*})\}=\mathrm{max}\{{S}_{A}+{T}_{h},{C}_{A}({\pi }^{*})\}\). There exist two situations: (1) \({T}_{h}>{p}_{A}\); (2) \({T}_{h}<{p}_{A}\).

  1. (1)

    In situation (1), \({\mathrm{T}}_{\mathrm{h}}>{\mathrm{p}}_{\mathrm{A}}\):

    \({S}_{i}\left({\pi }^{*}\right)={S}_{A}+{T}_{h}\), \({C}_{i}\left({\pi }^{*}\right)={S}_{i}\left({\pi }^{*}\right)+{p}_{i}^{*}= {S}_{i}\left({\pi }^{*}\right)+\left(\overline{{p }_{i}}+\upbeta {S}_{i}\left({\pi }^{*}\right)\right) =\left(1+\upbeta \right){S}_{i}\left({\pi }^{*}\right)+\overline{{p }_{i}}=\left(1+\upbeta \right)\left({S}_{A}+{T}_{h}\right)+\overline{{p }_{i}}\), and \({S}_{j}({\pi }^{*})=\mathrm{max}\{{S}_{i}({\pi }^{*})+{T}_{h}, {C}_{i}({\pi }^{*})\}=\mathrm{max}\{{S}_{A}+2{T}_{h},\left(1+\upbeta \right)\left({S}_{A}+{T}_{h}\right)+\overline{{p }_{i}}\}\). There are two cases:

    1. (a)

      When \({T}_{h}>\frac{\upbeta {S}_{A}+\overline{{p }_{i}}}{1-\upbeta }\):

    \({S}_{j}\left({\pi }^{*}\right)={S}_{A}+2{T}_{h}\), \({C}_{j}\left({\pi }^{*}\right)={S}_{j}\left({\pi }^{*}\right)+{p}_{j}^{*}={S}_{j}\left({\pi }^{*}\right)+\left(\overline{{p }_{j}}+\upbeta {S}_{j}\left({\pi }^{*}\right)\right)=\left(1+\upbeta \right){S}_{j}\left({\pi }^{*}\right)+\overline{{p }_{j}}=\left(1+\upbeta \right)({S}_{A}+2{T}_{h})+\overline{{p }_{j}}\). Then \({S}_{B}({\pi }^{*})=\mathrm{max}\{{S}_{j}({\pi }^{*})+{T}_{h},{C}_{j}({\pi }^{*})\}=\mathrm{max}\{{S}_{A}+3{T}_{h},(1+\upbeta )( {S}_{A}+2T) +\overline{{p }_{j}}\}\). If \({T}_{h}>\frac{\upbeta {S}_{A}+\overline{{p }_{j}}}{1-2\upbeta }\),\({S}_{B}({\pi }^{*})={S}_{A}+3{T}_{h}\). Otherwise, \({S}_{B}^{*}=(1+\upbeta )( {S}_{A}+2{T}_{h}) +\overline{{p }_{j}}\).

    1. (b)

      When \({T}_{h}<\frac{\upbeta {S}_{A}+\overline{{p }_{i}}}{1-\upbeta }\):

      \({S}_{j}({\pi }^{*})=(1+\upbeta )( {S}_{A}+{T}_{h})+\overline{{p }_{i}}\), \({C}_{j}\left({\pi }^{*}\right)={S}_{j}\left({\pi }^{*}\right)+{p}_{j}^{*}={S}_{j}\left({\pi }^{*}\right)+\left(\overline{{p }_{j}}+\upbeta {S}_{j}\left({\pi }^{*}\right)\right)=\left(1+\upbeta \right){S}_{j}\left({\pi }^{*}\right)+\overline{{p }_{j}}=\left(1+\upbeta \right)\left[\left(1+\upbeta \right)\left( {S}_{A}+{T}_{h}\right)+\overline{{p }_{i}}\right] +\overline{{p }_{j}}\). Then \({S}_{B}({\pi }^{*})=\mathrm{max}\{{S}_{j}({\pi }^{*})+{T}_{h},{C}_{j}({\pi }^{*})\}=\mathrm{max}\{(1+\upbeta )( {S}_{A}+{T}_{h})+\overline{{p }_{i}}+{T}_{h}, (1+\upbeta )\left[(1+\upbeta )( {S}_{A}+{T}_{h})+\overline{{p }_{i}}\right] +\overline{{p }_{j}}\}\). If \({T}_{h}>\frac{\left({\upbeta }^{2}+\upbeta \right){S}_{A}+(1+\upbeta )\overline{{p }_{i}}+\overline{{p }_{j}}}{1-\upbeta -{\upbeta }^{2}}\), \({S}_{B}({\pi }^{*})=(1+\upbeta )( {S}_{A}+{T}_{h})+\overline{{p }_{i}}+{T}_{h}\). Otherwise, \({S}_{B}({\pi }^{*})=(1+\upbeta )\left[(1+\upbeta )( {S}_{A}+{T}_{h})+\overline{{p }_{i}}\right] +\overline{{p }_{j}}\).

  2. (2)

    In situation (2),\({\mathrm{T}}_{\mathrm{h}}<{\mathrm{p}}_{\mathrm{A}}\):

    \({S}_{i}({\pi }^{*})={C}_{A}\),\({C}_{i}({\pi }^{*})={S}_{i}({\pi }^{*})+{p}_{i}^{*}={S}_{i}({\pi }^{*})+\left(\overline{{p }_{i}}+\upbeta {S}_{i}\left({\pi }^{*}\right)\right) =(1+\upbeta ){S}_{i}({\pi }^{*})+\overline{{p }_{i}}=(1+\upbeta ){C}_{A}+\overline{{p }_{i}}\), and \({S}_{j}({\pi }^{*})=\mathrm{max}\{{S}_{i}^{*}+{T}_{h},{C}_{i}({\pi }^{*})\}=\mathrm{ max}\{{C}_{A}+{T}_{h},(1+\upbeta ) {C}_{A}+\overline{{p }_{i}}\}\). There are two cases:

    1. (a)

      When \({T}_{h}>\upbeta {C}_{A}+\overline{{p }_{i}}\):

      \({S}_{j}({\pi }^{*})={C}_{A}+{T}_{h}\), \({C}_{j}({\pi }^{*})={S}_{j}({\pi }^{*})+{p}_{j}^{*}=(1+\upbeta ){S}_{j}({\pi }^{*})+\overline{{p }_{j}}=(1+\upbeta )({C}_{A}+{T}_{h})+\overline{{p }_{j}}\). Then \({S}_{B}({\pi }^{*})=\mathrm{max}\{{S}_{j}({\pi }^{*})+{T}_{h}, {C}_{j}({\pi }^{*})\}=\mathrm{max}\{{C}_{A}+2{T}_{h},(1+\upbeta )( {C}_{A}+{T}_{h}) +\overline{{p }_{j}}\}\). If \({T}_{h}>\frac{\upbeta {C}_{A}+\overline{{p }_{j}}}{1-\upbeta }\), \({S}_{B}({\pi }^{*})={C}_{A}+2{T}_{h}\). Otherwise, \({T}_{h}<\frac{\upbeta {C}_{A}+\overline{{p }_{j}}}{1-\upbeta }\),\({S}_{B}({\pi }^{*})=(1+\upbeta )( {C}_{A}+T) +\overline{{p }_{j}}\)

    2. (b)

      When \({T}_{h}<\upbeta {C}_{A}+\overline{{p }_{i}}\),

      \({S}_{j}({\pi }^{*})=(1+\upbeta ) {C}_{A}+\overline{{p }_{i}}\), \({C}_{j}({\pi }^{*})={S}_{j}({\pi }^{*})+{p}_{j}^{*}=(1+\upbeta ){S}_{j}({\pi }^{*})+\overline{{p }_{j}}=(1+\upbeta )\left[(1+\upbeta ) {C}_{A}+\overline{{p }_{i}}\right] +\overline{{p }_{j}}\). Then \({S}_{B}({\pi }^{*})=\mathrm{max}\{{S}_{j}({\pi }^{*})+{T}_{h}, {C}_{j}({\pi }^{*})\}=\mathrm{max}\{(1+\upbeta ) {C}_{A}+\overline{{p }_{i}}+{T}_{h}, (1+\upbeta )\left[(1+\upbeta ) {C}_{A}+\overline{{p }_{i}}\right] +\overline{{p }_{j}}\}\). If \({T}_{h}>\left({\upbeta }^{2}+\upbeta \right){C}_{A}+\upbeta \overline{{p }_{i}}+\overline{{p }_{j}}\), \({S}_{B}({\pi }^{*})=(1+\upbeta ) {C}_{A}+\overline{{p }_{i}}+{T}_{h}\). Otherwise, \({T}_{h}<\left({\upbeta }^{2}+\upbeta \right){C}_{A}+\upbeta \overline{{p }_{i}}+\overline{{p }_{j}}\),\({S}_{B}({\pi }^{*})=(1+\upbeta )\left[(1+\upbeta ) {C}_{A}+\overline{{p }_{i}}\right] +\overline{{p }_{j}}\).

Similarly, we can obtain that for \({\pi }^{^{\prime}}\):

  1. (1)

    In situation (1),\({T}_{h}>{\mathrm{p}}_{\mathrm{A}}\)

    1. (a)

      When \({T}_{h}>\mathrm{max}\{\frac{\upbeta {S}_{A}+\overline{{p }_{j}}}{1-\upbeta },\frac{\upbeta {S}_{A}+\overline{{p }_{i}}}{1-2\upbeta }\}\), \({S}_{B}({\pi }^{^{\prime}})={S}_{A}+3{T}_{h}\).

    2. (b)

      When \(\frac{\upbeta {S}_{A}+\overline{{p }_{j}}}{1-\upbeta }<{T}_{h}<\frac{\upbeta {S}_{A}+\overline{{p }_{i}}}{1-2\upbeta }\), \({S}_{B}({\pi }^{^{\prime}})=(1+\upbeta )( {S}_{A}+2{T}_{h}) +\overline{{p }_{i}}\).

    3. (c)

      When \(\frac{\left({\upbeta }^{2}+\upbeta \right){S}_{A}+(1+\upbeta )\overline{{p }_{j}}+\overline{{p }_{i}}}{1-\upbeta -{\upbeta }^{2}}<{T}_{h}<\frac{\upbeta {S}_{A}+\overline{{p }_{j}}}{1-\upbeta }\), \({S}_{B}({\pi }^{^{\prime}})=(1+\upbeta )( {S}_{A}+{T}_{h})+\overline{{p }_{j}}+{T}_{h}\).

    4. (d)

      When \({T}_{h}<\frac{\left({\upbeta }^{2}+\upbeta \right){S}_{A}+(1+\upbeta )\overline{{p }_{j}}+\overline{{p }_{i}}}{1-\upbeta -{\upbeta }^{2}}\), \({S}_{B}({\pi }^{^{\prime}})=(1+\upbeta )\left[(1+\upbeta )( {S}_{A}+{T}_{h})+\overline{{p }_{j}}\right] +\overline{{p }_{i}}\).

  1. (2)

    In situation \({T}_{h}<{\mathrm{p}}_{\mathrm{A}}\), there are four cases:

    1. (a)

      When \({T}_{h}>\mathrm{max}\{\upbeta {C}_{A}+\overline{{p }_{j}},\frac{\upbeta {C}_{A}+\overline{{p }_{i}}}{1-\upbeta }\}\), \({S}_{B}({\pi }^{^{\prime}})={C}_{A}+2{T}_{h}\).

    2. (b)

      When \(\upbeta {C}_{A}+\overline{{p }_{j}}<{T}_{h}<\frac{\upbeta {C}_{A}+\overline{{p }_{i}}}{1-\upbeta }\), \({S}_{B}({\pi }^{^{\prime}})=(1+\upbeta )( {C}_{A}+{T}_{h}) +\overline{{p }_{i}}\).

    3. (c)

      When \(\left({\upbeta }^{2}+\upbeta \right){C}_{A}+\upbeta \overline{{p }_{j}}+\overline{{p }_{i}}<{T}_{h}<\upbeta {C}_{A}+\overline{{p }_{j}}\), \({S}_{B}({\pi }^{^{\prime}})=(1+\upbeta ) {C}_{A}+\overline{{p }_{j}}+{T}_{h}\).

    4. (d)

      When \({T}_{h}<\) min{\(\upbeta {C}_{A}+\overline{{p }_{j}}, \left({\upbeta }^{2}+\upbeta \right){C}_{A}+\upbeta \overline{{p }_{j}}+\overline{{p }_{i}}\)}, \({S}_{B}({\pi }^{^{\prime}})=(1+\upbeta )\left[(1+\upbeta ) {C}_{A}+\overline{{p }_{j}}\right] +\overline{{p }_{i}}\)

By the analysis above, we conclude 14 cases in total:

  1. (1)

    When \({T}_{h}>\frac{\upbeta {S}_{A}+\overline{{p }_{i}}}{1-2\upbeta }\), \({S}_{B}({\pi }^{*})= {S}_{B}({\pi }^{\mathrm{^{\prime}}})={S}_{A}+3{T}_{h}\)

  2. (2)

    When \(\frac{\upbeta {S}_{A}+\overline{{p }_{j}}}{1-2\upbeta }<{T}_{h}<\frac{\upbeta {S}_{A}+\overline{{p }_{i}}}{1-2\upbeta }\),\({S}_{B}({\pi }^{*})={S}_{A}+3T\), \({S}_{B}({\pi }^{\mathrm{^{\prime}}})=\left(1+\upbeta \right)\left( {S}_{A}+2{T}_{h}\right)+\overline{{p }_{i}}\)

  3. (3)

    When \(\frac{\upbeta {S}_{A}+\overline{{p }_{i}}}{1-\upbeta }<{T}_{h}<\frac{\upbeta {S}_{A}+\overline{{p }_{j}}}{1-2\upbeta }\), \({S}_{B}({\pi }^{*})=(1+\upbeta )( {S}_{A}+2{T}_{h}) +\overline{{p }_{j}}\), \({S}_{B}({\pi }^{\mathrm{^{\prime}}})=(1+\upbeta )( {S}_{A}+2{T}_{h}) +\overline{{p }_{i}}\)

  4. (4)

    When \(\frac{\upbeta {S}_{A}+\overline{{p }_{j}}}{1-\upbeta }<{T}_{h}<\frac{\upbeta {S}_{A}+\overline{{p }_{i}}}{1-\upbeta }\), \({S}_{B}({\pi }^{*})=(1+\upbeta )( {S}_{A}+{T}_{h})+\overline{{p }_{i}}+{T}_{h}\), \({S}_{B}({\pi }^{\mathrm{^{\prime}}})=(1+\upbeta )( {S}_{A}+2{T}_{h}) +\overline{{p }_{i}}\)

  5. (5)

    When \(\frac{\left({\upbeta }^{2}+\upbeta \right){S}_{A}+(1+\upbeta )\overline{{p }_{i}}+\overline{{p }_{j}}}{1-\upbeta -{\upbeta }^{2}}<{T}_{h}<\frac{\upbeta {S}_{A}+\overline{{p }_{j}}}{1-\upbeta }\), \({S}_{B}({\pi }^{*})=\left(1+\upbeta \right)\left( {S}_{A}+{T}_{h}\right)+\overline{{p }_{i}}+{T}_{h}, {S}_{B}({\pi }^{\mathrm{^{\prime}}})=(1+\upbeta )( {S}_{A}+{T}_{h})+\overline{{p }_{j}}+T\)

  6. (6)

    When \(\frac{\left({\upbeta }^{2}+\upbeta \right){S}_{A}+(1+\upbeta )\overline{{p }_{j}}+\overline{{p }_{i}}}{1-\upbeta -{\upbeta }^{2}}<{T}_{h}<\frac{\left({\upbeta }^{2}+\upbeta \right){S}_{A}+(1+\upbeta )\overline{{p }_{i}}+\overline{{p }_{j}}}{1-\upbeta -{\upbeta }^{2}}\), \({S}_{B}({\pi }^{*})=(1+\upbeta )\left[(1+\upbeta )( {S}_{A}+{T}_{h})+\overline{{p }_{i}}\right] +\overline{{p }_{j}}\), \({S}_{B}({\pi }^{\mathrm{^{\prime}}})=(1+\upbeta )( {S}_{A}+{T}_{h})+\overline{{p }_{j}}+{T}_{h}\)

  7. (7)

    When \({\mathrm{p}}_{\mathrm{A}}<{T}_{h}<\frac{\left({\upbeta }^{2}+\upbeta \right){S}_{A}+(1+\upbeta )\overline{{p }_{j}}+\overline{{p }_{i}}}{1-\upbeta -{\upbeta }^{2}}\),\({S}_{B}({\pi }^{*})=(1+\upbeta )\left[(1+\upbeta )( {S}_{A}+{T}_{h})+\overline{{p }_{i}}\right] +\overline{{p }_{j}}\), \({S}_{B}({\pi }^{\mathrm{^{\prime}}})=(1+\upbeta )\left[(1+\upbeta )( {S}_{A}+{T}_{h})+\overline{{p }_{j}}\right] +\overline{{p }_{i}}\)

  8. (8)

    When \(\frac{\upbeta {C}_{A}+\overline{{p }_{i}}}{1-\upbeta }<{T}_{h}<{\mathrm{p}}_{\mathrm{A}}\), \({S}_{B}^{*}={S}_{B}^{\mathrm{^{\prime}}}={C}_{A}+2{T}_{h}\)

  9. (9)

    When \(\frac{\upbeta {C}_{A}+\overline{{p }_{j}}}{1-\upbeta }<{T}_{h}<\frac{\upbeta {C}_{A}+\overline{{p }_{i}}}{1-\upbeta }\), \({S}_{B}^{*}={C}_{A}+2{T}_{h}\), \({S}_{B}^{\mathrm{^{\prime}}}=(1+\upbeta )( {C}_{A}+{T}_{h}) +\overline{{p }_{i}}\)

  10. (10)

    When \(\upbeta {C}_{A}+\overline{{p }_{i}}<{T}_{h}<\) \(\frac{\upbeta {C}_{A}+\overline{{p }_{j}}}{1-\upbeta }\), \({S}_{B}^{*}=(1+\upbeta )( {C}_{A}+{T}_{h}) +\overline{{p }_{j}}\), \({S}_{B}^{\mathrm{^{\prime}}}=(1+\upbeta )( {C}_{A}+{T}_{h}) +\overline{{p }_{i}}\)

  11. (11)

    When \(\upbeta {C}_{A}+\overline{{p }_{j}}<{T}_{h}<\upbeta {C}_{A}+\overline{{p }_{i}}\), \({S}_{B}^{*}=(1+\upbeta ) {C}_{A}+\overline{{p }_{i}}+{T}_{h}\),\({S}_{B}^{\mathrm{^{\prime}}}=(1+\upbeta )( {C}_{A}+{T}_{h}) +\overline{{p }_{i}}\)

  12. (12)

    When \(\left({\upbeta }^{2}+\upbeta \right){C}_{A}+\upbeta \overline{{p }_{j}}+\overline{{p }_{i}}<{T}_{h}<\upbeta {C}_{A}+\overline{{p }_{j}}\), \({S}_{B}^{*}=(1+\upbeta ) {C}_{A}+\overline{{p }_{i}}+{T}_{h}\),\({S}_{B}^{\mathrm{^{\prime}}}=(1+\upbeta ) {C}_{A}+\overline{{p }_{j}}+{T}_{h}\)

  13. (13)

    When \(\left({\upbeta }^{2}+\upbeta \right){C}_{A}+\upbeta \overline{{p }_{i}}+\overline{{p }_{j}}<{T}_{h}<\left({\upbeta }^{2}+\upbeta \right){C}_{A}+\upbeta \overline{{p }_{j}}+\overline{{p }_{i}}\),\({S}_{B}^{*}=(1+\upbeta ) {C}_{A}+\overline{{p }_{i}}+{T}_{h}\),\({S}_{B}^{\mathrm{^{\prime}}}=(1+\upbeta )\left[(1+\upbeta ) {C}_{A}+\overline{{p }_{j}}\right] +\overline{{p }_{i}}\)

  14. (14)

    When \({T}_{h}<\left({\upbeta }^{2}+\upbeta \right){C}_{A}+\upbeta \overline{{p }_{i}}+\overline{{p }_{j}}\), \({S}_{B}^{*}=(1+\upbeta )\left[(1+\upbeta ) {C}_{A}+\overline{{p }_{i}}\right] +\overline{{p }_{j}}\),\({S}_{B}^{\mathrm{^{\prime}}}=(1+\upbeta )\left[(1+\upbeta ) {C}_{A}+\overline{{p }_{j}}\right] +\overline{{p }_{i}}\)

These 14 cases can be summarized as shown in Table 3 in the main body of the paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Fan, W., Yang, S. et al. Scheduling operating rooms of multiple hospitals considering transportation and deterioration in mass-casualty incidents. Ann Oper Res 321, 717–753 (2023). https://doi.org/10.1007/s10479-022-05094-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-022-05094-4

Keywords

Navigation