Skip to main content
Log in

A finite-source inventory system with service facility and postponed demands

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this article, a continuous review finite-source inventory system with single-server service facility is studied. The arrival of customers for unit item follows quasi-random process. The service time to process the item follows phase-type distribution. (sS) policy is adopted for replenishing an order. The lead time follows phase-type distribution. An arriving customer who finds waiting hall full, (s)he either enters into the pool or leaves the system immediately according to a Bernoulli trial. A pooled customer is selected according to a prefixed selection policy. The joint probability distribution of the inventory level, number of customers in the pool and number of customers in the waiting hall is obtained in the steady-state case. Various stationary system performance measures are derived and total expected cost rate is calculated. Some numerical examples including optimality of the total expected cost rate are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alfa, A., & Sapna Isotupa, K. (2004). An \({M/PH/k}\) retrial queue with finite number of sources. Computers and Operations Research, 31(9), 1455–1464.

    Article  Google Scholar 

  • Arivarignan, G., Yadavalli, V. S. S., & Sivakumar, B. (2008). A perishable inventory system with multi-server service facility and retrial customers. In N. Ravichandran (Ed.), Management science and practice (pp. 3–27). New Delhi: Allied Publishers pvt. Ltd.

    Google Scholar 

  • Artalejo, J. (1998). Retrial queues with a finite number of sources. Journal of Korean Mathematics Society, 35(3), 503–526.

    Google Scholar 

  • Artalejo, J., & Lopez-Herrero, M. (2007). A simulation study of a discrete-time multiserver retrial queue with finite population. Journal of Statistical Planning and Inference, 137, 2536–2542.

    Article  Google Scholar 

  • Audet, C., & Dennis, J. E. (2006). Mesh adaptive direct search algorithms for constrained optimization. SIAM Journal on Optimization, 17(1), 188–217.

    Article  Google Scholar 

  • Audet, C., & Hare, W. (2017). Derivative-free and blackbox optimization, springer series in operations research and financial engineering. Heidelberg: Springer.

    Book  Google Scholar 

  • Berman, O., Kaplan, E. H., & Shimshak, D. G. (1993). Deterministic approximations for inventory management at service facilities. IIE Transactions, 25, 98–104.

    Article  Google Scholar 

  • Berman, O., & Kim, E. (1999). Stochastic inventory policies for inventory management of service facilities. Stochastic Models, 15, 695–718.

    Article  Google Scholar 

  • Berman, O., & Sapna, K. P. (2000). Inventory management at service facilities for systems with arbitrarily distributed service times. Stochastic Models, 16, 343–360.

    Article  Google Scholar 

  • Bijvank, M., & Vis, I. F. (2011). Lost-sales inventory theory: A review. European Journal of Operational Research, 215, 1–13.

    Article  Google Scholar 

  • Falin, G., & Artalejo, J. (1998). A finite source retrial queue. European Journal of Operational Research, 108, 409–424.

    Article  Google Scholar 

  • Goyal, S., & Giri, B. (2001). Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, 34, 1–16.

    Article  Google Scholar 

  • Jenifer, J., & Sivakumar, B. (2014). A comparative study of the inventory system with service facility and postponed demands. Journal of System Science and System Engineering, 23(2), 176–195.

    Article  Google Scholar 

  • Jinbiao, W., Liu, Z., & Yang, G. (2011). Analysis of the finite source \({MAP/PH/N}\) retrial \({G}\)-queue operating in a random environment. Applied Mathematical Modelling, 35(3), 1184–1193.

    Article  Google Scholar 

  • Keerthana, M., Saranya, N., & Sivakumar, B. (2020). A stochastic queueing - inventory system with renewal demands and positive lead time. European Journal of Industrial Engineering, 14(4), 443–484.

    Article  Google Scholar 

  • Keerthana, M., Sivakumar, B., & Manuel, P. (2022). An inventory system with postponed and renewal demands. International Journal of Systems Science: Operations & Logistics, 9(2), 180–198.

    Google Scholar 

  • Krishnamoorthy, A., & Divya, V. (2020). (M, MAP)/(PH, PH)/1 queue with non-preemptive priority and working vacation under N-policy. Journal of the Indian Society for Probability and Statistics, 21, 69–122.

    Article  Google Scholar 

  • Krishnamoorthy, A., & Islam, M. E. (2004). (\(s\),\(S\)) inventory system with postponed demands. Stochastic Analysis and Application, 22(3), 827–842.

    Article  Google Scholar 

  • Krishnamoorthy, A. & Jose, K. (2007). Comparison of inventory systems with service, positive lead-time, loss and retrial of demands. Journal of Applied Mathematics and Stochastic Analysis, pp 1–23.

  • Krishnamoorthy, A., Lakshmy, B., & Manikandan, R. (2011). A survey on inventory models with positive service time. OPSEARCH, 48(2), 153–169.

    Article  Google Scholar 

  • Krishnamoorthy, A., Shajin, D., & Narayanan, V. (2019). Inventory with positive service time: A survey. In In. V. Anisimov & N. Limnios (Eds.), Advanced trends in queueing theory: Series of books ‘Mathematics and Statistics’. London: Wiley.

    Google Scholar 

  • Manuel, P., Sivakumar, B., & Arivarignan, G. (2007). Perishable inventory system with postponed demands and negative customers. Journal of Applied Mathematics and Decision Sciences, 2007, 1–12.

    Article  Google Scholar 

  • Manuel, P., Sivakumar, B., & Arivarignan, G. (2008). Perishable inventory system with service facilities and retrial customers. Computers & Industrial Engineering, 54(3), 484–501.

    Article  Google Scholar 

  • Melikov, A., & Molchanov, A. (1992). Stock optimization in transportation/storage systems. Cybernetics and Systems Analysis, 28(3), 484–487.

    Article  Google Scholar 

  • Montoison, A., Pascal, P., & Salomon, L. (2020). NOMAD.jl: A Julia interface for the constrained blackbox solver NOMAD. https://github.com/bbopt/NOMAD.jl.

  • Nahmias, S. (1982). Perishable inventory theory: A review. Operations Research, 30, 680–708.

  • Neuts, M. (1981). Matrix-geometric solutions in stochastic models: An algorithmic approach. Baltimoren: Johns Hopkins University Press.

    Google Scholar 

  • Padmavathi, I., Lawrence, A. S., & Sivakumar, B. (2016). A finite-source inventory system with postponed demands and modified M vacation policy. OPSEARCH, 53(1), 41–62.

    Article  Google Scholar 

  • Raafat, F. (1991). A survey of literature on continuously deteriorating inventory models. Journal of Operational Research Society, 42, 27–37.

    Article  Google Scholar 

  • Radhamani, V., Sivakumar, B., & Shophia Lawrence, A. (2016). A comparative study on replenishment policies of inventory system with postponed demands. International Journal of Systems Science: Operations & Logistics, 3(1), 13–33.

    Google Scholar 

  • Schwarz, M., Sauer, C., Daduna, H., Kulik, R., & Szekli, R. (2006). \({M/M/1}\) queueing systems with inventory. Queueing Systems, 54, 55–78.

    Article  Google Scholar 

  • Shah, N., & Shah, Y. (2000). Literature survey on inventory models for deteriorating items. Ekonomski Anali, 44, 221–237.

    Google Scholar 

  • Shophia Lawrence, A., Sivakumar, B., & Arivarignan, G. (2013). A perishable inventory system with service facility and finite source. Applied Mathematical Modelling, 37, 4771–4786.

    Article  Google Scholar 

  • Sivakumar, B. (2009). A perishable inventory system with retrial demands and a finite population. Journal of Computational and Applied Mathematics, 224(1), 29–38.

    Article  Google Scholar 

  • Sivakumar, B., & Arivarignan, G. (2008). An inventory system with postponed demands. Stochastic Analysis and Applications, 22(3), 827–842.

    Google Scholar 

  • Sivakumar, B., & Arivarignan, G. (2009). A stochastic inventory system with postponed demands. Performance Evaluation, 66, 47–58.

    Article  Google Scholar 

  • Suganya, C., Lawrence, A. S., & Sivakumar, B. (2018). A finite-source inventory system with service facility, multiple vacations of two heterogeneous servers. International Journal of Information and Management Sciences, 29(3), 257–277.

    Google Scholar 

  • Takagi, H. (1993). Queueing analysis: a foundation of performance evaluation volume 2: finite systems. Amsterdam: North-Holland.

    Google Scholar 

  • Wüchner, P., Sztrik, J., & De Meer, M. (2009). Finite-source \({M/M/S}\) retrial queue with search for balking and impatient customers from the orbit. Computer Networks, 53(8), 1264–1273.

    Article  Google Scholar 

  • Yadavalli, V. S. S., Sivakumar, B., Arivarignan, B., & Adetunji, O. (2011). A multi-server perishable inventory system with negative customer. Computers & Industrial Engineering, 61(2), 254–273.

    Article  Google Scholar 

  • Yadavalli, V. S. S., Sivakumar, B., Arivarignan, B., & Adetunji, O. (2012). A finite source multi-server inventory system with service facility. Computers & Industrial Engineering, 13(4), 739–753.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shophia Lawrence.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

In this appendix, we provide the general structure of the sub matrices of the infinitesimal generator P and their dimensions.

$$\begin{aligned} {[B_0]}_{kl}= & {} \left\{ \begin{array}{lll} {\tilde{B}}_{00}, &{} l = k, &{} k = 0,\\ {B_{00}}, &{} l = k, &{} k = 1,2,\ldots , M,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ {[\tilde{B_{00}}]}_{mn}= & {} \left\{ \begin{array}{lll} T_1^0\otimes I_{m_2}, &{} n = m-1, &{} m = 1,2,\ldots , K,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ {[B_{00}]}_{mn}= & {} \left\{ \begin{array}{lll} T_1^0\otimes I_{m_2}, &{} n = m-1, &{} m = 1,2,\ldots ,K,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \end{aligned}$$

Except the dimension of matrix, \(\tilde{B_{00}}\) is same as \(B_{00}\).

$$\begin{aligned} {[B_1]}_{kl}= & {} \left\{ \begin{array}{lll} {\tilde{B}}_{10}, &{} l = k-1, &{} k = 1,\\ {B_{10}}, &{} l = k-1, &{} k = 2,3,\ldots , M,\\ B_{11}, &{} l = k, &{} k = 0,\\ B_{12}, &{} l = k, &{} k = 1,2, \ldots M,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ {[{\tilde{B}}_{10}]}_{mn}= & {} \left\{ \begin{array}{lll} T_1^0 \alpha _1\otimes I_{m_2}, &{} n = m, &{} m = 1,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ {[B_{10}]}_{mn}= & {} \left\{ \begin{array}{lll} T_1^0 \alpha _1\otimes I_{m_2}, &{} n = m, &{} m = 1,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \end{aligned}$$

Except the dimension of matrix, \({\tilde{B}}_{10}\) is same as \(B_{10}.\)

$$\begin{aligned} {[B_{11}]}_{mn}= & {} \left\{ \begin{array}{lll} T_1^0 \otimes I_{m_2}, &{} n = m-1, &{} m = 1,\\ T_1^0 \alpha _1\otimes I_{m_2}, &{} n = m-1, &{} m = 2,3,\ldots ,K,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ {[B_{12}]}_{mn}= & {} \left\{ \begin{array}{lll} T_1^0 \alpha _1\otimes I_{m_2}, &{} n = m-1, &{} m = 2,3,\ldots ,K,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ {[B_2]}_{kl}= & {} \left\{ \begin{array}{lll} {\tilde{B}}_{20}, &{} l = k-1, &{} k = 1,\\ {B_{20}}, &{} l = k-1, &{} k = 2,3,\ldots , M,\\ B_{21}, &{} l = k, &{} k = 0,\\ B_{22}, &{} l = k, &{} k = 1,2, \ldots M,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ {[{\tilde{B}}_{20}]}_{mn}= & {} \left\{ \begin{array}{lll} T_1^0 \alpha _1\otimes \alpha _2, &{} n = m, &{} m = 1\\ {\textbf {0}}, &{} \text{ otherwise }. \end{array} \right. \\ {[B_{20}]}_{mn}= & {} \left\{ \begin{array}{lll} T_1^0 \alpha _1\otimes \alpha _2, &{} n = m, &{} m = 1\\ {\textbf {0}}, &{} \text{ otherwise }. \end{array} \right. \end{aligned}$$

Except the dimension of matrix, \({\tilde{B}}_{20}\) is same as \(B_{20}.\)

where

$$\begin{aligned} {[M_0]}_{kl}= & {} \left\{ \begin{array}{lll} {\tilde{B}}_{30}, &{} l = k-1, &{} k = 1,\\ {B_{30}}, &{} l = k-1, &{} k = 2,3,\ldots , L,\\ B_{32}, &{} l = k, &{} k = 0,\\ B_{33}, &{} l = k, &{} k = 1,2, \ldots L,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ {[M_1]}_{kl}= & {} \left\{ \begin{array}{lll} {B_{31}}, &{} l = k-1, &{} k = L+1,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ {[M_2]}_{kl}= & {} \left\{ \begin{array}{lll} {B_{34}}, &{} l = k, &{} k = L+1,L+2,\ldots , M,\\ B_{31}, &{} l = k-1, &{} k = L+2,L+3, \ldots M,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ {[{\tilde{B}}_{30}]}_{mn}= & {} \left\{ \begin{array}{lll} T_1^0 \alpha _1, &{} n = m, &{} m = 1,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ {[B_{30}]}_{mn}= & {} \left\{ \begin{array}{lll} T_1^0 \alpha _1, &{} n = m, &{} m = 1,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \end{aligned}$$

Except the dimension of matrix, \(B_{30}\) is same as \(\tilde{B_{30}}.\)

$$\begin{aligned} {[B_{31}]}_{mn}= & {} \left\{ \begin{array}{lll} T_1^0 \alpha _1, &{} n = m, &{} m = 1,\\ pT_1^0\alpha _1, &{} n = m, &{} m =2,3,\ldots , K,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ {[B_{32}]}_{mn}= & {} \left\{ \begin{array}{lll} T_1^0, &{} n = m-1, &{} m = 1,\\ T_1^0\alpha _1, &{} n = m-1, &{} m =2,3,\ldots , K,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ {[B_{33}]}_{mn}= & {} \left\{ \begin{array}{lll} T_1^0\alpha _1, &{} n = m-1, &{} m =2,3,\ldots , K,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ {[B_{34}]}_{mn}= & {} \left\{ \begin{array}{lll} (1-p)T_1^0\alpha _1, &{} n = m-1, &{} m =2,3,\ldots , K,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ {[{\tilde{C}}]}_{kl}= & {} \left\{ \begin{array}{lll} {\tilde{C}}_{01}, &{} l = k-1, &{} k = 1,\\ {{\tilde{C}}_{02}}, &{} l = k-1, &{} k = 2,3,\ldots , M,\\ {\tilde{C}}_{00}, &{} l = k, &{} k = 0,\\ {\tilde{C}}_1, &{} l = k, &{} k = 1,2, \ldots M,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ {[{\tilde{C}}_{01}]}_{mn}= & {} \left\{ \begin{array}{lll} T_2^0\alpha _1, &{} n = m+1, &{} m = 0,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ {[{\tilde{C}}_{02}]}_{mn}= & {} \left\{ \begin{array}{lll} T_2^0\alpha _1, &{} n = m+1, &{} m = 0\\ {\textbf {0}}, &{} \text{ otherwise }. \end{array} \right. \end{aligned}$$

Except the dimension of matrix, \({\tilde{C}}_{01}\) is same as \({\tilde{C}}_{02}.\)

where

$$\begin{aligned} {[A_{10}]}_{mn}= & {} \left\{ \begin{array}{lll} qM\gamma I_{m_1}\otimes I_{m_2}, &{} n = m, &{} m = K,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ \end{aligned}$$

\(\text{ for } \ k=1,2,\ldots ,M-1\)

$$\begin{aligned} {[A_{1k}]}_{mn}= & {} \left\{ \begin{array}{lll} q(M-k)\gamma I_{m_1}\otimes I_{m_2}, &{} n = m, &{} m = K,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ {[{\tilde{A}}_{10}]}_{mn}= & {} \left\{ \begin{array}{lll} N\gamma \alpha _1\otimes I_{m_2}, &{} n = m+1, &{} m= 0,\\ (N-m)\gamma I_{m_1}\otimes I_{m_2}, &{} n = m+1, &{} m = 1,2,\ldots ,K-1,\\ T_2-N\gamma I_{m_2}, &{} n = m, &{} m = 0,\\ T_1\oplus T_2-(N-m)\gamma I_{m_1}\otimes I_{m_2}, &{} n = m, &{} m = 1,2\ldots ,K-1,\\ T_1 \oplus T_2-qM\gamma I_{m_1}\otimes I_{m_2}, &{} m = n, &{} m = K,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ \end{aligned}$$

\(\text{ for } \ k=1,2,\ldots ,M-1\)

Table 10 Dimension of sub-matrices of P

where

$$\begin{aligned} {[A_{20}]}_{mn}= & {} \left\{ \begin{array}{lll} qM\gamma I_{m_1}, &{} n = m, &{} m = K,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ \end{aligned}$$

\(\text{ for } \ k=1,2,\ldots ,M-1,\)

$$\begin{aligned} {[A_{2k}]}_{mn}= & {} \left\{ \begin{array}{lll} q(M-k)\gamma I_{m_1}, &{} n = m, &{} m = K,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ {[{\tilde{A}}_{20}]}_{mn}= & {} \left\{ \begin{array}{lll} N\gamma \alpha _1, &{} n = m+1, &{} m = 0,\\ (N-m)\gamma I_{m_1}, &{} n = m+1, &{} m = 1,2,\ldots ,K-1,\\ -N\gamma , &{} n = m, &{} m = 0,\\ T_1-(N-m)\gamma I_{m_1}, &{} n = m, &{} m = 1,2\ldots ,K-1,\\ T_1-qM\gamma I_{m_1}, &{} m = n, &{} m = K,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ \end{aligned}$$

\(\text{ for } \ k=1,2,\ldots ,M-1,\)

$$\begin{aligned} {[{\tilde{A}}_{2k}]}_{mn}= & {} \left\{ \begin{array}{lll} (N-m-k)\gamma I_{m_1}, &{} n = m+1, &{} m = 1,2,\ldots ,K-1,\\ T_1-(N-m-k)\gamma I_{m_1}, &{} n = m, &{} m = 1,2\ldots ,K-1,\\ T_1 -q(M-k)\gamma I_{m_1}, &{} m = n, &{} m = K,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \\ {[{\tilde{A}}_{2M}]}_{mn}= & {} \left\{ \begin{array}{lll} (N-m-M)\gamma I_{m_1}, &{} n = m+1, &{} m = 1,2,\ldots ,K-1,\\ T_1-(N-m-M)\gamma I_{m_1}, &{} n = m, &{} m = 1,2\ldots ,K-1,\\ T_1, &{} m = n, &{} m = K,\\ {\textbf {0}}, &{} \text{ otherwise. } \end{array} \right. \end{aligned}$$

The dimensions of the above matrices are given in the Table 10.

Appendix 2

In this appendix, we have provided a detailed study of the proposed model with a simple example given below. For this, we fix \(N = 7, K = 3, L=2, M=4, S=5, s=2.\) We obtain the matrix P with following sub-matrices:

figure b
figure c
figure d
figure e
figure f
figure g
figure h
figure i
Table 11 \(\Pi \) Values

From the structure of P that the homogeneous continuous time Markov chain \(Z(t)=\left\{ (L(t),X(t),Y(t), t\ge 0\right\} \) on the finite state space E is irreducible. The steady state probability distribution of this process, denoted by \(\pi _{<0>}, \pi _{<1>},\pi _{<2>},\pi _{<3>},\pi _{<4>}\) and \(\pi _{<5>}\). We can compute \(\Pi \) values by solving the equation \(\Pi P = 0 \) and \(\Pi e= 1\). Table 11 gives the values of the vector \(\Pi \) which are computed using Julia software.

In order to compute system parameter measures, we fix parameter values as \(p=\frac{3}{4}; q=\frac{3}{4}; \gamma =\frac{4}{5}; \mu =\frac{16}{5}; \beta =\frac{1}{2};\) and hence the system parameter measures are calculated as \(\eta _{I} = 0.9741195, \eta _{R} =0.4336778, \eta _{TR} = 0.2265795, \eta _{P} = 3.05270895, \eta _{W} = 2.1897712, \eta _{L} = 0.0812148.\) After computing the system parameter measures, we have obtained the total expected cost \(TC= 4.979400146\) by fixing the cost parameters as \(c_{h} = 0.0015; c_{s}=1.8; c_{tr}=0.5; c_{wp} = 0.4; c_{wb} = 1.3; c_{l} = 0.2.\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastian Arockia Jenifer, J., Shophia Lawrence, A. & Sivakumar, B. A finite-source inventory system with service facility and postponed demands. Ann Oper Res 331, 867–897 (2023). https://doi.org/10.1007/s10479-022-05041-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-022-05041-3

Keywords

Mathematics Subject Classification

Navigation