Skip to main content

Advertisement

Log in

Optimal joint decision of information disclosure and ordering in a blockchain-enabled luxury supply chain

  • S.I.: Information- Transparent Supply Chains
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper explores the optimal joint decision of product information disclosure and ordering in a blockchain-enabled luxury supply chain. Using analytical models, we investigate the optimal joint decision of information disclosure and ordering under three scenarios (i.e., wholesale contracts only, revenue-sharing (RS) contracts only, and a hybrid of these two types of contracts). Furthermore, we extend our study to examine the impacts of the number of competing retailers and the retailers’ fairness concerns on supply chain members’ optimal decisions. Lastly, the theoretical results are checked and illustrated by numerical examples with sensitivity analysis. The main findings are as follows: (1) As the proportion of information-sensitive consumers in the market increases, the level of product information disclosure of supply chain members increases in varying degrees, while supply chain members’ order quantities and profits first decrease and then increase in varying degrees. (2) When a RS contract is acceptable for all supply chain members, all members benefit from the cooperation between the manufacturer and retailers. (3) Although all supply chain members may benefit from an increase in the number of retailers, when the number of retailers is greater than a certain threshold, retailers would be caught in a “prisoner’s dilemma” of product information disclosure due to consumer information overload. Moreover, to maximize business profits, manufacturers should sometimes strictly limit and control the number of their reseller partners, rather than blindly expand their markets. (4) Retailers may benefit from their own fairness concerns if and only if the level of fairness concerns is sufficiently low, otherwise such concerns would be harmful to all supply chain members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://www.mckinsey.com/featured-insights/china/how-young-chinese-consumers-are-reshaping-global-luxury.

  2. http://www.ecns.cn/business/2016/05-12/210139.shtml.

  3. https://beyond4cs.com/loose-diamonds/blood-diamonds-controversy/.

  4. https://www.teenvogue.com/gallery/every-major-fashion-brand-fur-ban.

  5. https://gamerant.com/wii-u-child-labor-nintendo-foxconn/.

  6. This is because if \(a\le \frac{q_i}{\beta _{i}}\), then the sales of the retailer i is \(D_i(\alpha _0, \alpha _i, \alpha _j)=\beta _{i}a\), otherwise the sales of the \(q_{i}\). Thus, we can obtain that the expected sales of the retailer i is \(S_{i}(q_{i},\alpha _{i})=\beta _{i}E(min(a, \frac{q_i}{\beta _{i}}))=\beta _{i}(\int _{0}^{\frac{q_i}{\beta _{i}}}af(a)da+\int _{\frac{q_i}{\beta _{i}}}^{\infty }\frac{q_i}{\beta _{i}}f(a)da)=\beta _{i}\int _{0}^{\frac{q_i}{\beta _{i}}}\bar{F}(a)da=q_{i}-\beta _{i}\int _{0}^{\frac{q_i}{\beta _{i}}}F(a)da\). Specially, when \(\beta _{i}\) is equal to 1, the expected sales of the retailer i is \(S_{i}(q_{i},\alpha _{i})=\int _{0}^{q_i}\bar{F}(a)da=q_{i}-\int _{0}^{q_i}F(a)da\). Similarly, we can also derive Eqs. (3) and (4).

  7. https://www2.deloitte.com/ch/en/pages/consumer-business/articles/global-powers-of-luxury-goods-2015-press.html.

References

  • Adhikari, A., & Bisi, A. (2020). Collaboration, bargaining, and fairness concern for a green apparel supply chain: An emerging economy perspective. Transportation Research Part E: Logistics and Transportation Review, 135, 101863.

    Google Scholar 

  • Babich, V., & Hilary, G. (2020). Distributed ledgers and operations: What operations management researchers should know about blockchain technology. Manufacturing and Service Operations Management, 22(2), 223–240.

    Google Scholar 

  • Bai, Q., Gong, Y., Jin, M., & Xu, X. (2019). Effects of carbon emission reduction on supply chain coordination with vendor-managed deteriorating product inventory. International Journal of Production Economics, 208, 83–99.

    Google Scholar 

  • Banerjee, A. (2019). Blockchain with IOT: Applications and use cases for a new paradigm of supply chain driving efficiency and cost. Advances in Computers, 115, 259–292.

    Google Scholar 

  • Branco, F., Sun, M., & Villas-Boas, J. M. (2016). Too much information? Information provision and search costs. Marketing Science, 35(4), 605–618.

    Google Scholar 

  • Cachon, G. P., & Lariviere, M. A. (2005). Supply chain coordination with revenue-sharing contracts: Strengths and limitations. Management Science, 51(1), 30–44.

    Google Scholar 

  • Caliskandemirag, O., Chen, Y. F., & Li, J. (2010). Channel coordination under fairness concerns and nonlinear demand. European Journal of Operational Research, 207(3), 1321–1326.

    Google Scholar 

  • Chernonog, T. (2021). Strategic information sharing in online retailing under a consignment contract with revenue sharing. Annals of Operations Research, 300(2), 621–641.

    Google Scholar 

  • Choi, T. (2012). Handbook of newsvendor problems: Models, extensions and applications (2012th ed.). Springer.

    Google Scholar 

  • Choi, T. M. (2019). Blockchain-technology-supported platforms for diamond authentication and certification in luxury supply chains. Transportation Research Part E: Logistics and Transportation Review, 128, 17–29.

    Google Scholar 

  • Choi, T. M., Feng, L., & Li, R. (2020a). Information disclosure structure in supply chains with rental service platforms in the blockchain technology era. International Journal of Production Economics, 221, 107473.

    Google Scholar 

  • Choi, T. M., Guo, S., Liu, N., & Shi, X. (2020b). Optimal pricing in on-demand-service-platform-operations with hired agents and risk-sensitive customers in the blockchain era. European Journal of Operational Research, 284(3), 1031–1042.

    Google Scholar 

  • Choi, T. M., & Luo, S. (2019). Data quality challenges for sustainable fashion supply chain operations in emerging markets: Roles of blockchain, government sponsors and environment taxes. Transportation Research Part E: Logistics and Transportation Review, 131, 139–152.

    Google Scholar 

  • Choi, T. M., Wen, X., Sun, X., & Chung, S. H. (2019). The mean-variance approach for global supply chain risk analysis with air logistics in the blockchain technology era. Transportation Research Part E: Logistics and Transportation Review, 127, 178–191.

    Google Scholar 

  • Cui, T. H., Raju, J. S., & Zhang, Z. J. (2007). Fairness and channel coordination. Management Science, 53(8), 1303–1314.

    Google Scholar 

  • Du, S., Nie, T., Chu, C., & Yu, Y. (2014). Newsvendor model for a dyadic supply chain with Nash bargaining fairness concerns. International Journal of Production Research, 52(17), 5070–5085.

    Google Scholar 

  • Fan, Z. P., Wu, X. Y., & Cao, B. B. (2020). Considering the traceability awareness of consumers: Should the supply chain adopt the blockchain technology? Annals of Operations Research, 309, 837–860.

    Google Scholar 

  • Giannoccaro, I., & Pontrandolfo, P. (2004). Supply chain coordination by revenue sharing contracts. International Journal of Production Economics, 89(2), 131–139.

    Google Scholar 

  • Guan, X., Liu, B., Chen, Y. J., & Wang, H. (2020). Inducing supply chain transparency through supplier encroachment. Production and Operations Management, 29(3), 725–749.

    Google Scholar 

  • Hastig, G. M., & Sodhi, M. S. (2020). Blockchain for supply chain traceability: Business requirements and critical success factors. Production and Operations Management, 29(4), 935–954.

    Google Scholar 

  • Helo, P., & Hao, Y. (2019). Blockchains in operations and supply chains: A model and reference implementation. Computers and Industrial Engineering, 136, 242–251.

    Google Scholar 

  • Jacoby, J. (1984). Perspectives on information overload. Journal of consumer research, 10(4), 432–435.

    Google Scholar 

  • Katok, E., & Pavlov, V. (2013). Fairness in supply chain contracts: A laboratory study. Journal of Operations Management, 31(3), 129–137.

    Google Scholar 

  • Kouhizadeh, M., Saberi, S., & Sarkis, J. (2021). Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers. International Journal of Production Economics, 231, 107831.

    Google Scholar 

  • Li, G., Li, L., Choi, T., & Sethi, S. P. (2020a). Green supply chain management in Chinese firms: Innovative measures and the moderating role of quick response technology. Journal of Operations Management, 66(7–8), 958–988.

    Google Scholar 

  • Li, G., Lim, M. K., & Wang, Z. (2020b). Stakeholders, green manufacturing, and practice performance: Empirical evidence from Chinese fashion businesses. Annals of Operations Research, 290(1), 961–982.

    Google Scholar 

  • Li, G., Liu, M., Bian, Y., & Sethi, S. P. (2020c). Guarding against disruption risk by contracting under information asymmetry. Decision Sciences, 51(6), 1521–1559.

    Google Scholar 

  • Li, G., Wu, H., Sethi, S. P., & Zhang, X. (2021a). Contracting green product supply chains considering marketing efforts in the circular economy era. International Journal of Production Economics, 234, 108041.

    Google Scholar 

  • Li, G., Zheng, H., Sethi, S. P., & Guan, X. (2020d). Inducing downstream information sharing via manufacturer information acquisition and retailer subsidy. Decision Sciences, 51(3), 691–719.

    Google Scholar 

  • Li, Z., Xu, X., Bai, Q., Guan, X., & Zeng, K. (2021b). The interplay between blockchain adoption and channel selection in combating counterfeits. Transportation Research Part E: Logistics and Transportation Review, 155, 102451.

    Google Scholar 

  • Liu, W., Wang, S., Zhu, D., Wang, D., & Shen, X. (2018). Order allocation of logistics service supply chain with fairness concern and demand updating: Model analysis and empirical examination. Annals of Operations Research, 268(1), 177–213.

    Google Scholar 

  • Moon, I., & Feng, X. (2017). Supply chain coordination with a single supplier and multiple retailers considering customer arrival times and route selection. Transportation Research Part E: Logistics and Transportation Review, 106, 78–97.

    Google Scholar 

  • Nakamoto S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review, 21260.

  • Pan, X., Pan, X., Song, M., Ai, B., & Ming, Y. (2020). Blockchain technology and enterprise operational capabilities: An empirical test. International Journal of Information Management, 52, 101946.

    Google Scholar 

  • Pun, H., Swaminathan, J. M., & Hou, P. (2021). Blockchain adoption for combating deceptive counterfeits. Production and Operations Management, 30(4), 864–882.

    Google Scholar 

  • Qin, J., Wang, K., Wang, Z., & Xia, L. (2020). Revenue sharing contracts for horizontal capacity sharing under competition. Annals of Operations Research, 291(1), 731–760.

    Google Scholar 

  • Savaskan, R. C., Bhattacharya, S., & Van Wassenhove, L. N. (2004). Closed-loop supply chain models with product remanufacturing. Management Science, 50(2), 239–252.

    Google Scholar 

  • Shen, B., Xu, X., & Yuan, Q. (2020). Selling secondhand products through an online platform with blockchain. Transportation Research Part E: Logistics and Transportation Review, 142, 102066.

    Google Scholar 

  • Sun, F., Yang, H., Chen, J., & Wang, F. (2021). Disclosure of quality preference-revealing information in a supply chain with competitive products. Annals of Operations Research. https://doi.org/10.1007/s10479-021-03945-0

    Article  Google Scholar 

  • Wang, C. X., Webster, S., & Suresh, N. C. (2009). Would a risk-averse newsvendor order less at a higher selling price? European Journal of Operational Research, 196(2), 544–553.

    Google Scholar 

  • Wang, Y., Chen, C. H., & Zghari-Sales, A. (2021). Designing a blockchain enabled supply chain. International Journal of Production Research, 59(5), 1450–1475.

    Google Scholar 

  • Wu, X., & Niederhoff, J. A. (2014). Fairness in selling to the newsvendor. Production and Operations Management, 23(11), 2002–2022.

    Google Scholar 

  • Xie, J., & Wei, J. C. (2009). Coordinating advertising and pricing in a manufacturer-retailer channel. European Journal of Operational Research, 197(2), 785–791.

    Google Scholar 

  • Xu, X., Zeng, S., & He, Y. (2021). The impact of information disclosure on consumer purchase behavior on sharing economy platform Airbnb. International Journal of Production Economics, 231, 107846.

    Google Scholar 

  • Yang, J., Xie, J., Deng, X., & Xiong, H. (2013). Cooperative advertising in a distribution channel with fairness concerns. European Journal of Operational Research, 227(2), 401–407.

    Google Scholar 

  • Zhang, R. Q., Zhang, L. K., Zhou, W. H., Saigal, R., & Wang, H. W. (2014). The multi-item newsvendor model with cross-selling and the solution when demand is jointly normally distributed. European Journal of Operational Research, 236(1), 147–159.

    Google Scholar 

  • Zhang, Y., Donohue, K. L., & Cui, T. H. (2016). Contract preferences and performance for the loss-averse supplier: Buyback vs. revenue sharing. Management Science, 62(6), 1734–1754.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and the review team for their valuable comments and suggestions which have significantly improved the quality of this paper. This research was supported partially by the National Natural Science Foundation of China [Grant Nos. 71620107002, 71821001, 71971095 and 71771138] and Special Foundation for Taishan Scholars of Shandong Province, China [Grant No. tsqn201812061].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianhao Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

The proof of Theorem 1

Proof

Under Model W, substituting Eq. (2) into Eqs. (5) and (6), respectively. Thus, the profits of supply chain members are given as follows:

$$\begin{aligned} \mathop {\pi _{R1}^{W}(q_1,\alpha _1)=(p-v+g_r)\left( q_1-\beta _1\int _{0}^{\frac{q_1}{\beta _1}}F(a)da\right) -(c_r-v)q_1-\beta _1g_r\mu -wq_1-k\alpha _{1}^{2}}, \end{aligned}$$
(A.1)
$$\begin{aligned} \mathop {\pi _{R2}^{W}(q_2,\alpha _2)=(p-v+g_r)\left( q_2-\beta _2\int _{0}^{\frac{q_2}{\beta _2}}F(a)da\right) -(c_r-v)q_2-\beta _2g_r\mu -wq_2-k\alpha _{2}^{2}} \end{aligned}$$
(A.2)

and

$$\begin{aligned} \pi _{M}^{W}(\alpha _0)=\sum _{i=1}^{2}\bigg [(g_m\bigg (q_i-\beta _i\int _{0}^{\frac{q_i}{\beta _i}}F(a)da\bigg )-c_mq_i-\beta _{i}g_m\mu +wq_i \bigg ]-k\alpha _{0}^{2}. \end{aligned}$$
(A.3)

And \(\beta _{1}=(1-\lambda )+\lambda (\alpha _{0}+\alpha _{1}-\gamma \alpha _{2})\), \(\beta _{2}=(1-\lambda )+\lambda (\alpha _{0}+\alpha _{2}-\gamma \alpha _{1})\).

Solving this two-stage game using backward induction technology. Taking the first-order partial derivative of \(\pi _{Ri}^{W}(q_{i}, \alpha _{i})\) (\(=1, 2\)) with respect to \(q_i\) and \(\alpha _i\), respectively. Thus, we have

$$\begin{aligned} \frac{\partial \pi _{R1}^{W}}{\partial q_1}&=(p-v+g_r)(1-F(\frac{q_1}{\beta _1}))-(c_r-v)-w, \end{aligned}$$
(A.4)
$$\begin{aligned} \frac{\partial \pi _{R2}^{W}}{\partial q_2}&=(p-v+g_r)(1-F(\frac{q_2}{\beta _2}))-(c_r-v)-w, \end{aligned}$$
(A.5)
$$\begin{aligned} \frac{\partial \pi _{R1}^{W}}{\partial \alpha _{1}}&=\lambda (p-v+g_r)\left( \frac{q_1}{\beta _1}F(\frac{q_1}{\beta _1})-\int _{0}^{\frac{q_1}{\beta _1}}F(a)da\right) -\lambda g_r\mu -2k\alpha _1, \end{aligned}$$
(A.6)
$$\begin{aligned} \frac{\partial \pi _{R2}^{W}}{\partial \alpha _{2}}&=\lambda (p-v+g_r)\left( \frac{q_2}{\beta _2}F(\frac{q_2}{\beta _2})-\int _{0}^{\frac{q_2}{\beta _2}}F(a)da\right) -\lambda g_r\mu -2k\alpha _2. \end{aligned}$$
(A.7)

Taking the second-order partial derivative of \(\mathop \pi \nolimits _{Ri}^{W}(q_{i}, \alpha _{i})\) (\(=1, 2\)) with respect to \(\alpha _i\) and \(q_i\), respectively. Thus, the corresponding Hessian matrix is given as follows:

$$\begin{aligned} \mathop H_{Ri}\nolimits ^{W}&=\left[ {\begin{array}{*{20}{c}} {\frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{Ri}^{W} }}{{\partial \mathop \alpha \nolimits _i^2 }}}&{}{\frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{Ri}^{W} }}{{\partial \mathop \alpha \nolimits _i \partial q_i}}}\\ {\frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{Ri}^{W} }}{{\partial q_i\partial \mathop \alpha \nolimits _i }}}&{}{\frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{Ri}^{W} }}{{\partial \mathop q_i\nolimits ^2 }}} \end{array}} \right] \nonumber \\&=\begin{bmatrix} -\frac{\lambda ^2(p-v+g_r)q_{i}^2}{\beta _i^3}f(\frac{q_i}{\beta _i})-2k &{} \lambda (p-v+g_r)\frac{q_i}{\beta _i^2}f(\frac{q_i}{\beta _i})\\ \lambda (p-v+g_r)\frac{q_i}{\beta _i^2}f(\frac{q_i}{\beta _i}) &{} -\frac{(p-v+g_r)}{\beta _i}f(\frac{q_i}{\beta _i}) \end{bmatrix}. \end{aligned}$$
(A.8)

Thus, we have

$$\begin{aligned} \frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{Ri}^{W} }}{{\partial \mathop \alpha \nolimits _i^2 }}&= -\frac{\lambda ^2(p-v+g_r)q_{i}^2}{\beta _i^3}f(\frac{q_i}{\beta _i})-2k<0, \end{aligned}$$
(A.9)
$$\begin{aligned} \left| {\mathop H_{Ri}\nolimits ^{W} } \right|&= \left| {\begin{array}{*{20}{c}} -\frac{\lambda ^2(p-v+g_r)q_{i}^2}{\beta _i^3}f(\frac{q_i}{\beta _i})-2k &{} \lambda (p-v+g_r)\frac{q_i}{\beta _i^2}f(\frac{q_i}{\beta _i})\\ \lambda (p-v+g_r)\frac{q_i}{\beta _i^2}f(\frac{q_i}{\beta _i}) &{} -\frac{(p-v+g_r)}{\beta _i}f(\frac{q_i}{\beta _i})\end{array}} \right| \nonumber \\&= \frac{2k(p-v+g_r)}{\beta _i}f(\frac{q_i}{\beta _i})>0. \end{aligned}$$
(A.10)

Eqs. (A.9) and (A.10) yield that the Hessian matrix is a negative definite matrix. Consequently, the profit of the retailer i (\(=1\), 2) is a joint concave function of \(\alpha _i\) and \(q_i\), and the first-order conditions can guarantee optimality.

Next, at the Nash equilibrium, we solve the first-order conditions \(\frac{{\partial \mathop \pi \nolimits _{Ri}^{W} (q_{i}, \alpha _{i})}}{{\partial \mathop \alpha \nolimits _i }} = 0\) and \(\frac{{\partial \mathop \pi \nolimits _{Ri}^{W}(q_{i}, \alpha _{i}) }}{{\partial q_i}} = 0\). Thus, we can get four solutions

$$\begin{aligned} \mathop \alpha \nolimits _i^{W*}&=\frac{\lambda \left( (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \right) }{2k}, \end{aligned}$$
(A.11)
$$\begin{aligned} \mathop q\nolimits _i^{W}&=\left( 1-\lambda +\lambda (\alpha _0+(1-\gamma )\alpha _i)\right) A, \end{aligned}$$
(A.12)

and \(A=F^{-1}\left( \frac{p-c_r-w+g_r}{p-v+g_r}\right) \).

Then, substituting Eqs. (A.11) and (A.12) into Eq. (2), and taking the first-order partial derivative of \(\mathop \pi \nolimits _M^{W}(\alpha _{0})\) with respect to \(\mathop \alpha \nolimits _0 \), we have

$$\begin{aligned} \frac{\partial \pi _{M}^{W}(\alpha _{0})}{\partial \alpha _{0}}=2 \lambda (g_m+w-c_m)A-2\lambda g_m\bigg (\int _{0}^{A}F(a)da+\mu \bigg )-2k\alpha _{0}. \end{aligned}$$
(A.13)

Taking the second-order partial derivative of \(\pi _{M}^{W}(\alpha _{0})\) with respect to \(\alpha _0\), we have

$$\begin{aligned} \frac{\partial ^2 \pi _{M}^{W}(\alpha _{0})}{\partial \alpha _{0}^2}=-2k<0. \end{aligned}$$
(A.14)

Thus, the profit function of the manufacturer is a concave function of \(\mathop \alpha \nolimits _0 \), and the first-order condition can guarantee optimality.

Next, at the Nash equilibrium, we solve the first-order condition \(\frac{{\partial \mathop \pi \nolimits _{M}^{W}(\alpha _{0}) }}{{\partial \mathop \alpha \nolimits _0 }} = 0\). Thus, we can get three solutions

$$\begin{aligned} \alpha _{0}^{W*}&=\frac{\lambda \left( (g_m+w-c_m)A-g_m(\int _{0}^{A}F(a)da+\mu )\right) }{k}, \end{aligned}$$
(A.15)
$$\begin{aligned} q_{i}^{W*}&=\left( 1-\lambda +\lambda (\alpha _{0}^{W*}+(1-\gamma )\alpha _{1}^{W*})\right) A\\&=(1-\lambda ) A+\frac{\lambda ^{2}A\left( (g_m+w-c_m)A- g_m(\int _{0}^{A}F(a)da+\mu )\right) }{k}\nonumber \\&\quad +\frac{\lambda ^{2}(1-\gamma )A\left( (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \right) }{2k}\nonumber . \end{aligned}$$
(A.16)

\(\square \)

The proof of Theorem 2

Proof

Substituting Eqs. (A.11), (A.15) and (A.16) into Eqs. (A.1), (A.2) and (A.3), respectively. Thus, we have

$$\begin{aligned} \pi _{R1}^{W*}(q_{1}^{W*}, \alpha _{1}^{W*})&=\pi _{R2}^{W*}(q_{2}^{W*}, \alpha _{2}^{W*})\end{aligned}$$
(B.1)
$$\begin{aligned}&=(p-v+g_r)\left( q_{1}^{W*}-\frac{q_{1}^{W*}}{A}\int _{0}^{A}F(a)da\right) -(c_r-v)q_{1}^{W*}\nonumber \\&\quad -\frac{g_r\mu q_{1}^{W*}}{A}-wq_{1}^{W*}-k(\alpha _{1}^{W*})^{2}\nonumber \\&=(p-v+g_r)\left( q_{2}^{W*}-\frac{q_{2}^{W*}}{A}\int _{0}^{A}F(a)da\right) -(c_r-v)q_{2}^{W*}\nonumber \\&\quad -\frac{g_r\mu q_{2}^{W*}}{A}-wq_{2}^{W*}-k(\alpha _{2}^{W*})^{2}\nonumber \\&=\left( p-c_r-w+g_r-\frac{(p-v+g_r)\int _{0}^{A}F(a)da+g_r\mu }{A}\right) q_{1}^{W*}-k(\alpha _{1}^{W*})^{2},\nonumber \\ \pi _{M}^{W*}(\alpha _{0}^{W*})&=g_m\left( q_{1}^{W*}-\frac{q_{1}^{W*}}{A}\int _{0}^{A}F(a)da\right) -c_mq_{1}^{W*}-\frac{g_m\mu q_{1}^{W*}}{A}+wq_{1}^{W*}\nonumber \\&\quad +g_m\left( q_{2}^{W*}-\frac{q_{2}^{W*}}{A}\int _{0}^{A}F(a)da\right) -c_mq_{2}^{W*}-\frac{g_m\mu q_{2}^{W*}}{A}+wq_{2}^{W*}-k(\alpha _{0}^{W*})^{2}\\&=2\left( w+g_m-c_m-\frac{g_m(\int _{0}^{A}F(a)da+\mu )}{A}\right) q_{1}^{W*}-k(\alpha _{0}^{W*})^{2}.\nonumber \end{aligned}$$
(B.2)

\(\square \)

The proof of Corollary 1

Proof

Taking the first-order partial derivatives of \(\alpha _{0}^{W*}\), \(\alpha _{i}^{W*}\), \(q_{i}^{W*}\), \(\pi _{Ri}^{W*}(q_{i}^{W*}, \alpha _{i}^{W*})\) and \(\pi _{M}^{W*}(\alpha _{0}^{W*})\) with respect to \(\lambda \), where \(i=1\), 2, respectively. Thus, we have

$$\begin{aligned} \mathop \frac{\partial \alpha _{0}^{W*}}{\partial \lambda }&=\frac{(g_m+w-c_m)A-g_m(\int _{0}^{A}F(a)da+\mu )}{k}>0, \end{aligned}$$
(C.1)
$$\begin{aligned} \mathop \frac{\partial \alpha _{i}^{W*}}{\partial \lambda }&=\frac{(p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu }{2k}>0, \end{aligned}$$
(C.2)
$$\begin{aligned} \mathop \frac{\partial q_{i}^{W*}}{\partial \lambda }&=\frac{\lambda (1-\gamma )A\left( (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \right) }{k}\nonumber \\&\quad +\frac{2\lambda A\left( (g_m+w-c_m)A-g_m(\int _{0}^{A}F(a)da+\mu )\right) }{k}-A \end{aligned}$$
(C.3)
$$\begin{aligned}&=\frac{\lambda (1-\gamma ) A\left( (p-c_r+g_r)A-g_r\mu -(p-v+g_r)\int _{0}^{A}F(a)da\right) }{k}\nonumber \\&\quad +\frac{\lambda A^2\left( 2g_m+(1+\gamma )w-2c_m\right) -A\left( k+2\lambda g_m(\mu +\int _{0}^{A}F(a)da)\right) }{k},\nonumber \\ \mathop \frac{\partial \pi _{Ri}^{W*}}{\partial \lambda }&=\frac{\lambda (0.5-\gamma )\left( (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \right) ^{2}}{k}\nonumber \\&\quad +\frac{2\lambda A(g_m+w-c_m)\left( (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \right) }{k}\nonumber \\&\quad -\frac{2\lambda g_m(\int _{0}^{A}F(a)da+\mu )\left( (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \right) }{k}\nonumber \\&\quad -(p-c_r-w+g_r)A+(p-v+g_r)\int _{0}^{A}F(a)da+g_r\mu , \end{aligned}$$
(C.4)
$$\begin{aligned} \mathop \frac{\partial \pi _{M}^{W*}}{\partial \lambda }&=2\lambda (1-\gamma )\left( (g_m+w-c_m)A- g_m(\int _{0}^{A}F(a)da+\mu )\right) \nonumber \\&\quad *\frac{\left( (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \right) }{k}\nonumber \\&\quad +\frac{2\lambda \left( (g_m+w-c_m)A- g_m(\int _{0}^{A}F(a)da+\mu )\right) ^{2}}{k}\nonumber \\&\quad -2(g_m+w-c_m)A+ 2g_m\bigg (\int _{0}^{A}F(a)da+\mu \bigg ). \end{aligned}$$
(C.5)

Thus, if \(0\le \lambda \le min(\eta _1, 1)\), then \(\frac{\partial q_{i}^{W*}}{\partial \lambda }\le 0\), otherwise \(\frac{\partial q_{i}^{W*}}{\partial \lambda }> 0\); If \(0\le \lambda \le min(\eta _2, 1)\), then \(\frac{\partial \pi _{i}^{W*}}{\partial \lambda }\le 0\), otherwise \(\frac{\partial \pi _{i}^{W*}}{\partial \lambda }> 0\); And if \(0\le \lambda \le min(\eta _3, 1)\), then \(\frac{\partial \pi _{M}^{W*}}{\partial \lambda }\le 0\), otherwise \(\frac{\partial \pi _{M}^{W*}}{\partial \lambda }> 0\), where

\(\eta _{1}=\frac{k}{((1+\gamma )w+2g_m-2c_m)A-2 g_m(\mu +\int _{0}^{A}F(a)da)+(1-\gamma )\left\{ (p-c_r+g_r)A-g_r\mu -(p-v+g_r)\int _{0}^{A}F(a)da\right\} }\),

\(\eta _{2}=\frac{k}{((1.5+\gamma )w+2g_m-2c_m)A-2g_m(\mu +\int _{0}^{A}F(a)da)+(0.5-\gamma )\left\{ (p-c_r+g_r)A-g_r\mu -(p-v+g_r)\int _{0}^{A}F(a)da\right\} }\),

\(\eta _{3}=\frac{k}{\{\gamma w+g_m-c_m\}A-g_m(\mu +\int _{0}^{A}F(a)da)+(1-\gamma )\left\{ (p-c_r+g_r)A-g_r\mu -(p-v+g_r)\int _{0}^{A}F(a)da\right\} }\). \(\square \)

The proof of Theorem 3

Proof

Under Model RS, substituting Eqs. (2), (3) and (4) into Eqs. (12) and (13), respectively. Thus, the profits of the retailer i (=1, 2) and the manufacturer are given as follows:

$$\begin{aligned} \pi _{R1}^{RS}(q_1,\alpha _1)&=(\phi (p-v)+g_r)\left( q_1-\beta _1\int _{0}^{\frac{q_1}{\beta _1}}F(a)da\right) -(w_r+c_r-\phi v)q_1 \end{aligned}$$
(D.1)
$$\begin{aligned}&\quad -\beta _1g_r\mu -k\alpha _{1}^{2},\nonumber \\ \pi _{R2}^{RS}(q_2,\alpha _2)&=(\phi (p-v)+g_r)\left( q_2-\beta _2\int _{0}^{\frac{q_2}{\beta _2}}F(a)da\right) -(w_r+c_r-\phi v)q_2\nonumber \\&\quad -\beta _2g_r\mu -k\alpha _{2}^{2} \end{aligned}$$
(D.2)

and

$$\begin{aligned} \pi _{M}^{RS}(\alpha _0)&=\sum _{i=1}^{2}\bigg [(1-\phi )(p-v)+g_m)\left( q_i-\beta _i\int _{0}^{\frac{q_i}{\beta _i}}F(a)da\right) +(w_r-c_m+(1-\phi )v)q_i\nonumber \\&\quad -\beta _{i}g_m\mu \bigg ]-k\alpha _{0}^{2}. \end{aligned}$$
(D.3)

Substituting Eqs. (14) and (15) into Eqs. (D.1), (D.2) and (D.3), respectively. Thus, we have

$$\begin{aligned} \pi _{R1}^{RS}(q_1,\alpha _1)=\theta (p-v+g)\left( q_1-\beta _1\int _{0}^{\frac{q_1}{\beta _1}}F(a)da\right) -\theta (c-v)q_1-\beta _1\mu g_r-k\alpha _{1}^{2}, \end{aligned}$$
(D.4)
$$\begin{aligned} \pi _{R2}^{RS}(q_2,\alpha _2)=\theta (p-v+g)\left( q_2-\beta _2\int _{0}^{\frac{q_2}{\beta _2}}F(a)da\right) -\theta (c-v)q_2-\beta _2\mu g_r-k\alpha _{2}^{2} \end{aligned}$$
(D.5)

and

$$\begin{aligned} \pi _{M}^{RS}(\alpha _0)&=\sum _{i=1}^{2}\bigg [(1-\theta )(p-v+g)\left( q_i-\beta _i\int _{0}^{\frac{q_i}{\beta _i}}F(a)da\right) -(1-\theta )(c-v)q_i -\beta _{i}\mu g_m \bigg ]-k\alpha _{0}^{2}. \end{aligned}$$
(D.6)

Solving this two-stage game using backward induction technology. Taking the first-order partial derivative of \(\pi _{Ri}^{RS}(q_{i}, \alpha _{i})\) (\(=1, 2\)) with respect to \(q_i\) and \(\alpha _i\), respectively. Thus, we have

$$\begin{aligned} \frac{\partial \pi _{R1}^{RS}}{\partial q_1}&=\theta (p-v+g)(1-F(\frac{q_1}{\beta _1}))-\theta (c-v), \end{aligned}$$
(D.7)
$$\begin{aligned} \frac{\partial \pi _{R2}^{RS}}{\partial q_2}&=\theta (p-v+g)(1-F(\frac{q_2}{\beta _2}))-\theta (c-v), \end{aligned}$$
(D.8)
$$\begin{aligned} \frac{\partial \pi _{R1}^{RS}}{\partial \alpha _{1}}&=\lambda \theta (p-v+g)\left( \frac{q_1}{\beta _1}F(\frac{q_1}{\beta _1})-\int _{0}^{\frac{q_1}{\beta _1}}F(a)da\right) -\lambda \mu g_r-2k\alpha _1, \end{aligned}$$
(D.9)
$$\begin{aligned} \frac{\partial \pi _{R2}^{RS}}{\partial \alpha _{2}}&=\lambda \theta (p-v+g)\left( \frac{q_2}{\beta _2}F(\frac{q_2}{\beta _2})-\int _{0}^{\frac{q_2}{\beta _2}}F(a)da\right) -\lambda \mu g_r-2k\alpha _2. \end{aligned}$$
(D.10)

Taking the second-order partial derivative of \(\mathop \pi \nolimits _{Ri}^{RS}(q_{i}, \alpha _{i})\) (\(=1, 2\)) with respect to \(\alpha _i\) and \(q_i\), respectively. Thus, the corresponding Hessian matrix is given by as follows:

$$\begin{aligned} \mathop H_{Ri}\nolimits ^{RS}&=\left[ {\begin{array}{*{20}{c}} {\frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{Ri}^{RS} }}{{\partial \mathop \alpha \nolimits _i^2 }}}&{}{\frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{Ri}^{RS} }}{{\partial \mathop \alpha \nolimits _i \partial q_i}}}\\ {\frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{Ri}^{RS} }}{{\partial q_i\partial \mathop \alpha \nolimits _i }}}&{}{\frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{Ri}^{RS} }}{{\partial \mathop q_i\nolimits ^2 }}} \end{array}} \right] \nonumber \\&=\begin{bmatrix} -\frac{\lambda ^2\theta (p-v+g)q_{i}^2}{\beta _i^3}f(\frac{q_i}{\beta _i})-2k &{} \lambda \theta (p-v+g)\frac{q_i}{\beta _i^2}f(\frac{q_i}{\beta _i})\\ \lambda \theta (p-v+g)\frac{q_i}{\beta _i^2}f(\frac{q_i}{\beta _i}) &{} -\frac{\theta (p-v+g)}{\beta _i}f(\frac{q_i}{\beta _i}) \end{bmatrix}. \end{aligned}$$
(D.11)

Thus, we have

$$\begin{aligned} \frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{Ri}^{RS} }}{{\partial \mathop \alpha \nolimits _i^2 }}&= -\frac{\lambda ^2\theta (p-v+g)q_{i}^2}{\beta _i^3}f(\frac{q_i}{\beta _i})-2k<0, \end{aligned}$$
(D.12)
$$\begin{aligned} \left| {\mathop H_{Ri}\nolimits ^{RS} } \right|&= \left| {\begin{array}{*{20}{c}} -\frac{\lambda ^2\theta (p-v+g)q_{i}^2}{\beta _i^3}f(\frac{q_i}{\beta _i})-2k &{} \lambda \theta (p-v+g)\frac{q_i}{\beta _i^2}f(\frac{q_i}{\beta _i})\\ \lambda \theta (p-v+g)\frac{q_i}{\beta _i^2}f(\frac{q_i}{\beta _i}) &{} -\frac{\theta (p-v+g)}{\beta _i}f(\frac{q_i}{\beta _i})\end{array}} \right| \\&= \frac{2\theta k(p-v+g)}{\beta _i}f(\frac{q_i}{\beta _i})>0.\nonumber \end{aligned}$$
(D.13)

Eqs. (D.12) and (D.13) yield that the Hessian matrix is a negative definite matrix. Consequently, the profit of the retailer i (\(=1, 2\)) is a joint concave function of \(\alpha _i\) and \(q_i\), and thus the first-order conditions can guarantee optimality.

Next, at the Nash equilibrium, we solve the first-order conditions \(\frac{{\partial \mathop \pi \nolimits _{Ri}^{RS} (q_{i}, \alpha _{i})}}{{\partial \mathop \alpha \nolimits _i }} = 0\), \(\frac{{\partial \mathop \pi \nolimits _{Ri}^{RS}(q_{i}, \alpha _{i}) }}{{\partial q_i}} = 0\), where \(i=1\), 2. Thus, we can get four solutions

$$\begin{aligned} \mathop \alpha \nolimits _i^{RS*}&=\frac{\lambda \left( \theta (p-c+g)D-\theta (p-v+g)\int _{0}^{D}F(a)da-\mu g_r \right) }{2k}, \end{aligned}$$
(D.14)
$$\begin{aligned} \mathop q\nolimits _i^{RS}&=\left( 1-\lambda +\lambda (\alpha _0+(1-\gamma )\alpha _1)\right) D, \end{aligned}$$
(D.15)

and \(D=F^{-1}\left( \frac{p-c+g}{p-v+g}\right) \).

Then, substituting Eqs. (D.14) and (D.15) into Eq. (2), respectively, and taking the first-order partial derivative of \(\mathop \pi \nolimits _M^{RS}(\alpha _{0})\) with respect to \(\mathop \alpha \nolimits _0 \), we have

$$\begin{aligned} \frac{\partial \pi _{M}^{RS}(\alpha _{0})}{\partial \alpha _{0}}&=2\lambda (1-\theta )\left( (p-v+g)(D-\int _{0}^{D}F(x)dx)-(c-v)D\right) -2\lambda \mu g_m-2k\alpha _{0}. \end{aligned}$$
(D.16)

Taking the second-order partial derivative of \(\pi _{M}^{RS}(\alpha _{0})\) with respect to \(\alpha _0\), we have

$$\begin{aligned} \frac{\partial ^2 \pi _{M}^{RS}(\alpha _{0})}{\partial \alpha _{0}^2}=-2k<0. \end{aligned}$$
(D.17)

Thus, the profit function of the manufacturer is a concave function in \(\mathop \alpha \nolimits _0 \), and the first-order condition can guarantee optimality.

Next, at the Nash equilibrium, we solve the first-order condition \(\frac{{\partial \mathop \pi \nolimits _{M}^{RS}(\alpha _{0}) }}{{\partial \mathop \alpha \nolimits _0 }} = 0\). Thus, we can get three solutions

$$\begin{aligned} \alpha _{0}^{RS*}&=\frac{\lambda (1-\theta )\left( (p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da\right) -\lambda \mu g_m}{k}, \end{aligned}$$
(D.18)
$$\begin{aligned} q_{i}^{RS*}&=(1-\lambda +\lambda (\alpha _{0}^{RS*}+(1-\gamma )\alpha _{i}^{RS*}))D\\&=(1-\lambda ) D+\frac{\lambda ^{2}(1-\gamma )D\left( \theta (p-c+g)D-\theta (p-v+g)\int _{0}^{D}F(a)da-\mu g_r\right) }{2k}\nonumber \\&\quad +\frac{\lambda ^{2}(1-\theta )D\left( (p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da\right) -\lambda ^{2}\mu D g_m}{k}\nonumber \\&=(1-\lambda ) D+\frac{\lambda ^{2}(2-\theta -\theta \gamma )D\left( (p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da\right) }{2k}\nonumber \\&\quad -\frac{\lambda ^{2}\mu D((1-\gamma )g_r+2g_m)}{2k}.\nonumber \end{aligned}$$
(D.19)

\(\square \)

The proof of Theorem 4

Proof

Substituting Eqs. (D.14), (D.18) and (D.19) into Eqs. (D.4), (D.5) and (D.6), respectively. Thus, we have

$$\begin{aligned} \pi _{R1}^{RS*}(q_{1}^{RS*}, \alpha _{1}^{RS*})&=\pi _{R2}^{RS*}(q_{2}^{RS*}, \alpha _{2}^{RS*}) \end{aligned}$$
(E.1)
$$\begin{aligned}&=\theta (p-v+g)\left( q_{1}^{RS*}-\frac{q_{1}^{RS*}}{D}\int _{0}^{D}F(a)da\right) -\theta (c-v)q_{1}^{RS*}\nonumber \\&\quad -\frac{\mu g_r q_{1}^{RS*}}{D}-k(\alpha _{1}^{RS*})^{2}\nonumber \\&=\theta (p-v+g)\left( q_{2}^{RS*}-\frac{q_{2}^{RS*}}{D}\int _{0}^{D}F(a)da\right) -\theta (c-v)q_{2}^{RS*}\nonumber \\&\quad -\frac{\mu g_r q_{2}^{RS*}}{D}-k(\alpha _{2}^{RS*})^{2}\nonumber \\&=\left( \theta (p-c+g)-\frac{\theta (p-v+g)\int _{0}^{D}F(a)da+\mu g_r}{D}\right) q_{1}^{RS*}-k(\alpha _{1}^{RS*})^{2},\nonumber \\ \pi _{M}^{RS*}(\alpha _{0}^{RS*})&=(1-\theta )(p-v+g)\left( q_{1}^{RS*}-\frac{q_{1}^{RS*}}{D}\int _{0}^{D}F(a)da\right) -(1-\theta )(c-v)q_{1}^{RS*}\nonumber \\&\quad -\frac{\mu g_m q_{1}^{RS*}}{D}+(1-\theta )(p-v+g)\left( q_{2}^{RS*}-\frac{q_{2}^{RS*}}{D}\int _{0}^{D}F(a)da\right) \nonumber \\&\quad -(1-\theta )(c-v)q_{2}^{RS*}-\frac{\mu g_m q_{2}^{RS*}}{D}-k(\alpha _{0}^{RS*})^{2}\\&=2\left( (1-\theta )(p-c+g)-\frac{(1-\theta )(p-v+g)\int _{0}^{D}F(a)da+\mu g_m}{D}\right) q_{1}^{RS*}\nonumber \\&\quad -k(\alpha _{0}^{RS*})^{2}.\nonumber \end{aligned}$$
(E.2)

\(\square \)

The proof of Corollary 2

Proof

Taking the first-order partial derivatives of \(\alpha _{0}^{RS*}\), \(\alpha _{i}^{RS*}\), \(q_{i}^{RS*}\), \(\pi _{Ri}^{RS*}(q_{i}^{RS*}, \alpha _{i}^{RS*})\) and \(\pi _{M}^{RS*}(\alpha _{0}^{RS*})\) with respect to \(\lambda \), where \(i=1\), 2, respectively. Thus, we have

$$\begin{aligned} \mathop \frac{\partial \alpha _{0}^{RS*}}{\partial \lambda }&=\frac{(1-\theta )\left( (p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da\right) -\mu g_m}{k}>0, \end{aligned}$$
(F.1)
$$\begin{aligned} \mathop \frac{\partial \alpha _{i}^{RS*}}{\partial \lambda }&=\frac{\theta (p-c+g)D-\theta (p-v+g)\int _{0}^{D}F(a)da-\mu g_r}{2k}>0, \end{aligned}$$
(F.2)
$$\begin{aligned} \mathop \frac{\partial q_{i}^{RS*}}{\partial \lambda }&=-D+\frac{\lambda (2-\theta -\theta \gamma )D\left( (p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da\right) -\lambda \mu D((1-\gamma )g_r+2g_m)}{k}, \end{aligned}$$
(F.3)
$$\begin{aligned} \frac{\partial \pi _{Ri}^{RS*}}{\partial \lambda }&=\left( \frac{\lambda (4-3\theta -2\theta \gamma )\{(p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da\}-\lambda \mu ((1-2\gamma )g_r+4g_m)-2k}{2k}\right) \nonumber \\&\quad *\left( \theta (p-c+g)D-\theta (p-v+g)\int _{0}^{D}F(a)da-\mu g_r\right) , \end{aligned}$$
(F.4)
$$\begin{aligned} \mathop \frac{\partial \pi _{M}^{RS*}}{\partial \lambda }&=\left( \frac{2\lambda (1-\theta \gamma )\{(p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da\}-2\lambda \mu ((1-\gamma )g_r+g_m)-2k}{k}\right) \nonumber \\&\quad *\left( (1-\theta )(p-c+g)D-(1-\theta )(p-v+g)\int _{0}^{D}F(a)da-\mu g_m\right) , \end{aligned}$$
(F.5)

Thus, if \(0\le \lambda \le min(\eta _4, 1)\), then \(\frac{\partial q_{i}^{RS*}}{\partial \lambda }\le 0\), otherwise \(\frac{\partial q_{i}^{RS*}}{\partial \lambda }> 0\); If \(0\le \lambda \le min(\eta _5, 1)\), then \(\frac{\partial \pi _{i}^{RS*}}{\partial \lambda }\le 0\), otherwise \(\frac{\partial \pi _{i}^{RS*}}{\partial \lambda }> 0\); And if \(0\le \lambda \le min(\eta _6, 1)\), then \(\frac{\partial \pi _{M}^{RS*}}{\partial \lambda }\le 0\), otherwise \(\frac{\partial \pi _{M}^{RS*}}{\partial \lambda }> 0\), where

\(\eta _{4}=\frac{k}{(2-\theta -\theta \gamma )\{(p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da\}-\mu ((1-\gamma )g_r+2g_m)}\),

\(\eta _{5}=\frac{2k}{(4-3\theta -2\theta \gamma )\{(p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da\}-\mu ((1-2\gamma )g_r+4g_m)}\),

\(\eta _{6}=\frac{k}{(1-\theta \gamma )\{(p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da\}-\mu ((1-\gamma )g_r+g_m)}\). \(\square \)

The proof of Theorem 5

Proof

Under Model WRS, substituting Eqs. (2), (3), (4), (14) and (15) into Eqs. (21), (22) and (23), respectively. Thus, the profits of the retailer i (\(=1\), 2) and the manufacturer are given as follows:

$$\begin{aligned} \pi _{R1}^{WRS}(q_1,\alpha _1)=(p-v+g_r)\left( q_1-\beta _1\int _{0}^{\frac{q_1}{\beta _1}}F(a)da\right) -(c_r-v)q_1-\beta _1g_r\mu -wq_1-k\alpha _{1}^{2}, \end{aligned}$$
(G.1)
$$\begin{aligned} \pi _{R2}^{WRS}(q_2,\alpha _2)=\theta (p-v+g)\left( q_2-\beta _2\int _{0}^{\frac{q_2}{\beta _2}}F(a)da\right) -\theta (c-v)q_2-\beta _2 g_r\mu -k\alpha _{2}^{2} \end{aligned}$$
(G.2)

and

$$\begin{aligned} \pi _{M}^{WRS}(\alpha _0)&=g_m\left( q_1-\beta _1\int _{0}^{\frac{q_1}{\beta _1}}F(a)da\right) -c_mq_1-\beta _{1} g_m\mu +wq_1\nonumber \\&\quad +(1-\theta )(p-v+g)\left( q_2-\beta _2\int _{0}^{\frac{q_2}{\beta _2}}F(a)da\right) \nonumber \\&\quad -(1-\theta )(c-v)q_2-\beta _{2}g_m\mu -k\alpha _{0}^{2}. \end{aligned}$$
(G.3)

Solving this two-stage game using backward induction technology. Taking the first-order partial derivative of \(\pi _{Ri}^{WRS}(q_{i}, \alpha _{i})\) (\(=1, 2\)) with respect to \(q_i\) and \(\alpha _i\), respectively. Thus, we have

$$\begin{aligned} \frac{\partial \pi _{R1}^{WRS}}{\partial q_1}&=(p-v+g_r)(1-F(\frac{q_1}{\beta _1}))-(c_r-v)-w, \end{aligned}$$
(G.4)
$$\begin{aligned} \frac{\partial \pi _{R2}^{WRS}}{\partial q_2}&=\theta (p-v+g)(1-F(\frac{q_2}{\beta _2}))-\theta (c-v), \end{aligned}$$
(G.5)
$$\begin{aligned} \frac{\partial \pi _{R1}^{WRS}}{\partial \alpha _{1}}&=\lambda (p-v+g_r)\left( \frac{q_1}{\beta _1}F(\frac{q_1}{\beta _1})-\int _{0}^{\frac{q_1}{\beta _1}}F(a)da\right) -\lambda g_r\mu -2k\alpha _1, \end{aligned}$$
(G.6)
$$\begin{aligned} \frac{\partial \pi _{R2}^{WRS}}{\partial \alpha _{2}}&=\lambda \theta (p-v+g)\left( \frac{q_2}{\beta _2}F(\frac{q_2}{\beta _2})-\int _{0}^{\frac{q_2}{\beta _2}}F(a)da\right) -\lambda g_r\mu -2k\alpha _2. \end{aligned}$$
(G.7)

Taking the second-order partial derivative of \(\mathop \pi \nolimits _{Ri}^{WRS}(q_{i}, \alpha _{i})\) (\(=1, 2\)) with respect to \(\alpha _i\) and \(q_i\), respectively. Thus, the corresponding Hessian matrices are given as follows:

$$\begin{aligned} \mathop H_{R1}\nolimits ^{WRS}&=\left[ {\begin{array}{*{20}{c}} {\frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{R1}^{WRS} }}{{\partial \mathop \alpha \nolimits _1^2 }}}&{}{\frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{R1}^{WRS} }}{{\partial \mathop \alpha \nolimits _1 \partial q_1}}}\\ {\frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{R1}^{WRS} }}{{\partial q_1\partial \mathop \alpha \nolimits _1 }}}&{}{\frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{R1}^{WRS} }}{{\partial \mathop q_1\nolimits ^2 }}} \end{array}} \right] \end{aligned}$$
(G.8)
$$\begin{aligned}&=\begin{bmatrix} -\frac{\lambda ^2(p-v+g_r)q_{1}^2}{\beta _1^3}f(\frac{q_1}{\beta _1})-2k &{} \lambda (p-v+g_r)\frac{q_1}{\beta _1^2}f(\frac{q_1}{\beta _1})\\ \lambda (p-v+g_r)\frac{q_1}{\beta _1^2}f(\frac{q_1}{\beta _1}) &{} -\frac{(p-v+g_r)}{\beta _1}f(\frac{q_1}{\beta _1}) \end{bmatrix},\nonumber \\ \mathop H_{R2}\nolimits ^{WRS}&=\left[ {\begin{array}{*{20}{c}} {\frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{R2}^{WRS} }}{{\partial \mathop \alpha \nolimits _2^2 }}}&{}{\frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{R2}^{WRS} }}{{\partial \mathop \alpha \nolimits _2 \partial q_2}}}\\ {\frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{R2}^{WRS} }}{{\partial q_2\partial \mathop \alpha \nolimits _2 }}}&{}{\frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{R2}^{WRS} }}{{\partial \mathop q_2\nolimits ^2 }}} \end{array}} \right] \\&=\begin{bmatrix} -\frac{\lambda ^2\theta (p-v+g)q_{2}^2}{\beta _2^3}f(\frac{q_2}{\beta _2})-2k &{} \lambda \theta (p-v+g)\frac{q_2}{\beta _2^2}f(\frac{q_2}{\beta _2})\\ \lambda \theta (p-v+g)\frac{q_2}{\beta _2^2}f(\frac{q_2}{\beta _2}) &{} -\frac{\theta (p-v+g)}{\beta _2}f(\frac{q_2}{\beta _2}) \end{bmatrix}.\nonumber \end{aligned}$$
(G.9)

Thus, we have

$$\begin{aligned} \frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{R1}^{WRS} }}{{\partial \mathop \alpha \nolimits _1^2 }}&= -\frac{\lambda ^2(p-v+g_r)q_{1}^2}{\beta _1^3}f(\frac{q_1}{\beta _1})-2k<0, \end{aligned}$$
(G.10)
$$\begin{aligned} \left| {\mathop H_{R1}\nolimits ^{WRS} } \right|&= \left| {\begin{array}{*{20}{c}} -\frac{\lambda ^2(p-v+g_r)q_{1}^2}{\beta _1^3}f(\frac{q_1}{\beta _1})-2k &{} \lambda (p-v+g_r)\frac{q_1}{\beta _1^2}f(\frac{q_1}{\beta _1})\\ \lambda (p-v+g_r)\frac{q_1}{\beta _1^2}f(\frac{q_1}{\beta _1}) &{} -\frac{(p-v+g_r)}{\beta _1}f(\frac{q_1}{\beta _1})\end{array}} \right| \end{aligned}$$
(G.11)
$$\begin{aligned}&= \frac{2k(p-v+g_r)}{\beta _1}f(\frac{q_1}{\beta _1})>0,\nonumber \\ \frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{R2}^{WRS} }}{{\partial \mathop \alpha \nolimits _2^2 }}&= -\frac{\lambda ^2\theta (p-v+g)q_{2}^2}{\beta _2^3}f(\frac{q_2}{\beta _2})-2k<0, \end{aligned}$$
(G.12)
$$\begin{aligned} \left| {\mathop H_{R2}\nolimits ^{WRS} } \right|&= \left| {\begin{array}{*{20}{c}} -\frac{\lambda ^2\theta (p-v+g)q_{2}^2}{\beta _2^3}f(\frac{q_2}{\beta _2})-2k &{} \lambda \theta (p-v+g)\frac{q_2}{\beta _2^2}f(\frac{q_2}{\beta _2})\\ \lambda \theta (p-v+g)\frac{q_2}{\beta _2^2}f(\frac{q_2}{\beta _2}) &{} -\frac{\theta (p-v+g)}{\beta _2}f(\frac{q_2}{\beta _2})\end{array}} \right| \\&= \frac{2\theta k(p-v+g)}{\beta _2}f(\frac{q_2}{\beta _2})>0.\nonumber \end{aligned}$$
(G.13)

Eqs. (G.10), (G.11), (G.12) and (G.13) yield that the above Hessian matrices are negative definite matrices. Consequently, the profit of the retailer i (\(=1, 2\)) is a joint concave function of \(\alpha _i\) and \(q_i\), and the first-order conditions can guarantee optimality.

Next, at the Nash equilibrium, we solve the first-order conditions \(\frac{{\partial \mathop \pi \nolimits _{Ri}^{WRS} (q_{i}, \alpha _{i})}}{{\partial \mathop \alpha \nolimits _i }} = 0\), \(\frac{{\partial \mathop \pi \nolimits _{Ri}^{WRS}(q_{i}, \alpha _{i}) }}{{\partial q_i}} = 0\), where \(i=1, 2\). Thus, we can get four solutions

$$\begin{aligned} \mathop \alpha \nolimits _1^{WRS*}&=\frac{\lambda \left( (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \right) }{2k}, \end{aligned}$$
(G.14)
$$\begin{aligned} \mathop \alpha \nolimits _2^{WRS*}&=\frac{\lambda \left( \theta (p-c+g)D-\theta (p-v+g)\int _{0}^{D}F(a)da-g_r\mu \right) }{2k}, \end{aligned}$$
(G.15)
$$\begin{aligned} \mathop q\nolimits _1^{WRS}&=(1-\lambda +\lambda (\alpha _0+\alpha _1-\gamma \alpha _2))A, \end{aligned}$$
(G.16)
$$\begin{aligned} \mathop q\nolimits _2^{WRS}&=(1-\lambda +\lambda (\alpha _0+\alpha _2-\gamma \alpha _1))D. \end{aligned}$$
(G.17)

Then, substituting Eqs. (G.14), (G.15), (G.16) and (G.17) into Eq. (G.3), and taking the first-order partial derivative of \(\mathop \pi \nolimits _M^{WRS}(\alpha _{0})\) with respect to \(\mathop \alpha \nolimits _0\), we have

$$\begin{aligned} \frac{\partial \pi _{M}^{WRS}(\alpha _{0})}{\partial \alpha _{0}}&=\lambda (g_m+w-c_m)A-\lambda g_m\left( \int _{0}^{A}F(a)da+2\mu \right) -2k\alpha _{0}\\&\quad +\lambda (1-\theta )\left( (p-v+g)(D-\int _{0}^{D}F(a)da)-(c-v)D\right) .\nonumber \end{aligned}$$
(G.18)

Taking the second-order partial derivative of \(\pi _{M}^{WRS}(\alpha _{0})\) with respect to \(\alpha _0\), we have

$$\begin{aligned} \frac{\partial ^2 \pi _{M}^{WRS}(\alpha _{0})}{\partial \alpha _{0}^2}=-2k<0. \end{aligned}$$
(G.19)

Thus, the profit function of the manufacturer is a concave function in \(\mathop \alpha \nolimits _0 \), and the first-order condition can guarantee optimality.

Next, at the Nash equilibrium, we solve the first-order condition \(\frac{{\partial \mathop \pi \nolimits _{M}^{WRS}(\alpha _{0}) }}{{\partial \mathop \alpha \nolimits _0 }} = 0\). Thus, we can get three solutions

$$\begin{aligned} \alpha _{0}^{WRS*}&=\frac{\lambda (1-\theta )\left( (p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da\right) -\lambda \mu g_m}{2k} \end{aligned}$$
(G.20)
$$\begin{aligned}&\quad +\frac{\lambda \left( (g_m+w-c_m)A- g_m(\int _{0}^{A}F(a)da+\mu )\right) }{2k},\nonumber \\ q_{1}^{WRS*}&=(1-\lambda +\lambda (\alpha _{0}^{WRS*}+\alpha _{1}^{WRS*}-\gamma \alpha _{2}^{WRS*}))A \end{aligned}$$
(G.21)
$$\begin{aligned}&=(1-\lambda )A+\frac{\lambda ^{2}A\left( (p-c+g)A-(p-v+g)\int _{0}^{A}F(a)da-g\mu \right) }{2k}\nonumber \\&\quad +\frac{\lambda ^{2}(1-\theta -\theta \gamma )A\left( (p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da\right) -\lambda ^{2}\mu A(g_m-\gamma g_r)}{2k},\nonumber \\ q_{2}^{WRS*}&=(1-\lambda +\lambda (\alpha _{0}^{WRS*}+\alpha _{2}^{WRS*}-\gamma \alpha _{1}^{WRS*}))D \\&=(1-\lambda )D+\frac{\lambda ^{2}D\left( (p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da-g\mu \right) }{2k}\nonumber \\&\quad -\frac{\lambda ^{2}\gamma D\left( (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \right) }{2k}\nonumber \\&\quad +\frac{\lambda ^{2}D\left( (g_m+w-c_m)A- g_m(\int _{0}^{A}F(a)da+\mu )\right) }{2k}.\nonumber \end{aligned}$$
(G.22)

\(\square \)

The proof of Theorem 6

Proof

Substituting Eqs. (G.14), (G.15), (G.20), (G.21) and (G.22) into Eqs. (G.1), (G.2) and (G.3), respectively. Thus, we have

$$\begin{aligned} \pi _{R1}^{WRS*}(q_{1}^{WRS*}, \alpha _{1}^{WRS*})&=(p-v+g_r)\left( q_{1}^{WRS*}-\frac{q_{1}^{WRS*}}{A}\int _{0}^{A}F(a)da\right) -(c_r-v)q_{1}^{WRS*}\nonumber \\&\quad -\frac{g_r\mu q_{1}^{WRS*}}{A}-wq_{1}^{WRS*}\nonumber \\&-k(\alpha _{1}^{WRS*})^{2} \end{aligned}$$
(H.1)
$$\begin{aligned}&=\left( p-c_r-w+g_r-\frac{(p-v+g_r)\int _{0}^{A}F(a)da+g_r\mu }{A}\right) q_{1}^{WRS*}\nonumber \\&-k(\alpha _{1}^{WRS*})^{2},\nonumber \\ \pi _{R2}^{WRS*}(q_{2}^{WRS*}, \alpha _{2}^{WRS*})&=\theta (p-v+g)\left( q_{2}^{WRS*}-\frac{q_{2}^{WRS*}}{D}\int _{0}^{D}F(a)da\right) -\theta (c-v)q_{2}^{WRS*}\nonumber \\&\quad -\frac{g_r\mu q_{2}^{WRS*}}{D}-k(\alpha _{2}^{WRS*})^{2} \end{aligned}$$
(H.2)
$$\begin{aligned}&=\left( \theta (p-c+g)-\frac{\theta (p-v+g)\int _{0}^{D}F(a)da+g_r\mu }{D}\right) q_{2}^{WRS*}\nonumber \\&-k(\alpha _{2}^{WRS*})^{2},\nonumber \\ \pi _{M}^{WRS*}(\alpha _{0}^{WRS*})&=g_m\left( q_{1}^{WRS*}-\frac{q_{1}^{WRS*}}{A}\int _{0}^{A}F(a)da\right) -c_mq_{1}^{WRS*}-\frac{g_m\mu q_{1}^{WRS*}}{A}\nonumber \\&+wq_{1}^{WRS*}\nonumber \\&\quad +(1-\theta )(p-v+g)\left( q_{2}^{WRS*}-\frac{q_{2}^{WRS*}}{D}\int _{0}^{D}F(a)da\right) -(1-\theta )(c-v)q_{2}^{WRS*}\nonumber \\&\quad -\frac{g_m\mu q_{2}^{WRS*}}{D}-k(\alpha _{0}^{WRS*})^{2}\\&=\left( (1-\theta )(p-c+g)-\frac{(1-\theta )(p-v+g)\int _{0}^{D}F(a)da+g_m\mu }{D}\right) q_{2}^{WRS*}\nonumber \\&\quad +\left( w+g_m-c_m-\frac{g_m(\int _{0}^{A}F(a)da+\mu )}{A}\right) q_{1}^{WRS*}-k(\alpha _{0}^{WRS*})^{2}.\nonumber \end{aligned}$$
(H.3)

\(\square \)

The proof of Corollary 3

Proof

Taking the first-order partial derivatives of \(\alpha _{0}^{WRS*}\), \(\alpha _{i}^{WRS*}\), \(q_{i}^{WRS*}\), \(\pi _{Ri}^{WRS*}(q_{i}^{WRS*}, \alpha _{i}^{WRS*})\) and \(\pi _{M}^{WRS*}(\alpha _{0}^{WRS*})\) with respect to \(\lambda \), where \(i=1\), 2, respectively. Thus, we have

$$\begin{aligned} \mathop \frac{\partial \alpha _{0}^{WRS*}}{\partial \lambda }&=\frac{(1-\theta )\left( (p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da\right) -g_m\mu }{2k}\nonumber \\&\quad +\frac{(g_m+w-c_m)A-g_m(\int _{0}^{A}F(a)da+\mu )}{2k}>0, \end{aligned}$$
(I.1)
$$\begin{aligned} \frac{\partial \alpha _{1}^{WRS*}}{\partial \lambda }&=\frac{ (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu }{2k}>0, \end{aligned}$$
(I.2)
$$\begin{aligned} \frac{\partial \alpha _{2}^{WRS*}}{\partial \lambda }&=\frac{\theta (p-c+g)D-\theta (p-v+g)\int _{0}^{D}F(a)da-g_r\mu }{2k}>0, \end{aligned}$$
(I.3)
$$\begin{aligned} \mathop \frac{\partial q_{1}^{WRS*}}{\partial \lambda }&=-A+\frac{\lambda A\left( (p-c+g)A-(p-v+g)\int _{0}^{A}F(a)da-g\mu \right) }{k}\nonumber \\&\quad +\frac{\lambda (1-\theta -\theta \gamma )A\left( (p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da\right) -\lambda \mu A(g_m-\gamma g_r)}{k}, \end{aligned}$$
(I.4)
$$\begin{aligned} \mathop \frac{\partial q_{2}^{WRS*}}{\partial \lambda }&=-D+\frac{\lambda D\left( (p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da-g\mu \right) }{k}\nonumber \\&\quad -\frac{\lambda \gamma D\left( (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \right) }{k}\nonumber \\&\quad +\frac{\lambda D\left( (g_m+w-c_m)A- g_m(\int _{0}^{A}F(a)da+\mu )\right) }{k}, \end{aligned}$$
(I.5)
$$\begin{aligned} \frac{\partial \pi _{R1}^{WRS*}}{\partial \lambda }&=\left( (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \right) \nonumber \\&\quad *\bigg (-1+\frac{\lambda \left( (p-c+g)A-(p-v+g)\int _{0}^{A}F(a)da-g\mu \right) }{k}\nonumber \\&\quad +\frac{\lambda (1-\theta -\theta \gamma )\left( (p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da\right) -\lambda \mu (g_m-\gamma g_r)}{k}\nonumber \\&\quad -\frac{\lambda \left( (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \right) }{2k}\bigg ) \end{aligned}$$
(I.6)
$$\begin{aligned}&=\left( (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \right) \nonumber \\&\quad *\bigg (\frac{2\lambda (1-\theta -\theta \gamma )\left( (p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da\right) -2k}{2k}\nonumber \\&\quad +\frac{\lambda (2g_m+w-c_r-2c_m+p+g_r)A-\lambda (p-v+g_r+2g_m)\int _{0}^{A}F(a)da}{2k}\nonumber \\&\quad -\frac{\lambda \mu (4g_m+(1-2\gamma )g_r)}{2k}\bigg ), \nonumber \\ \frac{\partial \pi _{R2}^{WRS*}}{\partial \lambda }&=\left( \theta (p-c+g)D-\theta (p-v+g)\int _{0}^{D}F(a)da-g_r\mu \right) \nonumber \\&\quad *\bigg (-1+\frac{\lambda \left( (p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da-g\mu \right) }{k}\nonumber \\&\quad -\frac{\lambda \gamma \left( (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \right) }{k}\nonumber \\&\quad +\frac{\lambda \left( (g_m+w-c_m)A- g_m(\int _{0}^{A}F(a)da+\mu )\right) }{k}\nonumber \\&\quad -\frac{\lambda \left( \theta (p-c+g)D-\theta (p-v+g)\int _{0}^{D}F(a)da-g_r\mu \right) }{2k}\bigg ) \end{aligned}$$
(I.7)
$$\begin{aligned}&=\left( \theta (p-c+g)D-\theta (p-v+g)\int _{0}^{D}F(a)da-g_r\mu \right) \nonumber \\&\quad *\bigg (\frac{\lambda \left( (2-\theta )\{(p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da\}-(2g_m+g_r)\mu \right) -2k}{2k}\nonumber \\&\quad -\frac{\lambda \gamma \left( (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \right) }{k}\nonumber \\&\quad +\frac{\lambda \left( (g_m+w-c_m)A- g_m(\int _{0}^{A}F(a)da+\mu )\right) }{k}\bigg ),\nonumber \\ \mathop \frac{\partial \pi _{M}^{WRS*}}{\partial \lambda }&=\left( (1-\theta )(p-c+g)D-(1-\theta )(p-v+g)\int _{0}^{D}F(a)da-g_m\mu \right) \nonumber \\&\quad *\bigg (-1+\frac{\lambda \left( (p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da-g\mu \right) }{k}\nonumber \\&\quad -\frac{\lambda \gamma \left( (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \right) }{k}\nonumber \\&\quad +\frac{\lambda \left( (g_m+w-c_m)A- g_m(\int _{0}^{A}F(a)da+\mu )\right) }{k}\bigg )\nonumber \\&\quad +\bigg ( (g_m+w-c_m)A-g_m(\int _{0}^{A}F(a)da+\mu )\bigg )\nonumber \\&\quad \times \bigg (-1+\frac{\lambda \left( (p-c+g)A-(p-v+g)\int _{0}^{A}F(a)da-g\mu \right) }{k}\nonumber \\&\quad +\frac{\lambda (1-\theta -\theta \gamma )\left( (p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da\right) -\lambda \mu (g_m-\gamma g_r)}{k}\bigg )\nonumber \\&\quad -\frac{\lambda }{2k}\bigg ((1-\theta )(p-c+g)D-(1-\theta )(p-v+g)\int _{0}^{D}F(a)da-g_m\mu \nonumber \\&\quad +(g_m+w-c_m)A-g_m(\int _{0}^{A}F(a)da+\mu )\bigg )^2. \end{aligned}$$
(I.8)

Thus, if \(0\le \lambda \le min(\eta _7, 1)\), then \(\frac{\partial q_{1}^{WRS*}}{\partial \lambda }\le 0\), otherwise \(\frac{\partial q_{1}^{WRS*}}{\partial \lambda }> 0\); if \(0\le \lambda \le min(\eta _8, 1)\), then \(\frac{\partial q_{2}^{WRS*}}{\partial \lambda }\le 0\), otherwise \(\frac{\partial q_{2}^{WS*}}{\partial \lambda }> 0\); If \(0\le \lambda \le min(\eta _9, 1)\), then \(\frac{\partial \pi _{R1}^{WRS*}}{\partial \lambda }\le 0\), otherwise \(\frac{\partial \pi _{R1}^{WRS*}}{\partial \lambda }> 0\); If \(0\le \lambda \le min(\eta _{10}, 1)\), then \(\frac{\partial \pi _{R2}^{WRS*}}{\partial \lambda }\le 0\), otherwise \(\frac{\partial \pi _{R2}^{WRS*}}{\partial \lambda }> 0\); And if \(0\le \lambda \le min(\eta _{11}, 1)\), then \(\frac{\partial \pi _{M}^{WRS*}}{\partial \lambda }\le 0\), otherwise \(\frac{\partial \pi _{M}^{WRS*}}{\partial \lambda }> 0\), where

$$\begin{aligned} e_{0}&=(p-c+g)A-(p-v+g)\int _{0}^{A}F(a)da-g\mu ,\\ e_{1}&=(p-c+g)D-(p-v+g)\int _{0}^{D}F(a)da,\\ e_{2}&=(p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu ,\\ e_{3}&=(g_m+w-c_m)A- g_m(\int _{0}^{A}F(a)da+\mu ),\\ \eta _{7}&=\frac{k}{e_0+(1-\theta -\theta \gamma )e_1-(g_m-\gamma g_r)\mu },\\ \eta _{8}&=\frac{k}{e_1+e_3-\gamma e_2-g\mu },\\ \eta _{9}&=\frac{2k}{2e_0+2(1-\theta -\theta \gamma )e_1-e_2-2(g_m-\gamma g_r)\mu },\\ \eta _{10}&=\frac{2k}{(2-\theta )e_1-2\gamma e_2+2e_3-(2g_m+g_r)\mu },\\ \eta _{11}&=\frac{2((1-\theta )e_1+e_3-g_m \mu )k}{2((1-\theta )e_1-g_m\mu )(e_1-\gamma e_2+e_3-g\mu )+2e_3(e_0+(1-\theta -\theta \gamma )e_1-(g_m-\gamma g_r)\mu )-((1-\theta )e_1+e_3-g_m\mu )^2}. \end{aligned}$$

\(\square \)

The proof of Theorem 7

Proof

Under Model M, there are N competing retailers in the luxury market. Substituting Eqs. (2) into (32) and (33), respectively. Thus, the profits of the retailer i and the manufacturer are given as follows:

$$\begin{aligned} \mathop {\pi _{Ri}^{M}(q_i,\alpha _i)}&=(p-v+g_r)\left( q_i-\beta _i\int _{0}^{\frac{q_i}{\beta _i}}F(a)da\right) -(c_r-v)q_i-\beta _ig_r\mu -wq_i-k\alpha _{i}^{2}, \end{aligned}$$
(J.1)
$$\begin{aligned} \mathop {\pi _{M}^{M}(\alpha _0)}&=\sum _{i=1}^{N}\bigg [(g_m\left( q_i-\beta _i\int _{0}^{\frac{q_i}{\beta _i}}F(a)da\right) -c_mq_i-\beta _{i}g_m\mu +wq_i \bigg ]-k\alpha _{0}^{2}, \end{aligned}$$
(J.2)

where \(\beta _{i}=(1-\lambda )+\lambda \bigg (\alpha _{0}+(1+\gamma )\alpha _{i}-\sum _{j=1}^{N}\gamma \alpha _{j} \bigg )\).

Solving this two-stage game using backward induction technology. Taking the first-order partial derivative of \(\pi _{Ri}^{M}(q_{i}, \alpha _{i})\) with respect to \(q_i\) and \(\alpha _i\), respectively. Thus, we have

$$\begin{aligned} \frac{\partial \pi _{Ri}^{M}}{\partial q_i}&=(p-v+g_r)(1-F(\frac{q_i}{\beta _i}))-(c_r-v)-w, \end{aligned}$$
(J.3)
$$\begin{aligned} \frac{\partial \pi _{Ri}^{M}}{\partial \alpha _{i}}&=\lambda (p-v+g_r)\left( \frac{q_i}{\beta _i}F(\frac{q_i}{\beta _i})-\int _{0}^{\frac{q_i}{\beta _i}}F(a)da\right) -\lambda g_r\mu -2k\alpha _i. \end{aligned}$$
(J.4)

Taking the second-order partial derivative of \(\mathop \pi \nolimits _{Ri}^{M}(q_{i}, \alpha _{i})\) with respect to \(\alpha _i\) and \(q_i\), respectively. Thus, the corresponding Hessian matrix is given as follows:

$$\begin{aligned} \mathop H_{Ri}\nolimits ^{M}&=\left[ {\begin{array}{*{20}{c}} {\frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{Ri}^{M} }}{{\partial \mathop \alpha \nolimits _i^2 }}}&{}{\frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{Ri}^{M} }}{{\partial \mathop \alpha \nolimits _i \partial q_i}}}\\ {\frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{Ri}^{M} }}{{\partial q_i\partial \mathop \alpha \nolimits _i }}}&{}{\frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{Ri}^{M} }}{{\partial \mathop q_i\nolimits ^2 }}} \end{array}} \right] notag\\&=\begin{bmatrix} -\frac{\lambda ^2(p-v+g_r)q_{i}^2}{\beta _i^3}f(\frac{q_i}{\beta _i})-2k &{} \lambda (p-v+g_r)\frac{q_i}{\beta _i^2}f(\frac{q_i}{\beta _i})\\ \lambda (p-v+g_r)\frac{q_i}{\beta _i^2}f(\frac{q_i}{\beta _i}) &{} -\frac{(p-v+g_r)}{\beta _i}f(\frac{q_i}{\beta _i}) \end{bmatrix}.\nonumber \end{aligned}$$
(J.5)

Thus, we have

$$\begin{aligned} \frac{{\mathop \partial \nolimits ^2 \mathop \pi \nolimits _{Ri}^{M} }}{{\partial \mathop \alpha \nolimits _i^2 }}&= -\frac{\lambda ^2(p-v+g_r)q_{i}^2}{\beta _i^3}f(\frac{q_i}{\beta _i})-2k<0, \end{aligned}$$
(J.6)
$$\begin{aligned} \left| {\mathop H_{Ri}\nolimits ^{M} } \right|&= \left| {\begin{array}{*{20}{c}} -\frac{\lambda ^2(p-v+g_r)q_{i}^2}{\beta _i^3}f(\frac{q_i}{\beta _i})-2k &{} \lambda (p-v+g_r)\frac{q_i}{\beta _i^2}f(\frac{q_i}{\beta _i})\\ \lambda (p-v+g_r)\frac{q_i}{\beta _i^2}f(\frac{q_i}{\beta _i}) &{} -\frac{(p-v+g_r)}{\beta _i}f(\frac{q_i}{\beta _i})\end{array}} \right| \\&= \frac{2k(p-v+g_r)}{\beta _i}f(\frac{q_i}{\beta _i})>0.\nonumber \end{aligned}$$
(J.7)

Eqs. (10) and (J.7) yield that this Hessian matrix is a negative definite matrix. Consequently, the profit of the retailer i is a joint concave function of \(\alpha _i\) and \(q_i\), and the first-order conditions can guarantee optimality.

Next, at the Nash equilibrium, we solve the first-order conditions \(\frac{{\partial \mathop \pi \nolimits _{Ri}^{M} (q_{i}, \alpha _{i})}}{{\partial \mathop \alpha \nolimits _i }} = 0\), \(\frac{{\partial \mathop \pi \nolimits _{Ri}^{M}(q_{i}, \alpha _{i}) }}{{\partial q_i}} = 0\). Thus, we can get the following solutions

$$\begin{aligned} \mathop \alpha \nolimits _i^{M*}&=\frac{\lambda \left( (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \right) }{2k}, \end{aligned}$$
(J.8)
$$\begin{aligned} \mathop q\nolimits _i^{M}&=\{(1-\lambda )+\lambda (\alpha _0+(1-(N-1)\gamma )\alpha _i)\}A. \end{aligned}$$
(J.9)

Then, substituting Eqs. (J.8) and (J.9) into Eq. (2), and taking the first-order partial derivative of \(\mathop \pi \nolimits _M^{M}(\alpha _{0})\) with respect to \(\mathop \alpha \nolimits _0 \), we have

$$\begin{aligned} \frac{\partial \pi _{M}^{M}(\alpha _{0})}{\partial \alpha _{0}}=N \lambda (g_m+w-c_m)A-N\lambda g_m\bigg (\int _{0}^{A}F(a)da+\mu \bigg )-2k\alpha _{0}. \end{aligned}$$
(J.10)

Taking the second-order partial derivative of \(\pi _{M}^{M}(\alpha _{0})\) with respect to \(\alpha _0\), we have

$$\begin{aligned} \frac{\partial ^2 \pi _{M}^{M}(\alpha _{0})}{\partial \alpha _{0}^2}=-2k<0. \end{aligned}$$
(J.11)

Thus, the profit function of the manufacturer is a concave function of \(\mathop \alpha \nolimits _0 \), and the first-order condition can guarantee optimality.

Next, at the Nash equilibrium, we solve the first-order condition \(\frac{{\partial \mathop \pi \nolimits _{M}^{M}(\alpha _{0}) }}{{\partial \mathop \alpha \nolimits _0 }} = 0\). Thus, we can get the following solutions

$$\begin{aligned} \alpha _{0}^{M*}&=\frac{\lambda N(g_m+w-c_m)A-\lambda N g_m\left( \int _{0}^{A}F(a)da+\mu \right) }{2k}, \end{aligned}$$
(J.12)
$$\begin{aligned} q_{i}^{M*}&=\left( 1-\lambda +\lambda (\alpha _{0}^{M*}+(1-(N-1)\gamma )\alpha _{i}^{M*}\right) A\\&=(1-\lambda ) A+\frac{\lambda ^{2}N(g_m+w-c_m)A^{2}-\lambda ^{2}N g_m\left( \int _{0}^{A}F(a)da+\mu \right) A}{2k}\nonumber \\&\quad +\frac{\lambda ^{2}(1-(N-1)\gamma )A\left( (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \right) }{2k}\nonumber . \end{aligned}$$
(J.13)

\(\square \)

Substituting Eqs. (J.8), (J.12) and (J.13) into Eqs. (J.1) and (J.2), respectively. Thus, we have

$$\begin{aligned} \pi _{Ri}^{M*}(q_{i}^{M*}, \alpha _{i}^{M*})&=(p-v+g_r)\left( q_{i}^{M*}-\frac{q_{i}^{M*}}{A}\int _{0}^{A}F(a)da\right) -(c_r-v)q_{i}^{M*}\nonumber \\&\quad -\frac{g_r\mu q_{i}^{M*}}{A}-wq_{i}^{M*}-k(\alpha _{i}^{M*})^{2} \end{aligned}$$
(14)
$$\begin{aligned}&=\left( p-c_r-w+g_r-\frac{(p-v+g_r)\int _{0}^{A}F(a)da+g_r\mu }{A}\right) q_{i}^{M*}-k(\alpha _{i}^{M*})^{2},\nonumber \\ \pi _{M}^{M*}(\alpha _{0}^{M*})&=\sum _{i=1}^{N}\bigg [g_m\left( q_{i}^{M*}-\frac{q_{i}^{M*}}{A}\int _{0}^{A}F(a)da\right) -c_mq_{i}^{M*}-\frac{g_m\mu q_{i}^{M*}}{A}+wq_{i}^{M*}\bigg ]\nonumber \\&\quad -k(\alpha _{0}^{M*})^{2}\\&=N\left( w+g_m-c_m-\frac{g_m(\int _{0}^{A}F(a)da+\mu )}{A}\right) q_{i}^{M*}-k(\alpha _{0}^{M*})^{2}.\nonumber \end{aligned}$$
(15)

The proof of Corollary 4

Proof

Subtracting \(\alpha _{0}^{M*}(N)\) from \(\alpha _{0}^{M*}(N+1)\), subtracting \(\alpha _{i}^{M*}(N)\) from \(\alpha _{i}^{M*}(N+1)\), subtracting \(q_{i}^{M*}(N)\) from \(q_{i}^{M*}(N+1)\), subtracting \(\pi _{Ri}^{M*}(q_{i}^{M*}(N), \alpha _{i}^{M*}(N))\) from \(\pi _{Ri}^{M*}(q_{i}^{M*}(N+1), \alpha _{i}^{M*}(N+1))\), and subtracting \(\pi _{M}^{M*}(\alpha _{0}^{M*}(N))\) from \(\pi _{M}^{M*}(\alpha _{0}^{M*}(N+1))\), respectively, where i=1, 2. Thus, we have

$$\begin{aligned} \mathop {\alpha _{0}^{M*}(N+1)-\alpha _{0}^{M*}(N)}&=\frac{\lambda (g_m+w-c_m)A-\lambda g_m\left( \int _{0}^{A}F(a)da+\mu \right) }{2k}>0, \end{aligned}$$
(K.1)
$$\begin{aligned} \mathop {\alpha _{i}^{M*}(N+1)-\alpha _{i}^{M*}(N)}&=0, \end{aligned}$$
(K.2)
$$\begin{aligned} \mathop {q_{i}^{M*}(N+1)-q_{i}^{M*}(N)}\nonumber&=-\frac{\lambda ^{2}\gamma A\left( (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \right) }{2k}\nonumber \\&\quad +\frac{\lambda ^{2}(g_m+w-c_m)A^{2}-\lambda ^{2} g_m\left( \int _{0}^{A}F(a)da+\mu \right) A}{2k},\end{aligned}$$
(K.3)
$$\begin{aligned} \Delta _{Ri}&=\mathop {\pi _{Ri}^{M*}(q_{i}^{M*}(N+1), \alpha _{i}^{M*}(N+1))-\pi _{Ri}^{M*}(q_{i}^{M*}(N)}, \alpha _{i}^{M*}(N))\end{aligned}$$
(K.4)
$$\begin{aligned}&=\left( (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \right) \nonumber \\ {}&\quad *\bigg (\frac{\lambda ^{2}(g_m+w-c_m)A-\lambda ^{2} g_m(\int _{0}^{A}F(a)da+\mu )}{2k}\nonumber \\&\quad -\frac{\lambda ^{2}\gamma \{ (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \}}{2k}\bigg ),\nonumber \\ \Delta _{M}&=\pi _{M}^{M*}(\alpha _{0}^{M*}(N+1))- \pi _{M}^{M}(\alpha _{0}^{M*}(N))\\&=\bigg ((g_m+w-c_m)A-g_m(\int _{0}^{A}F(a)da+\mu )\bigg )\nonumber \\ {}&\quad *\bigg (1-\lambda +\frac{\lambda ^{2}(2N+1)\{(g_m+w-c_m)A-g_m(\int _{0}^{A}F(a)da+\mu )\}}{4k}\nonumber \\&\quad +\frac{\lambda ^{2}(1-2N\gamma )\{ (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \}}{2k}\bigg ).\nonumber \end{aligned}$$
(K.5)

Thus, if \(\gamma \in [0, min(1,\eta _{12})]\), then \(\pi _{Ri}^{M*}(q_{i}^{M*}(N+1), \alpha _{i}^{M*}(N+1))\ge \pi _{Ri}^{M*}(q_{i}^{M*}(N), \alpha _{i}^{M*}(N))\) and \(q_{i}^{M*}(N+1)\ge q_{i}^{M*}(N)\), otherwise \(q_{i}^{M*}(N+1)< q_{i}^{M*}(N)\) and \(\pi _{Ri}^{M*}(q_{i}^{M*}(N+1), \alpha _{i}^{M*}(N+1))<\pi _{Ri}^{M*}(q_{i}^{M*}(N), \alpha _{i}^{M*}(N))\). If \(\Delta \ge 0\), then \(\pi _{M}^{M*}(\alpha _{0}^{M*}(N+1))\ge \pi _{M}^{M}(\alpha _{0}^{M*}(N))\), if \(\Delta <0\) and \(N < \lfloor N^{*}\rfloor \), then \(\pi _{M}^{M*}(\alpha _{0}^{M*}(N+1))\ge \pi _{M}^{M}(\alpha _{0}^{M*}(N))\); otherwise \(\pi _{M}^{M*}(\alpha _{0}^{M*}(N+1))< \pi _{M}^{M}(\alpha _{0}^{M*}(N))\), where

\(\Delta =(g_m+w-c_m)A-g_m(\int _{0}^{A}F(a)da+\mu )-2\gamma \{ (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \}\),

$$\begin{aligned}&\eta _{12}=\frac{(g_m+w-c_m)A-g_m(\int _{0}^{A}F(a)da+\mu )}{(p-c_r-w+g_r))A-(p-v+g_r)\int _{0}^{A}F(a)da-wA-g_{r}\mu },\\&N^{*}=\frac{2\lambda ^{2}\{ (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \}+\lambda ^{2}\{(g_m+w-c_m)A- g_m(\int _{0}^{A}F(a)da+\mu )\}+4k(1-\lambda )}{4\lambda ^{2}\gamma \{ (p-c_r-w+g_r)A-(p-v+g_r)\int _{0}^{A}F(a)da-g_r\mu \}-2\lambda ^{2}\{(g_m+w-c_m)A- g_m(\int _{0}^{A}F(a)da+\mu )\}}. \end{aligned}$$

\(\square \)

The calculation of the extended model in Sect. 4.2

Proof

Under Model F, the two competing retailers are concerned about fairness. Substituting Eqs. (A.1), (A.2) and (A.3) into Eq. (37), respectively. Thus, the utility of the retailer i (\(=1, 2\)) is given as follows:

$$\begin{aligned} u_{R1}^{F}(q_1,\alpha _1)&=(1+f)\pi _{R1}^{F}(q_1,\alpha _1)-f\pi _{M}^{F}(\alpha _0) \end{aligned}$$
(L.1)
$$\begin{aligned}&=(1+f)\bigg [(p-v+g_r)\bigg (q_1-\beta _1\int _{0}^{\frac{q_1}{\beta _1}}F(a)da\bigg )-(c_r-v)q_1-\beta _1g_r\mu -wq_1-k\alpha _{1}^{2}\bigg ]\nonumber \\&\quad -f\bigg [\sum _{i=1}^{2}\bigg ((g_m(q_i-\beta _i\int _{0}^{\frac{q_i}{\beta _i}}F(a)da)-c_mq_i-\beta _{i}g_m\mu +wq_i \bigg )-k\alpha _{0}^{2}\bigg ],\nonumber \\ u_{R2}^{F}(q_2,\alpha _2)&=(1+f)\pi _{R2}^{F}(q_2,\alpha _2)-f\pi _{M}^{F}(\alpha _0)\\&=(1+f)\bigg [(p-v+g_r)\bigg (q_2-\beta _2\int _{0}^{\frac{q_2}{\beta _2}}F(a)da\bigg )-(c_r-v)q_2-\beta _2g_r\mu -wq_2-k\alpha _{2}^{2}\bigg ]\nonumber \\&\quad -f\bigg [\sum _{i=1}^{2}\bigg ((g_m(q_i-\beta _i\int _{0}^{\frac{q_i}{\beta _i}}F(a)da)-c_mq_i-\beta _{i}g_m\mu +wq_i \bigg )-k\alpha _{0}^{2}\bigg ].\nonumber \end{aligned}$$
(L.2)

Solving this two-stage game using backward induction technology. Taking the first-order partial derivative of \(u_{Ri}^{F}(q_{i}, \alpha _{i})\) (\(=1, 2\)) with respect to \(q_i\) and \(\alpha _i\), respectively. Thus, we have

$$\begin{aligned} \frac{\partial u_{R1}^{F}}{\partial q_1}&=\bigg ((1+f)(p-c_r-w+g_r)-f(g_m+w-c_m)\bigg )\nonumber \\&\quad -\bigg ((1+f)(p-v+g_r)-fg_m\bigg )F(\frac{q_1}{\beta _1}), \end{aligned}$$
(L.3)
$$\begin{aligned} \frac{\partial u_{R2}^{F}}{\partial q_2}&=\bigg ((1+f)(p-c_r-w+g_r)-f(g_m+w-c_m)\bigg )\nonumber \\&\quad -\bigg ((1+f)(p-v+g_r)-fg_m\bigg )F(\frac{q_2}{\beta _2}), \end{aligned}$$
(L.4)
$$\begin{aligned} \frac{\partial u_{R1}^{F}}{\partial \alpha _{1}}&=\lambda \bigg ((1+f)(p-v+g_r)-fg_m\bigg )\bigg (\frac{q_1}{\beta _1}F(\frac{q_1}{\beta _1})-\int _{0}^{\frac{q_1}{\beta _1}}F(a)da\bigg ) \end{aligned}$$
(L.5)
$$\begin{aligned}&\quad +\lambda \gamma f g_m\bigg (\frac{q_2}{\beta _2}F(\frac{q_2}{\beta _2})-\int _{0}^{\frac{q_2}{\beta _2}}F(a)da\bigg )\nonumber \\&\quad -\lambda \{(1+f)g_r-f(1-\gamma )g_m\}\mu -2k(1+f)\alpha _1,\nonumber \\ \frac{\partial u_{R2}^{F}}{\partial \alpha _{2}}&=\lambda \bigg ((1+f)(p-v+g_r)-fg_m\bigg )\bigg (\frac{q_2}{\beta _2}F(\frac{q_2}{\beta _2})-\int _{0}^{\frac{q_2}{\beta _2}}F(a)da\bigg )\\&\quad +\lambda \gamma fg_m\bigg (\frac{q_1}{\beta _1}F(\frac{q_1}{\beta _1})-\int _{0}^{\frac{q_1}{\beta _1}}F(a)da\bigg )\nonumber \\&\quad -\lambda \{(1+f)g_r-f(1-\gamma )g_m\}\mu -2k(1+f)\alpha _2,\nonumber \end{aligned}$$
(L.6)

Taking the second-order partial derivative of \(\mathop u \nolimits _{Ri}^{F}(q_{i}, \alpha _{i})\) (\(=1, 2\)) with respect to \(\alpha _i\), \(q_i\), respectively. Thus, the corresponding Hessian matrices are given as follows:

$$\begin{aligned} \mathop H_{R1}\nolimits ^{F}&=\left[ {\begin{array}{*{20}{c}} {\frac{{\mathop \partial \nolimits ^2 \mathop u \nolimits _{R1}^{F} }}{{\partial \mathop \alpha \nolimits _1^2 }}}&{}{\frac{{\mathop \partial \nolimits ^2 \mathop u \nolimits _{R1}^{F} }}{{\partial \mathop \alpha \nolimits _1 \partial q_1}}}\\ {\frac{{\mathop \partial \nolimits ^2 \mathop u \nolimits _{R1}^{F} }}{{\partial q_1\partial \mathop \alpha \nolimits _1 }}}&{}{\frac{{\mathop \partial \nolimits ^2 \mathop u \nolimits _{R1}^{F} }}{{\partial \mathop q_1\nolimits ^2 }}} \end{array}} \right] \end{aligned}$$
(L.7)
$$\begin{aligned}&=\begin{bmatrix} -\frac{\lambda ^2\{(1+f)(p-v+g_r)-fg_m\}q_{1}^2}{\beta _1^3}f(\frac{q_1}{\beta _1})-2(1+f)k+\Delta _{1} &{} \lambda \{(1+f)(p-v+g_r)-fg_m\}\frac{q_1}{\beta _1^2}f(\frac{q_1}{\beta _1})\\ \lambda \{(1+f)(p-v+g_r)-fg_m\}\frac{q_1}{\beta _1^2}f(\frac{q_1}{\beta _1}) &{} -\frac{\{(1+f)(p-v+g_r)-fg_m\}}{\beta _1}f(\frac{q_1}{\beta _1}) \end{bmatrix},\nonumber \\ \mathop H_{R2}\nolimits ^{F}&=\left[ {\begin{array}{*{20}{c}} {\frac{{\mathop \partial \nolimits ^2 \mathop u \nolimits _{R2}^{F} }}{{\partial \mathop \alpha \nolimits _2^2 }}}&{}{\frac{{\mathop \partial \nolimits ^2 \mathop u \nolimits _{R2}^{F} }}{{\partial \mathop \alpha \nolimits _2 \partial q_2}}}\\ {\frac{{\mathop \partial \nolimits ^2 \mathop u \nolimits _{R2}^{F} }}{{\partial q_2\partial \mathop \alpha \nolimits _2 }}}&{}{\frac{{\mathop \partial \nolimits ^2 \mathop u \nolimits _{R2}^{F} }}{{\partial \mathop q_2\nolimits ^2 }}} \end{array}} \right] \\&=\begin{bmatrix} -\frac{\lambda ^2\{(1+f)(p-v+g_r)-fg_m\}q_{2}^2}{\beta _2^3}f(\frac{q_2}{\beta _2})-2(1+f)k+\Delta _{2} &{} \lambda \{(1+f)(p-v+g_r)-fg_m\}\frac{q_2}{\beta _2^2}f(\frac{q_2}{\beta _2})\\ \lambda \{(1+f)(p-v+g_r)-fg_m\}\frac{q_2}{\beta _2^2}f(\frac{q_2}{\beta _2}) &{} -\frac{\{(1+f)(p-v+g_r)-fg_m\}}{\beta _2}f(\frac{q_2}{\beta _2}) \end{bmatrix}.\nonumber \end{aligned}$$
(L.8)

Thus, we have

$$\begin{aligned} \frac{{\mathop \partial \nolimits ^2 \mathop u \nolimits _{R1}^{F} }}{{\partial \mathop \alpha \nolimits _1^2 }}&=-\frac{\lambda ^2\{(1+f)(p-v+g_r)-fg_m\}q_{1}^2}{\beta _1^3}f(\frac{q_1}{\beta _1})-2(1+f)k+\Delta _{1}, \end{aligned}$$
(L.9)
$$\begin{aligned} \frac{{\mathop \partial \nolimits ^2 \mathop u \nolimits _{R2}^{F} }}{{\partial \mathop \alpha \nolimits _2^2 }}&=-\frac{\lambda ^2\{(1+f)(p-v+g_r)-fg_m\}q_{2}^2}{\beta _2^3}f(\frac{q_2}{\beta _2})-2(1+f)k+\Delta _{2}, \end{aligned}$$
(L.10)
$$\begin{aligned} \left| {\mathop H_{R1}\nolimits ^{F} } \right|&=\frac{(2(1+f)k-\Delta _{1})\{(1+f)(p-v+g_r)-fg_m\}}{\beta _1}f(\frac{q_1}{\beta _1}),\end{aligned}$$
(L.11)
$$\begin{aligned} \left| {\mathop H_{R2}\nolimits ^{F} } \right|&=\frac{(2(1+f)k-\Delta _{2})\{(1+f)(p-v+g_r)-fg_m\}}{\beta _2}f(\frac{q_2}{\beta _2}), \end{aligned}$$
(L.12)

and

$$\begin{aligned} \Delta _{1}=\frac{\lambda ^2\gamma ^{2}fg_m q_{2}^2}{\beta _2^3}f(\frac{q_2}{\beta _2})>0,\end{aligned}$$
(L.13)
$$\begin{aligned} \Delta _{2}=\frac{\lambda ^2\gamma ^{2}fg_m q_{1}^2}{\beta _1^3}f(\frac{q_1}{\beta _1})>0. \end{aligned}$$
(L.14)

Using the conditions \(\frac{{\partial ^{2} \mathop u \nolimits _{Ri}^{F} (q_{i}, \alpha _{i})}}{{\partial \mathop \alpha ^{2}\nolimits _i }}<0\) and \(\left| {\mathop H_{Ri}\nolimits ^{F} } \right| >0\), we can find that the above Hessian matrices are negative definite matrices. Consequently, the profit of the retailer i (\(=1, 2\)) is a joint concave function of \(\alpha _i\) and \(q_i\), and the first-order conditions can guarantee optimality.

Next, at the Nash equilibrium, we solve the first-order conditions \(\frac{{\partial \mathop u \nolimits _{Ri}^{F} (q_{i}, \alpha _{i})}}{{\partial \mathop \alpha \nolimits _i }} = 0\) and \(\frac{{\partial \mathop u \nolimits _{Ri}^{F}(q_{i}, \alpha _{i}) }}{{\partial q_i}} = 0\), where \(i=1\), 2. Thus, we can get four solutions

$$\begin{aligned} \alpha _1^{F*}&=\alpha _2^{F*}=\bigg (\frac{\{(1+f)(p-c_r-w+g_r)-f(g_m+w-c_m)\}G}{(1+f)(p-v+g_r)-fg_m}-\int _{0}^{G}F(a)da\bigg )\ \end{aligned}$$
(L.15)
$$\begin{aligned}&\qquad \qquad *\frac{\lambda \{(1+f)(p-v+g_r)-(1-\gamma ) fg_m\}}{2(1+f)k}-\frac{\lambda \mu \{(1+f)g_r- (1-\gamma )fg_m\}}{2(1+f)k},\nonumber \\ \mathop q\nolimits _1^{F}&=\mathop q\nolimits _2^{F}=\{(1-\lambda )+\lambda (\alpha _0+(1-\gamma )\alpha _1)\}G, \end{aligned}$$
(L.16)

where \(G=F^{-1}\left( \frac{(1+f)(p-c_r-w+g_r)-f(g_m+w-c_m)}{(1+f)(p-v+g_r)-fg_m}\right) \).

The profit of manufacturer is as follows:

$$\begin{aligned} \pi _{M}^{F}(\alpha _0)=\sum _{i=1}^{2}\bigg [g_m\bigg (q_i-\beta _i\int _{0}^{\frac{q_i}{\beta _i}}F(a)da\bigg )-c_mq_i-\beta _{i}g_m\mu +wq_i \bigg ]-k\alpha _{0}^{2}. \end{aligned}$$
(L.17)

Then, substituting Eqs. (L.15) and (L.16) into Eq. (2), and taking the first-order partial derivative of \(\mathop \pi \nolimits _M^{F}(\alpha _{0})\) with respect to \(\mathop \alpha \nolimits _0 \), we have

$$\begin{aligned} \frac{\partial \pi _{M}^{F}(\alpha _{0})}{\partial \alpha _{0}}=2 \lambda (g_m+w-c_m)G-2\lambda g_m\bigg (\int _{0}^{G}F(a)da+\mu \bigg )-2k\alpha _{0}. \end{aligned}$$
(L.18)

Taking the second-order partial derivative of \(\pi _{M}^{F}(\alpha _{0})\) with respect to \(\alpha _0\), we have

$$\begin{aligned} \frac{\partial ^2 \pi _{M}^{F}(\alpha _{0})}{\partial \alpha _{0}^2}=-2k<0. \end{aligned}$$
(L.19)

Thus, the profit function of the manufacturer is a concave function of \(\mathop \alpha \nolimits _0 \), and the first-order condition can guarantee optimality.

Next, at the Nash equilibrium, we solve the first-order condition \(\frac{{\partial \mathop \pi \nolimits _{M}^{F}(\alpha _{0}) }}{{\partial \mathop \alpha \nolimits _0 }} = 0\). Thus, we can get three solutions

$$\begin{aligned} \alpha _{0}^{F*}&=\frac{\lambda (g_m+w-c_m)G-\lambda g_m\left( \int _{0}^{G}F(a)da+\mu \right) }{k},\end{aligned}$$
(L.20)
$$\begin{aligned} q_{1}^{F*}&=q_{2}^{F*}=(1-\lambda +\lambda (\alpha _{0}^{F*}+(1-\gamma )\alpha _{1}^{F*}))G\\&\qquad \quad =(1-\lambda ) G+\frac{\lambda ^{2}(g_m+w-c_m)G^{2}-\lambda ^{2} g_m\left( \int _{0}^{G}F(a)da+\mu \right) G}{k}\nonumber \\&\qquad \qquad +\bigg (\frac{\{(1+f)(p-c_r-w+g_r)-f(g_m+w-c_m)\}G}{(1+f)(p-v+g_r)-fg_m}-\int _{0}^{G}F(a)da\bigg )\nonumber \\&\qquad \qquad *\frac{\lambda ^{2}(1-\gamma )G\{(1+f)(p-v+g_r)-(1-\gamma ) fg_m\}}{2(1+f)k}-\frac{\lambda ^{2}(1-\gamma )\mu \{(1+f)g_r- (1-\gamma )fg_m\}G}{2(1+f)k}\nonumber . \end{aligned}$$
(L.21)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xu, X., Bai, Q. et al. Optimal joint decision of information disclosure and ordering in a blockchain-enabled luxury supply chain. Ann Oper Res 329, 1263–1314 (2023). https://doi.org/10.1007/s10479-022-04703-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-022-04703-6

Keywords

Navigation