Skip to main content

Advertisement

Log in

A competitive pharmaceutical supply chain under the marketing mix strategies and product life cycle with a fuzzy stochastic demand

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper addresses a competition problem in two Pharmaceutical Supply Chains (PSCs) with their exclusive retailer and manufacturer. However, the key to successful manufacturing is not just understanding a Product Life Cycle (PLC), but also proactively managing products throughout their lifetime, applying the appropriate resources and sales and marketing strategies, depending on what stage products are at in the cycle. Providing a competitive pharmaceutical supply chain under a product life cycle and offering Nash and Stackelberg games under the marketing mix strategies (i.e., price, product quality, location, and advertising) and product life cycle (i.e., introduction, growth, and maturity) is a novel idea that needs to be studied. So, a demand function depends on the marketing mix strategies. The competition between PSCs is considered based on the levels of price, quality, access, and promotion (i.e., marketing mix) across different stages of their PLC. Concerning the PLC and the position of a supply chain in a specific period of their PLC, the considered competitions are Nash and Stackelberg. The results of the level of the marketing mix, demand, and profit for each supply chain are obtained by given different games in line with the stage of their PLC. Furthermore, based on investigating the previous annual data, the sensitivity coefficients of the marketing mix of PSCs in the demand function, these coefficients are considered as stochastic fuzzy parameters. Based on the obtained results, the average total profit of the two supply chains in the product life cycle, at Nash equilibrium, is 6.5 times that of Stackelberg. The average total profit of the first supply chain in the product life cycle, at Stackelberg, is 10% higher than Nash equilibrium. Moreover, the average total profit of the second supply chain in the product life cycle, at Nash equilibrium, is 19 times that of Stackelberg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(i\) :

Supply chain

j :

Cross- supply chain i

\(w_{i}\) :

Cost of production inputs in supply chain i

\(f_{i}\) :

Variable cost of production in supply chain i

\(\tau_{i}\) :

Variable cost of product quality in supply chain i

\(\tau^{\prime}_{i}\) :

Variable cost of product availability in supply chain i

\(\tau^{\prime\prime}_{i}\) :

Variable cost of product promotion in supply chain i

\(\varepsilon_{qi}\) :

Fixed cost of product quality in supply chain i

\(\varepsilon_{si}\) :

Fixed cost of product availability in supply chain i

\(\varepsilon_{ai}\) :

Fixed cost of product promotion in supply chain i

\(o_{i}\) :

Fixed cost of production in supply chain i

\(\alpha_{i}\) :

Potential market demand for product in supply chain i

\(b_{i}\) :

Self-price sensitive coefficient of supply chain i

\(b^{\prime}_{i}\) :

Cross-price sensitive coefficient of supply chain i

\(c_{i}\) :

Self-availability sensitive coefficient of supply chain i

\(c^{\prime}_{i}\) :

Cross-availability sensitive coefficient of supply chain i

\(d_{i}\) :

Self-quality sensitive coefficient of supply chain i

\(d^{\prime}_{i}\) :

Cross-quality sensitive coefficient of supply chain i

\(e_{i}\) :

Self-promotion sensitive coefficient of supply chain i

\(e^{\prime}_{i}\) :

Cross-promotion sensitive coefficient of supply chain i

\(p_{i}\) :

Product price in supply chain i

\(s_{i}\) :

Product availability level in supply chain i

\(q_{i}\) :

Product quality level in supply chain i

\(a_{i}\) :

Product promotion level in supply chain i

References

  • Agrawal, V. V., Atasu, A., & Van Ittersum, K. (2015). Remanufacturing, third-party competition, and consumers’ perceived value of new products. Management Science, 61(1), 60–72

    Google Scholar 

  • Akbarian-Saravi, N., R. Tavakkoli-Moghaddam, Z. Tahaei. 2017. “Multi-objective optimization of the competitive supply chain network design based on a huff model.” Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 10–13 Dec. 2017, Singapore.

  • Anderson, E. J., & Bao, Y. (2010). Price competition with integrated and decentralized supply chains. European Journal of Operational Research, 200(1), 227–234

    Google Scholar 

  • Bardossy, A., & Duckstein, L. (1995). Fuzzy rule-based modeling with applications to geophysical, biological & engineering systems. (p. 1995). CRC Press.

    Google Scholar 

  • Bernstein, F., & Federgruen, A. (2005). Decentralized supply chains with competing retailers under demand uncertainty. Management Science, 51(1), 18–29

    Google Scholar 

  • Bilir, C., Onsel Ekici, S., & Ulengin, F. (2017). An integrated multi-objective supply chain network and competitive facility location model. Computers & Industrial Engineering, 108, 136–148

    Google Scholar 

  • Cai, K., He, Z., Lou, Y., & He, S. (2020). Risk-aversion information in a supply chain with price and warranty competition. Annals of Operations Research, 287, 61–107

    Google Scholar 

  • Dan, B., Xu, G., & Liu, C. (2012). Pricing policies in a dual-channel supply chain with retail services. International Journal of Production Economics, 139(1), 312–320

    Google Scholar 

  • Fahimi, K., Seyedhosseini, S. M., & Makui, A. (2017). Simultaneous competitive supply chain network design with continuous attractiveness variables. Computers & Industrial Engineering, 107, 235–250

    Google Scholar 

  • Fain, N., Wagner, B., & Kay, N. (2018). Driving innovation through ambidextrous service provision—long life cycle products in manufacturing contexts. Technological Forecasting and Social Change, 130, 3–13

    Google Scholar 

  • Ghavamifar, A., Makui, A., & Taleizadeh, A. A. (2018). Designing a resilient competitive supply chain network under disruption risks: A real-world application. Transportation Research Part E: Logistics and Transportation Review, 115, 87–109

    Google Scholar 

  • Ghomi-Avili, M., Jalali Naeini, S. G., Tavakkoli-Moghaddam, R., & Jabbarzadeh, A. (2018). A fuzzy pricing model for a green competitive closed-loop supply chain network design in the presence of disruptions. Journal of Cleaner Production, 188, 425–442

    Google Scholar 

  • Goli, A., & Davoodi, S. M. R. (2018). Coordination policy for production and delivery scheduling in the closed loop supply chain. Production Engineering, 12(5), 621–631

    Google Scholar 

  • Goli, A., Zare, H. K., Tavakkoli-Moghaddam, R., & Sadegheih, A. (2019). Multiobjective fuzzy mathematical model for a financially constrained closed-loop supply chain with labor employment. Computational Intelligence, 36(1), 4–34

    Google Scholar 

  • Gupta, R., Biswas, I., & Kumar, S. (2018). Pricing decisions for three-echelon supply chain with advertising and quality effort-dependent fuzzy demand. International Journal of Production Research, 57(9), 2715–2731

    Google Scholar 

  • Harrell, G. D., & Frazier, G. L. (1999). Marketing connecting with customer. (1st ed.). Prentice Hall Inc.

    Google Scholar 

  • Hasani, A. A. (2016). Competitive supply chain network design considering marketing strategies: A hybrid metaheuristic algorithm. International Journal of Supply and Operations Management, 3(3), 1429–1441

    Google Scholar 

  • Hosseini-Motlagh, S. M., Nematollahi, M. R., Johari, M., & Sarker, B. R. (2018). A collaborative model for coordination of monopolistic manufacturer’s promotional efforts and competing duopolistic retailers’ trade credits. International Journal of Production Economics, 204, 108–122

    Google Scholar 

  • Huang, Y., & Chen, Y. (2014). Analysis of an imperfectly competitive cellulosic biofuel supply chain. Transportation Research Part E: Logistics and Transportation Review, 72, 1–14

    Google Scholar 

  • Jafarian, E., Razmi, J., & Tavakkoli-Moghaddam, R. (2018). Forward and reverse flows pricing decisions for two competing supply chains with common collection centers in an intuitionistic fuzzy environment. Soft Computing, 2018, 1–24

    Google Scholar 

  • Johari, M., & Hosseini-Motlagh, S.-M. (2019). Coordination of social welfare, collecting, recycling and pricing decisions in a competitive sustainable closed-loop supply chain: a case for lead-acid battery. Annals of operations research. Annals of Operations Research. https://doi.org/10.1007/s10479-019-03292-1

    Article  Google Scholar 

  • Kerin, R. A., S. W. Hartley, and W. Rudelius. 2014. “Marketing.” McGraw-Hill Education, 11th Edition.

  • Kotler, P. (2000). Marketing Management. (Millennium). Custom Edition for University of Phoenix.

    Google Scholar 

  • Kumar Jena, S., & Sarmah, P. S. (2014). Price competition and cooperation in a duopoly closed-loop supply chain. International Journal of Production Economics, 156, 346–360

    Google Scholar 

  • Li, W., & Chen, J. (2018). Pricing and quality competition in a brand-differentiated supply chain. International Journal of Production Economics, 202(C), 97–108

    Google Scholar 

  • Li, W., Wu, H., Jin, M., & Lai, M. (2017). Two-stage remanufacturing decision makings considering product life cycle and consumer perception. Journal of Cleaner Production, 161, 581–590

    Google Scholar 

  • Lotfi, R., Yadegari, Z., Hosseini, S. H., Khameneh, A. H., Tirkolaee, E. B., & Weber, G. W. (2020). A Robust Time-Cost-Quality-Energy-Environment Trade-off with Resource-Constrained in Project Management: A Case Study for a Bridge Construction Project. Journal of Industrial & Management Optimization, 13(5), 1–22

    Google Scholar 

  • Lotfi, R., Mehrjerdi, Y. Z., Pishvaee, M. S., Sadeghieh, A., & Weber, G. W. (2021). A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 11(2), 221–253.

    Google Scholar 

  • McCarthy, E. J. (1964). Basic Marketing. Richard D. Irwin.

    Google Scholar 

  • Moradinasab, N., Amin-Naseri, M. R., Jafari Behbahani, T., & Jafarzadeh, H. (2018). Competition and cooperation between supply chains in multiobjective petroleum green supply chain: A game theoretic approach. Journal of Cleaner Production, 170, 818–841

    Google Scholar 

  • Nasiri, M. M., Shakouhi, F., & Jolai, F. (2019). A fuzzy robust stochastic mathematical programming approach for multi-objective scheduling of the surgical cases. Opsearch, 2019, 1–21

    Google Scholar 

  • Nazemi, A. R., M. R. Akbarzadeh, and T. S. Hosseini. 2002. “Fuzzy-Stochastic Linear Programming in Water Resources Engineering.” Fuzzy Information Processing Society. NAFIPS. 2002 Annual Meeting of the North American.

  • Nematollahi, M. R., Hosseini-Motlagh, S. M., Ignatius, J., Goh, M., & Saghafi Nia, M. (2018). Coordinating a socially responsible pharmaceutical supply chain under periodic review replenishment policies. Journal of Cleaner Production, 172, 2876–2891

    Google Scholar 

  • Rafiei, H., Safaei, F., & Rabbani, M. (2018). Integrated production-distribution planning problem in a competition-based four-echelon supply chain. Computers & Industrial Engineering, 119, 85–99

    Google Scholar 

  • Rezapour, S., Zanjirani Farahani, R., & Pourakbar, M. (2017). Resilient supply chain network design under competition: A case study. European Journal of Operational Research, 259, 1017–1035

    Google Scholar 

  • Saberi, S., Cruz, J. M., Sarkis, J., & Nagurney, A. (2018). A competitive multiperiod supply chain network model with freight carriers and green technology investment option. European Journal of Operational Research, 266, 934–949

    Google Scholar 

  • Sadeghi, R., Taleizadeh, A. A., Chan, F. T. S., & Heydari, J. (2019). Coordinating and pricing decisions in two competitive reverse supply chains with different channel structures. International Journal of Production Research, 57(9), 2601–2625

    Google Scholar 

  • Sangaiah, A. K., Tirkolaee, E. B., Goli, A., & Dehnavi-Arani, S. (2019). Robust optimization and mixed-integer linear programming model for LNG supply chain planning problem. Soft Computing, 24(11), 7885–7905

    Google Scholar 

  • Sazvar, Z., Zokaee, M., Tavakkoli-Moghaddam, R., & Nayeri, S. (2021). Designing a sustainable closed-loop pharmaceutical supply chain in a competitive market considering demand uncertainty, manufacturer’s brand and waste management. Annals of Operations Research. https://doi.org/10.1007/s10479-021-03961-0. Accepted for publication

    Article  Google Scholar 

  • Shamekhi Amiri, A., Torabi, S. A., & Ghodsi, R. (2018). An iterative approach for a bi-level competitive supply chain network design problem under foresight competition and variable coverage. Transportation Research Part E: Logistics and Transportation Review, 109, 99–114

    Google Scholar 

  • Sohrabi, T., Etemad, M., & Fathi, M. R. (2018). Mathematical modeling of green closed loop supply chain network with consideration of supply risk: Case study. Journal of Advances Mathematical Modeling, 7(2), 103–122

    Google Scholar 

  • Tsay, A. A., & Agrawal, N. (2000). Channel dynamics under price and service competition. Manufacturing & Service Operations Management, 2(4), 372–391

    Google Scholar 

  • Wei, J., & Zhao, J. (2015). Pricing and remanufacturing decisions in two competing supply chains. International Journal of Production Research, 53(1), 258–278

    Google Scholar 

  • Wu, C. H. (2012). Price and service competition between new and remanufactured products in a two-echelon supply chain. International Journal of Production Economics, 140(1), 496–507

    Google Scholar 

  • Wu, D. D. (2013). Bargaining in supply chain with price and promotional effort dependent demand. Mathematical and Computer Modelling, 58, 1659–1669

    Google Scholar 

  • Xiao, T., & Yang, D. (2008). Price and service competition of supply chains with risk-averse retailers under demand uncertainty. International Journal of Production Economics, 114(1), 187–200

    Google Scholar 

  • Yu, M., & Nagurney, A. (2013). Competitive food supply chain networks with application to fresh produce. European Journal of Operational Research, 224(2), 273–282

    Google Scholar 

  • Yu, Y., Xiao, T., & Feng, Z. (2020). Price and cold-chain service decisions versus integration in a fresh agri-product supply chain with competing retailers. Annals of Operations Research, 287, 465–493

    Google Scholar 

  • Zahiri, B., Jula, P., & Tavakkoli-Moghaddam, R. (2018). Design of a pharmaceutical supply chain network under uncertainty considering perishability and substitutability of products. Information Sciences, 423, 257–283

    Google Scholar 

  • Zhang, D. W., Hamid, A. B. A., & Thoo, A. C. (2014). Sustainable supplier selection: An international comparative literature review for future investigation. Applied Mechanics and Materials, 525, 787–790

    Google Scholar 

  • Zhao, J., & Wei, J. (2014). The coordinating contracts for a fuzzy supply chain with effort and price dependent demand. Applied Mathematical Modelling, 38(9), 2476–2489

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Tavakkoli-Moghaddam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Nomenclature

Indices and parameters of the equations are shown before Section 1.

Appendix 2

\(G_{2} = c_{1} + c^{\prime}_{1} - b_{1} \tau_{1} - b^{\prime}_{1} \tau_{1}\)

\(G_{1} = c_{1} + c^{\prime}_{1} + b_{1} \tau_{1} + b^{\prime}_{1} \tau_{1}\)

\(G_{4} = d_{1} + d^{\prime}_{1} - b_{1} \tau^{\prime}_{1} - b^{\prime}_{1} \tau^{\prime}_{1}\)

\(G_{3} = d_{1} + d^{\prime}_{1} + b_{1} \tau^{\prime}_{1} + b^{\prime}_{1} \tau^{\prime}_{1}\)

\(G_{6} = e_{1} + e^{\prime}_{1} - b_{1} \tau^{\prime\prime}_{1} - b^{\prime}_{1} \tau^{\prime\prime}_{1}\)

\(G_{5} = e_{1} + e^{\prime}_{1} + b_{1} \tau^{\prime\prime}_{1} + b^{\prime}_{1} \tau^{\prime\prime}_{1}\)

\(G_{8} = c_{2} + c^{\prime}_{2} - b_{2} \tau_{2} - b^{\prime}_{2} \tau_{2}\)

\(G_{7} = c_{2} + c^{\prime}_{2} + b_{2} \tau_{2} + b^{\prime}_{2} \tau_{2}\)

\(G_{10} = d_{2} + d^{\prime}_{2} - b_{2} \tau^{\prime}_{2} - b^{\prime}_{2} \tau^{\prime}_{2}\)

\(G_{9} = d_{2} + d^{\prime}_{2} + b_{2} \tau^{\prime}_{2} + b^{\prime}_{2} \tau^{\prime}_{2}\)

\(G_{12} = e_{2} + e^{\prime}_{2} - b_{2} \tau^{\prime\prime}_{2} - b^{\prime}_{2} \tau^{\prime\prime}_{2}\)

\(G_{11} = e_{2} + e^{\prime}_{2} + b_{2} \tau^{\prime\prime}_{2} + b^{\prime}_{2} \tau^{\prime\prime}_{2}\)

\({\text{G}}_{13} = G_{1} G_{2} \varepsilon_{q1} \varepsilon_{a1} + G_{3} G_{4} \varepsilon_{s1} \varepsilon_{a1} + G_{5} G_{6} \varepsilon_{s1} \varepsilon_{q1}\)

\({\text{G}}_{14} = G_{2} \tau_{1} \varepsilon_{q1} \varepsilon_{a1} + \varepsilon_{s1} \varepsilon_{q1} \varepsilon_{a1} + G_{4} \tau_{1}^{\prime } \varepsilon_{s1} \varepsilon_{a1} + G_{6} \tau_{1}^{\prime \prime } \varepsilon_{s1} \varepsilon_{q1}\)

\({\text{G}}_{15} = G_{8} c^{\prime}_{1} \varepsilon_{q2} \varepsilon_{a2} + G_{10} d^{\prime}_{1} \varepsilon_{s2} \varepsilon_{a2} + G_{12} e^{\prime}_{1} \varepsilon_{s2} \varepsilon_{a2}\)

\({\text{G}}_{16} = G_{8} \tau_{2} \varepsilon_{q2} \varepsilon_{a2} + \varepsilon_{s2} \varepsilon_{q2} \varepsilon_{a2} + G_{10} \tau_{2}^{\prime } \varepsilon_{s2} \varepsilon_{a2} + G_{12} \tau_{2}^{\prime \prime } \varepsilon_{s2} \varepsilon_{q2}\)

\({\text{G}}_{17} = G_{7} G_{8} \varepsilon_{q2} \varepsilon_{a2} + G_{9} G_{10} \varepsilon_{s2} \varepsilon_{a2} + G_{11} G_{12} \varepsilon_{s2} \varepsilon_{q2}\)

\({\text{G}}_{18} = G_{2} c^{\prime}_{2} \varepsilon_{q2} \varepsilon_{a2} + G_{4} d^{\prime}_{2} \varepsilon_{s2} \varepsilon_{a2} + G_{6} e^{\prime}_{2} \varepsilon_{s2} \varepsilon_{a2}\)

\({\text{G}}_{19} = \frac{1}{{2G_{14} (b_{1} + b_{1}^{\prime } ) + G_{13} }}\)

\({\text{G}}_{20} = b^{\prime}_{2} c_{1}^{\prime } G_{14} G_{19} + c^{\prime}_{2} \varepsilon_{q1} \varepsilon_{a1} c_{1}^{\prime } G_{2} G_{19} + d^{\prime}_{2} \varepsilon_{s1} \varepsilon_{a1} c_{1}^{\prime } G_{4} G_{19} + e^{\prime}_{2} \varepsilon_{s1} \varepsilon_{q1} c_{1}^{\prime } G_{6} G_{19}\)

\(G_{21} = - c^{\prime}_{2} \varepsilon_{q1} \varepsilon_{a1} G_{2} G_{19} - d^{\prime}_{2} \varepsilon_{s1} \varepsilon_{a1} G_{4} G_{19} - e^{\prime}_{2} \varepsilon_{s1} \varepsilon_{q1} G_{6} G_{19}\)

\(G_{22} = - b_{2} - b^{\prime}_{2} + b_{1}^{\prime } b^{\prime}_{2} G_{14} G_{19} - b_{1}^{\prime } G_{21}\)

\(G_{23} = c_{2} + c^{\prime}_{2} - c_{1}^{\prime } b^{\prime}_{2} G_{14} G_{19} + c_{1}^{\prime } G_{21}\)

\(G_{24} = d_{2} + d^{\prime}_{2} - d_{1}^{\prime } b^{\prime}_{2} G_{14} G_{19} + d_{1}^{\prime } G_{21}\)

\(G_{25} = e_{2} + e^{\prime}_{2} - e_{1}^{\prime } b^{\prime}_{2} G_{14} G_{19} + e_{1}^{\prime } G_{21}\)

\({\text{G}}_{26} = \tau_{2} \varepsilon_{q2} \varepsilon_{a2} + \varepsilon_{s2} \varepsilon_{q2} \varepsilon_{a2} + G_{22} \tau_{2}^{{{\mathbf{\prime }}2}} \varepsilon_{s2} \varepsilon_{a2} + G_{24} \tau_{2}^{{\mathbf{\prime }}} \varepsilon_{s2} \varepsilon_{a2} + G_{22} \tau_{2}^{{{\mathbf{\prime \prime }}2}} \varepsilon_{s2} \varepsilon_{q2} + G_{25} \tau_{2}^{{{\mathbf{\prime \prime }}}} \varepsilon_{s2} \varepsilon_{q2}\)

\({\text{G}}_{27} = G_{22} + \frac{{\varepsilon_{s2} \varepsilon_{a2} (G_{24}^{2} - \tau_{2}^{{{\mathbf{\prime 2}}}} G_{22}^{2} ) + \varepsilon_{s2} \varepsilon_{q2} (G_{25}^{2} - \tau_{2}^{{{\mathbf{\prime \prime 2}}}} G_{22}^{2} ) + \varepsilon_{q2} \varepsilon_{a2} (G_{23}^{2} - \tau_{2}^{2} G_{22}^{2} )}}{{G_{26} }}\)

Appendix 3

Proof (Proposition 3)

Since the zero function is concave, we can obtain the optimal value of decision variable by considering the values of the first-order partial derivative as zero:

$$ \begin{aligned} \frac{{\partial \pi_{1} (p_{1} ,s_{1} ,q_{1} ,a_{1} ,p_{2} ,s_{2} ,q_{2} ,a_{2} )}}{{\partial p_{1} }} = & \alpha_{1} - 2(b_{1} + b^{\prime}_{1} )p_{1} + b^{\prime}_{1} p_{2} + G_{1} s_{1} - c^{\prime}_{1} s_{2} + G_{3} q_{1} - d^{\prime}_{1} q_{2} \\ & + G_{5} a_{1} - e^{\prime}_{1} a_{2} + (w_{1} - f_{1} )(b^{\prime}_{1} + b_{1} ) = 0 \\ \end{aligned} $$
(38)
$$ \begin{aligned} \frac{{\partial \pi_{1} (p_{1} ,s_{1} ,q_{1} ,a_{1} ,p_{2} ,s_{2} ,q_{2} ,a_{2} )}}{{\partial s_{1} }} = & - \tau_{1} \alpha_{1} + G_{1} p_{1} - \tau_{1} b^{\prime}_{1} p_{2} - (2\tau_{1} c_{1} + 2\tau_{1} c^{\prime}_{1} - \varepsilon_{s1} )s_{1} + \tau_{1} c^{\prime}_{1} s_{2} \\ & - (d_{1} \tau_{1} + d^{\prime}_{1} \tau_{1} + c_{1} \tau^{\prime}_{1} + c^{\prime}_{1} \tau^{\prime}_{1} )q_{1} - \tau_{1} d^{\prime}_{1} q_{2} - (\tau_{1} e_{1} + \tau_{1} e^{\prime}_{1} + c_{1} \tau^{\prime\prime}_{1} + c^{\prime}_{1} \tau^{\prime\prime}_{1} )a_{1} + \tau_{1} e^{\prime}_{1} a_{2} \\ & - (w_{1} + f_{1} )(c_{1} + c^{\prime}_{1} ) = 0 \, \\ \end{aligned} $$
(39)
$$ \begin{aligned} \frac{{\partial \pi_{1} (p_{1} ,s_{1} ,q_{1} ,a_{1} ,p_{2} ,s_{2} ,q_{2} ,a_{2} )}}{{\partial q_{1} }} = & - \tau^{\prime}_{1} \alpha_{1} + G_{3} p_{1} - \tau^{\prime}_{1} b^{\prime}_{1} p_{2} - (\tau^{\prime}_{1} c_{1} + \tau^{\prime}_{1} c^{\prime}_{1} + d_{1} \tau_{1} + d^{\prime}_{1} \tau_{1} )s_{1} \\ & + \tau^{\prime}_{1} c^{\prime}_{1} s_{2} - (2d_{1} \tau^{\prime}_{1} + 2d^{\prime}_{1} \tau^{\prime}_{1} - \varepsilon_{q1} )q_{1} - \tau^{\prime}_{1} d^{\prime}_{1} q_{2} - (\tau^{\prime}_{1} e_{1} + \tau^{\prime}_{1} e^{\prime}_{1} + d_{1} \tau^{\prime\prime}_{1} + d^{\prime}_{1} \tau^{\prime\prime}_{1} )a_{1} + \tau^{\prime}_{1} e^{\prime}_{1} a_{2} \\ & - (w_{1} + f_{1} )(d_{1} + d^{\prime}_{1} ) = 0 \, \\ \end{aligned} $$
(40)
$$ \begin{aligned} \frac{{\partial \pi_{1} (p_{1} ,s_{1} ,q_{1} ,a_{1} ,p_{2} ,s_{2} ,q_{2} ,a_{2} )}}{{\partial a_{1} }} = & - \tau_{1}^{{{\mathbf{\prime \prime }}}} \alpha_{1} + G_{5} p_{1} - \tau_{1}^{{{\mathbf{\prime \prime }}}} b_{1}^{{\mathbf{\prime }}} p_{2} - (\tau_{1}^{{{\mathbf{\prime \prime }}}} c_{1} + \tau_{1}^{{{\mathbf{\prime \prime }}}} c^{\prime}_{1} + e_{1} \tau_{1} + e_{1}^{{\mathbf{\prime }}} \tau_{1} )s_{1} + \\ & + \tau_{1}^{{\mathbf{\prime }}} c_{1}^{{\mathbf{\prime }}} s_{2} - (\tau_{1}^{{\mathbf{\prime }}} e_{1} + \tau_{1}^{{\mathbf{\prime }}} e_{1}^{{\mathbf{\prime }}} + d_{1} \tau_{1}^{{{\mathbf{\prime \prime }}}} + d_{1}^{{\mathbf{\prime }}} \tau_{1}^{{{\mathbf{\prime \prime }}}} )q_{1} + \tau_{1}^{{{\mathbf{\prime \prime }}}} d_{1}^{{\mathbf{\prime }}} q_{2} - (2e_{1} \tau_{1}^{{{\mathbf{\prime \prime }}}} + 2e_{1}^{{\mathbf{\prime }}} \tau_{1}^{{{\mathbf{\prime \prime }}}} - \varepsilon_{a1} )a_{1} + \tau_{1}^{{{\mathbf{\prime \prime }}}} e_{1}^{{\mathbf{\prime }}} a_{2} - \\ & - (w_{1} + f_{1} )(e_{1} + e_{1}^{{\mathbf{\prime }}} ) = 0 \, \\ \end{aligned} $$
(41)
$$ \begin{aligned} \frac{{\partial \pi_{2} (p_{2} ,s_{2} ,q_{2} ,a_{2} ,p_{1} ,s_{1} ,q_{1} ,a_{1} )}}{{\partial p_{2} }} = & \alpha_{2} - 2(b_{2} + b^{\prime}_{2} )p_{2} + b^{\prime}_{2} p_{1} + G_{7} s_{2} - c^{\prime}_{2} s_{2} + G_{9} q_{2} - d^{\prime}_{2} q_{1} + \\ & + G_{11} a_{2} - e^{\prime}_{1} a_{1} + (w_{2} - f_{2} )(b^{\prime}_{2} + b_{2} ) = 0 \, \\ \end{aligned} $$
(42)
$$ \begin{aligned} \frac{{\partial \pi_{2} (p_{2} ,s_{2} ,q_{2} ,a_{2} ,p_{1} ,s_{1} ,q_{1} ,a_{1} )}}{{\partial s_{2} }} = & - \tau_{2} \alpha_{2} + G_{7} p_{2} - \tau_{2} b^{\prime}_{2} p_{1} - (2\tau_{2} c_{2} + 2\tau_{2} c^{\prime}_{2} - \varepsilon_{s2} )s_{2} + \tau_{2} c^{\prime}_{2} s_{1} \\ & - (d_{2} \tau_{2} + d^{\prime}_{2} \tau_{2} + c_{2} \tau^{\prime}_{2} + c^{\prime}_{2} \tau^{\prime}_{2} )q_{2} - \tau d^{\prime}_{2} q_{1} - (\tau_{2} e_{2} + \tau_{2} e^{\prime}_{2} + c_{2} \tau^{\prime\prime}_{2} + c^{\prime}_{2} \tau^{\prime\prime}_{2} )a_{2} + \tau_{2} e^{\prime}_{2} a_{1} \\ & - (w_{2} + f_{2} )(c_{2} + c^{\prime}_{2} ) = 0 \, \\ \end{aligned} $$
(43)
$$ \begin{aligned} \frac{{\partial \pi_{2} (p_{2} ,s_{2} ,q_{2} ,a_{2} ,p_{1} ,s_{1} ,q_{1} ,a_{1} )}}{{\partial q_{2} }} = & - \tau^{\prime}_{2} \alpha_{2} + G_{9} p_{2} - \tau^{\prime}_{2} b^{\prime}_{2} p_{1} - (\tau^{\prime}_{2} c_{2} + \tau^{\prime}_{2} c^{\prime}_{2} + d_{2} \tau_{2} + d^{\prime}_{2} \tau_{2} )s_{2} \\ & + \tau^{\prime}_{2} c^{\prime}_{2} s_{1} - (2d_{2} \tau^{\prime}_{2} + 2d^{\prime}_{2} \tau^{\prime}_{2} - \varepsilon_{q2} )q_{2} - \tau^{\prime}_{2} d^{\prime}_{2} q_{1} - (\tau^{\prime}_{2} e_{2} + \tau^{\prime}_{2} e^{\prime}_{2} + d_{2} \tau^{\prime\prime}_{2} + d^{\prime}_{2} \tau^{\prime\prime}_{2} )a_{2} + \tau^{\prime}_{2} e^{\prime}_{2} a_{1} \\ & - (w_{2} + f_{2} )(d_{2} + d^{\prime}_{2} ) = 0 \, \\ \end{aligned} $$
(44)
$$ \begin{aligned} \frac{{\partial \pi_{2} (p_{2} ,s_{2} ,q_{2} ,a_{2} ,p_{1} ,s_{1} ,q_{1} ,a_{1} )}}{{\partial a_{2} }} = & - \tau_{2}^{{{\mathbf{\prime \prime }}}} \alpha_{2} + G_{11} p_{2} - \tau_{2}^{{{\mathbf{\prime \prime }}}} b_{2}^{{\mathbf{\prime }}} p_{1} - (\tau_{2}^{{{\mathbf{\prime \prime }}}} \, c_{2} + \tau_{2}^{{{\mathbf{\prime \prime }}}} c_{2}^{{\mathbf{\prime }}} + e_{2} \tau_{2} + e_{2}^{{\mathbf{\prime }}} \tau_{2} )s_{2} \\ & + \tau_{2}^{{\mathbf{\prime }}} c_{2}^{{\mathbf{\prime }}} s_{1} - (\tau_{2}^{{\mathbf{\prime }}} e_{2} + \tau_{2}^{{\mathbf{\prime }}} e_{2}^{{\mathbf{\prime }}} + d_{2} \tau_{2}^{{{\mathbf{\prime \prime }}}} + d_{2}^{{\mathbf{\prime }}} \tau_{2}^{{{\mathbf{\prime \prime }}}} )q_{2} + \tau_{2}^{{{\mathbf{\prime \prime }}}} d_{2}^{{\mathbf{\prime }}} q_{1} - (2e_{2} \tau_{2}^{{{\mathbf{\prime \prime }}}} + 2e_{2}^{{\mathbf{\prime }}} \tau_{2}^{{{\mathbf{\prime \prime }}}} - \varepsilon_{a2} )a_{2} + \tau_{2}^{{{\mathbf{\prime \prime }}}} e_{2}^{{\mathbf{\prime }}} a_{1} \\ & - (w_{2} + f_{2} )(e_{2} + e_{2}^{{\mathbf{\prime }}} ) = 0 \, \\ \end{aligned} $$
(45)

Appendix 4

Proof (Proposition 4) First the optimal values of the marketing mix of the follower supply chain (here the first supply chain) are obtained by setting Eqs. (38)–(41) to zero:

$$ p_{1} = ((w_{1} + f_{1} )G_{13} + b_{1}^{\prime } G_{14} p_{2} - c_{1}^{\prime } G_{14} s_{2} - d_{1}^{\prime } G_{14} q_{2} - e_{1}^{\prime } G_{14} a_{2} )G_{19} $$
(50)
$$ s_{1} = \frac{{\varepsilon_{q1} \varepsilon_{a1} G_{2} (p_{1} - w_{1} - f_{1} )}}{{ - G_{14} }} \, $$
(51)
$$ q_{1} = \frac{{\varepsilon_{s1} \varepsilon_{a1} G_{4} (p_{1} - w_{1} - f_{1} )}}{{ - G_{14} }} $$
(52)
$$ a_{1} = \frac{{\varepsilon_{s1} \varepsilon_{q1} G_{6} (p_{1} - w_{1} - f_{1} )}}{{ - G_{14} }} \, $$
(53)

Then, by substituting the optimal values of the second supply chain in the demand and profit function of the supply chain leader (here the first supply chain), we will have:

$$ D_{2} (p_{2} ,s_{2} ,q_{2} ,a_{2} ) = G_{22} p_{2} + G_{23} s_{2} + G_{24} q_{2} + G_{25} a_{2} + (w_{1} + f_{1} ) \, (\frac{{G_{21} }}{{G_{19} G_{14} }} + \frac{{b^{\prime}_{2} G_{13} G_{19} - G_{13} G_{21} }}{{G_{14} }}) \, $$
(54)
$$ \begin{aligned} \pi_{2} (p_{2} ,s_{2} ,q_{2} ,a_{2} ,p_{1} ,s_{1} ,q_{1} ,a_{1} ) = & (p_{2} - w_{2} - f_{2} - \tau_{2} s_{2} - \tau^{\prime}_{2} q_{2} - \tau^{\prime\prime}_{2} a_{2} )\left[ {G_{22} p_{2} + G_{23} s_{2} + G_{24} q_{2} } \right. \\ & { + }G_{25} a_{2} + (w_{1} + f_{1} ) \, (\frac{{G_{21} }}{{G_{19} G_{14} }} + \frac{{b^{\prime}_{2} G_{13} G_{19} - G_{13} G_{21} }}{{G_{14} }})\left. {} \right] - \varepsilon_{s2} \frac{{s_{2}^{2} }}{2} - \varepsilon_{q2} \frac{{q_{2}^{2} }}{2} - \varepsilon_{a2} \frac{{a_{2}^{2} }}{2} - o_{2} \, \\ \end{aligned} $$
(55)

Next, the first order partial derivative of the supply chain leader \(\pi_{2}\) in relation to \(p_{2} ,s_{2} ,q_{2} ,a_{2}\) is calculated by:

$$ \frac{{\partial \pi_{2} (p_{2} ,s_{2} ,q_{2} ,a_{2} ,p_{1} ,s_{1} ,q_{1} ,a_{1} )}}{{\partial p_{2} }} = D_{2} + G_{22} (p_{2} - w_{2} - f_{2} - \tau_{2} s_{2} - \tau^{\prime}_{2} q_{2} - \tau^{\prime\prime}_{2} a_{2} ) = 0 \, $$
(56)
$$ \frac{{\partial \pi_{2} (p_{2} ,s_{2} ,q_{2} ,a_{2} ,p_{1} ,s_{1} ,q_{1} ,a_{1} )}}{{\partial s_{2} }} = - \tau_{2} D_{2} + G_{23} (p_{2} - w_{2} - f_{2} - \tau_{2} s_{2} - \tau^{\prime}_{2} q_{2} - \tau^{\prime\prime}_{2} a_{2} ) - \varepsilon_{s2} s_{2} = 0 $$
(57)
$$ \frac{{\partial \pi_{2} (p_{2} ,s_{2} ,q_{2} ,a_{2} ,p_{1} ,s_{1} ,q_{1} ,a_{1} )}}{{\partial q_{2} }} = - \tau_{2}^{\prime } D_{2} + G_{24} (p_{2} - w_{2} - f_{2} - \tau_{2} s_{2} - \tau^{\prime}_{2} q_{2} - \tau^{\prime\prime}_{2} a_{2} ) - \varepsilon_{q2} q_{2} = 0 $$
(58)
$$ \frac{{\partial \pi_{2} (p_{2} ,s_{2} ,q_{2} ,a_{2} ,p_{1} ,s_{1} ,q_{1} ,a_{1} )}}{{\partial a_{2} }} = - \tau_{2}^{{{\mathbf{\prime \prime }}}} D_{2} + G_{25} (p_{2} - w_{2} - f_{2} - \tau_{2} s_{2} - \tau_{2}^{{\mathbf{\prime }}} q_{2} - \tau_{2}^{{{\mathbf{\prime \prime }}}} a_{2} ) - \varepsilon_{a2} a_{2} = 0 \, $$
(59)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakouhi, F., Tavakkoli-Moghaddam, R., Baboli, A. et al. A competitive pharmaceutical supply chain under the marketing mix strategies and product life cycle with a fuzzy stochastic demand. Ann Oper Res 324, 1369–1397 (2023). https://doi.org/10.1007/s10479-021-04073-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04073-5

Keywords

Navigation