Skip to main content

Advertisement

Log in

The influence of leadership and smart level on the strategy choice of the smart logistics platform: a perspective of collaborative innovation participation

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In a two-tier supply chain consisting of a smart logistics platform and a smart logistics provider, for value-added service innovation in logistics, there are usually two innovation modes: collaborative innovation (CI) in the supply chain and independent innovation by the provider. In this study, we research the strategic choice of the platform about whether to co-innovate with the provider when the platform requires the provider to innovate new value-added services. By building a two-tier supply chain game model, this study focuses on the influence of leadership and smart level on the platform's CI strategy. This study obtains many interesting findings. Firstly, we give the cost thresholds for the platform to choose CI under different relationships, with higher thresholds under the provider-led relationship compared to Nash and platform-led relationships, the platform is most likely to choose CI under the provider-led relationship, while most difficult to choose under Nash relationship. Secondly, we find that under Nash and platform-led relationships, the platform's participation in the CI will lead to an increase in both parties' profits, so that the CI can be achieved, but under the provider-led relationship, there may be a situation where the platform's profits increase and the provider’s profits decrease when the two parties co-innovate, and since under this relationship it is easiest for the platform to choose to participate in the CI, the platform can choose a cost-sharing contract to solve this problem and achieve CI. Thirdly, with the same leadership, the higher the smart level of the provider is, the more incentive the platform is to participate in CI. If the smart level of the provider is very low or the smart level of the platform is very high, the platform will never participate in CI, regardless of the leadership.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://www.yto.net.cn.

  2. https://www.sf-express.com/cn/sc/.

References

  • Abhishek, V., Jerath, K., & Zhang, Z. J. (2016). To platform—Sell or resell? Channel structures in electronic retailing. Management Science, 62(8), 2259–2280.

    Article  Google Scholar 

  • Ahn, K., Lim, S., & Lee, Y. (2016). Modeling of smart supply chain for sustainability. In J. J. Park, H. Jin, M. K. Khan, & Y. S. Jeong (Eds.), Advanced multimedia and ubiquitous engineering (pp. 269–278). Springer.

    Chapter  Google Scholar 

  • Aydin, A., & Parker, R. P. (2018). Innovation and technology diffusion in competitive supply chains. European Journal of Operational Research, 265(3), 1102–1114.

    Article  Google Scholar 

  • Bockstedt, J., Druehl, C., & Mishra, A. (2016). Heterogeneous submission behavior and its implications for success in innovation contests with public submissions. Production and Operations Management, 25(7), 1157–1176.

    Article  Google Scholar 

  • Chevalier-Roignant, B., Flath, C. M., & Trigeorgis, L. (2019). Disruptive innovation, market entry and production flexibility in heterogeneous oligopoly. Production and Operations Management, 28(7), 1641–1657.

    Article  Google Scholar 

  • Chu, Y., Tian, X., & Wang, W. (2018). Corporate innovation along the supply chain. Management Science, 65(6), 2445–2466.

    Article  Google Scholar 

  • Cui, R., Li, M., & Li, Q. (2020). Value of high-quality logistics: Evidence from a clash between SF Express and Alibaba. Management Science, 66(9), 3879–3902.

    Article  Google Scholar 

  • Dan, B., Zhang, S., & Zhou, M. (2018). Strategies for warranty service in a dual-channel supply chain with value-added service competition. International Journal of Production Research, 56(17), 5677–5699.

    Article  Google Scholar 

  • Dou, G., He, P., & Xu, X. (2016). One-side value-added service investment and pricing strategies for a two-sided platform. International Journal of Production Research, 54(13), 3808–3821.

    Article  Google Scholar 

  • Hilletofth, P., Ericsson, D., & Lumsden, K. (2010). Coordinating new product development and supply chain management. International Journal of Value Chain Management, 4(1), 170–192.

    Article  Google Scholar 

  • Jiang, B., Narasimhan, C., & Turut, Ö. (2016). Anticipated regret and product innovation. Management Science, 63(12), 4308–4323.

    Article  Google Scholar 

  • Juga, J., Juntunen, J., & Paananen, M. (2018). Impact of value-adding services on quality, loyalty and brand equity in the brewing industry. International Journal of Quality and Service Sciences, 10(1), 61–71.

    Article  Google Scholar 

  • Kim, S. H., & Netessine, S. (2013). Collaborative cost reduction and component procurement under information asymmetry. Management Science, 59(1), 189–206.

    Article  Google Scholar 

  • Lee, C. K. M., Lv, Y., Ng, K. K. H., Ho, W., & Choy, K. L. (2018). Design and application of Internet of things-based warehouse management system for smart logistics. International Journal of Production Research, 56(8), 2753–2768.

    Article  Google Scholar 

  • Lee, H. L. (2018). Big data and the innovation cycle. Production and Operations Management, 27(9), 1642–1646.

    Article  Google Scholar 

  • Lee, J., Kim, C., & Choi, G. (2019). Exploring data envelopment analysis for measuring collaborated innovation efficiency of small and medium-sized enterprises in Korea. European Journal of Operational Research, 278(2), 533–545.

    Article  Google Scholar 

  • Lee, S., Kang, Y., & Prabhu, V. V. (2016). Smart logistics: Distributed control of green crowdsourced parcel services. International Journal of Production Research, 54(23), 6956–6968.

    Article  Google Scholar 

  • Lin, Y. T., & Chen, Y. J. (2015). Competitive outsourcing: choosing between value-added services and key component supplying capability. International Journal of Production Research, 53(12), 3635–3650.

    Article  Google Scholar 

  • Liu, W., Liang, Y., Bao, X., Qin, J., & Lim, M. K. (2020). China’s logistics development trends in the post COVID-19 era. International Journal of Logistics Research and Applications. https://doi.org/10.1080/13675567.2020.1837760

    Article  Google Scholar 

  • Liu, W., Yan, X., Wei, W., & Xie, D. (2019). Pricing decisions for service platform with provider’s threshold participating quantity, value-added service and matching ability. Transportation Research Part E: Logistics and Transportation Review, 122, 410–432.

    Article  Google Scholar 

  • Luo, Z., Chen, X., Chen, J., & Wang, X. (2017). Optimal pricing policies for differentiated brands under different supply chain power structures. European Journal of Operational Research, 259(2), 437–451.

    Article  Google Scholar 

  • Nasr, E. S., Kilgour, M. D., & Noori, H. (2015). Strategizing niceness in co-opetition: The case of knowledge exchange in supply chain innovation projects. European Journal of Operational Research, 244(3), 845–854.

    Article  Google Scholar 

  • Niu, B., Chen, K., Fang, X., Yue, X., & Wang, X. (2019). Technology specifications and production timing in a co-opetitive supply chain. Production and Operations Management, 28(8), 1990–2007.

    Article  Google Scholar 

  • Okorie, C., Tipi, N., & Hubbard, N. (2016). Analysis of the potential contribution of value-adding services (VAS) to the competitive logistics strategy of ports. Maritime Economics & Logistics, 18(2), 158–173.

    Article  Google Scholar 

  • Paç, M. F., Savin, S., & Velu, C. (2018). When to adopt a service innovation: Nash equilibria in a competitive diffusion framework. European Journal of Operational Research, 271(3), 968–984.

    Article  Google Scholar 

  • Parker, G., & Van Alstyne, M. (2017). Innovation, openness, and platform control. Management Science, 64(7), 3015–3032.

    Article  Google Scholar 

  • Protic, S. M., Fikar, C., Voegl, J., & Gronalt, M. (2020). Analysing the impact of value added services at intermodal inland terminals. International Journal of Logistics Research and Applications, 23(2), 159–177.

    Article  Google Scholar 

  • Rivera, L., Sheffi, Y., & Knoppen, D. (2016). Logistics clusters: The impact of further agglomeration, training and firm size on collaboration and value added services. International Journal of Production Economics, 179, 285–294.

    Article  Google Scholar 

  • Roels, G., Karmarkar, U. S., & Carr, S. (2010). Contracting for collaborative services. Management Science, 56(5), 849–863.

    Article  Google Scholar 

  • Sarkar, B., Guchhait, R., Sarkar, M., & Cárdenas-Barrón, L. E. (2019). How does an industry manage the optimum cash flow within a smart production system with the carbon footprint and carbon emission under logistics framework? International Journal of Production Economics, 213, 243–257.

    Article  Google Scholar 

  • Shi, Y., Zhang, A., Arthanari, T., Liu, Y., & Cheng, T. C. E. (2016). Third-party purchase: An empirical study of third-party logistics providers in China. International Journal of Production Economics, 171, 189–200.

    Article  Google Scholar 

  • SohuNews. (2019). Logistics technology dream of SF, Tongda and their partners. Retrieved June 27, 2019 from https://www.sohu.com/a/323253740_115035. (in Chinese).

  • Spohrer, J., Vargo, S. L., Caswell, N., & Maglio, P. P. (2008). The service system is the basic abstraction of service science. In Proceedings of the 41st Annual Hawaii international conference on system sciences (HICSS 2008) (pp. 104–104). IEEE.

  • Van der Rhee, B., Verma, R., & Plaschka, G. (2009). Understanding trade-offs in the supplier selection process: The role of flexibility, delivery, and value-added services/support. International Journal of Production Economics, 120(1), 30–41.

    Article  Google Scholar 

  • Winkelhaus, S., & Grosse, E. H. (2020). Logistics 4.0: A systematic review towards a new logistics system. International Journal of Production Research, 58(1), 18–43.

    Article  Google Scholar 

  • Yan, J., Xin, S., Liu, Q., Xu, W., Yang, L., Fan, L., Chen, B., & Wang, Q. (2014). Intelligent supply chain integration and management based on cloud of things. International Journal of Distributed Sensor Networks, 10(3), 624839.

    Article  Google Scholar 

  • Yenipazarli, A. (2017). To collaborate or not to collaborate: Prompting upstream eco-efficient innovation in a supply chain. European Journal of Operational Research, 260(2), 571–587.

    Article  Google Scholar 

  • Zhang, X., Han, X., Liu, X., Liu, R., & Leng, J. (2015). The pricing of product and value-added service under information asymmetry: A product life cycle perspective. International Journal of Production Research, 53(1), 25–40.

    Article  Google Scholar 

  • Zhao, K., & Wang, J. (2019). Impact of production difference and technology gap on R&D spillovers-based on the “competition cooperation” strategy of firms. Science & Technology Progress and Policy, 36(1), 28–35 (in Chinese).

    Google Scholar 

  • Zhong, R. Y., Huang, G. Q., Lan, S., Dai, Q. Y., Chen, X., & Zhang, T. (2015). A big data approach for logistics trajectory discovery from RFID-enabled production data. International Journal of Production Economics, 165, 260–272.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by Major Program of the National Social Science Foundation of China (Grant No. 18ZDA060). The reviewers’ comments are also highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weihua Liu or Shangsong Long.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Summary of basic model solution

See Table 6.

Table 6 The decisions and profits in different scenario
  1. (1)

    The threshold \({N}_{1}\) for the provider to choose collaborative innovation under the Nash relationship

    $$ \begin{aligned} \prod_{S}^{NA} & = \left( {\frac{1}{m} - 1} \right)\frac{{k_{1} }}{2}\left( {e_{1}^{NA} } \right)^{2} - F_{1} \;\;\;\prod^{NO}_{S} = \left( {\frac{1}{m} - 1} \right)\frac{{k_{1} }}{2}(e_{1}^{NO})^{2} - F_{1} \\ e_{1}^{NA} & = \left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{1}{2(1 - m - n)}}} \left( {\frac{{\lambda nk_{1} }}{{(1 - \lambda )mk_{2} }}} \right)^{{\frac{n}{2(1 - m - n)}}} \;\;\;e_{1}^{NO} = \left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{1}{2(1 - m)}}} \\ \frac{{e_{1}^{NA} }}{{e_{1}^{NO} }} & = \left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{n}{2(1 - m - n)(1 - m)}}} \left( {\frac{{\lambda nk_{1} }}{{(1 - \lambda )mk_{2} }}} \right)^{{\frac{n}{2(1 - m - n)}}} \\ \end{aligned} $$

    \(\frac{{e_{1}^{NA} }}{{e_{1}^{NO} }} > 1\), we have \(\left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{n}{2(1 - m - n)(1 - m)}}} \left( {\frac{{\lambda nk_{1} }}{{(1 - \lambda )mk_{2} }}} \right)^{{\frac{n}{2(1 - m - n)}}} > 1\)

    $$ \left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{1}{1 - m}}} \left( {\frac{{\lambda nk_{1} }}{{(1 - \lambda )mk_{2} }}} \right) > 1 $$

    When \(n > \left( {\frac{{2bk_{1} }}{{(1 - \lambda )a^{2} m}}} \right)^{{\frac{1}{1 - m}}} \left( {\frac{{(1 - \lambda )mk_{2} }}{{\lambda k_{1} }}} \right)\)

    Which is \(k_{2} < n\left( {\frac{{\left( {1 - \lambda } \right)a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{1}{1 - m}}} \left( {\frac{{\lambda k_{1} }}{{\left( {1 - \lambda } \right)m}}} \right)\;\;\;\frac{{e_{1}^{NA} }}{{e_{1}^{NO} }} > 1\;\;\;\frac{{\prod_{S}^{NA} + F_{1} }}{{\prod_{S}^{{NO}} + F_{1} }} > 1\)

    So \({N}_{1}=n{\left(\frac{(1-\lambda ){a}^{2}m}{2b{k}_{1}}\right)}^{\frac{1}{1-m}}\left(\frac{\lambda {k}_{1}}{(1-\lambda )m}\right).\)

  2. (2)

    The threshold \({N}_{2}\) for the provider to choose collaborative innovation under the platform-led relationship

    $$ \begin{aligned} \prod_{S}^{RL} & = \left( {\frac{1}{m} - 1} \right)\frac{{k_{1} }}{2}\left( {e_{1}^{RL} } \right)^{2} - F_{1} \;\;\;\prod_{S}^{NO} = \left( {\frac{1}{m} - 1} \right)\frac{{k_{1} }}{2}(e_{1}^{NO})^{2} - F_{1} \\ e_{1}^{RL} & = \left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{1}{2(1 - m - n)}}} \left( {\frac{{\lambda nk_{1} }}{{(1 - \lambda )(1 - m)mk_{2} }}} \right)^{{\frac{n}{2(1 - m - n)}}} \\ \frac{{e_{1}^{RL} }}{{e_{1}^{NO} }} & = \left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{n}{2(1 - m - n)(1 - m)}}} \left( {\frac{{\lambda nk_{1} }}{{(1 - \lambda )(1 - m)mk_{2} }}} \right)^{{\frac{n}{2(1 - m - n)}}} \\ \end{aligned} $$

    When \(n > \left( {\frac{{2bk_{1} }}{{(1 - \lambda )a^{2} m}}} \right)^{{\frac{1}{1 - m}}} \left( {\frac{{(1 - \lambda )(1 - m)mk_{2} }}{{\lambda k_{1} }}} \right)\), \(\frac{{e_{1}^{RL} }}{{e_{1}^{NO} }} > 1\;\;\;\frac{{\prod_{S}^{RL} + F_{1} }}{{\prod_{S}^{{NO}} + F_{1} }} > 1\)

    \({k}_{2}<\frac{n}{1-m}{\left(\frac{(1-\lambda ){a}^{2}m}{2b{k}_{1}}\right)}^{\frac{1}{1-m}}\left(\frac{\lambda {k}_{1}}{(1-\lambda )m}\right)\), so \(\frac{{\prod_{S}^{RL} + F_{1} }}{{\prod_{S}^{{NO}} + F_{1} }} > 1\)

    So \(N_{2} = \frac{n}{1 - m}\left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{1}{1 - m}}} \left( {\frac{{\lambda k_{1} }}{(1 - \lambda )m}} \right)\).

  3. (3)

    The threshold \({N}_{3}\) for the provider to choose collaborative innovation under the provider-led relationship

    $$ \begin{aligned} \prod_{S}^{SL} & = \left( {\frac{1 - n}{m} - 1} \right)\frac{{k_{1} }}{2}\left( {e_{1}^{SL} } \right)^{2} - F_{1} \;\;\;\prod_{S}^{NO} = \left( {\frac{1}{m} - 1} \right)\frac{{k_{1} }}{2}(e_{1}^{NO}){2} - F_{1} \\ e_{1}^{SL} & = \left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{1}{2(1 - m - n)}}} \left( {\frac{1}{1 - n}} \right)^{{\frac{1}{2(1 - m - n)}}} \left( {\frac{{\lambda n(1 - n)k_{1} }}{{(1 - \lambda )mk_{2} }}} \right)^{{\frac{n}{2(1 - m - n)}}} \\ \frac{{e_{1}^{SL} }}{{e_{1}^{NO} }} & = \left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{n}{2(1 - m - n)(1 - m)}}} \left( {\frac{1}{1 - n}} \right)^{{\frac{1}{2(1 - m - n)}}} \left( {\frac{{\lambda n(1 - n)k_{1} }}{{(1 - \lambda )mk_{2} }}} \right)^{{\frac{n}{2(1 - m - n)}}} \\ \end{aligned} $$

    When \(\left( {\frac{1}{1 - n}} \right)^{{\frac{1 - n}{n}}} n > \left( {\frac{{2bk_{1} }}{{(1 - \lambda )a^{2} m}}} \right)^{{\frac{1}{1 - m}}} \left( {\frac{{(1 - \lambda )mk_{2} }}{{\lambda k_{1} }}} \right)\), \(\frac{{e_{1}^{SL} }}{{e_{1}^{NO} }} > 1\).

    $$ \begin{aligned} & \frac{{\prod_{S}^{SL} + F_{1} }}{{\prod_{S}^{{NO}} + F_{1} }} = \left( {\frac{1 - n - m}{{1 - m}}} \right)\left( {\frac{{e_{1}^{SL} }}{{e_{1}^{NO} }}} \right)^{2} = \left( {\frac{1 - n - m}{{1 - m}}} \right)\left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{n}{(1 - m - n)(1 - m)}}} \left( {\frac{1}{1 - n}} \right)^{{\frac{1}{1 - m - n}}} \left( {\frac{{\lambda n(1 - n)k_{1} }}{{(1 - \lambda )mk_{2} }}} \right)^{{\frac{n}{1 - m - n}}} \\ & \quad \left( {\frac{1 - m - n}{{1 - m}}} \right)^{{\frac{1 - m - n}{n}}} \left( {\frac{1}{1 - n}} \right)^{{\frac{1 - n}{n}}} n > \left( {\frac{{2bk_{1} }}{{(1 - \lambda )a^{2} m}}} \right)^{{\frac{1}{1 - m}}} \left( {\frac{{(1 - \lambda )mk_{2} }}{{\lambda k_{1} }}} \right),\;\;\frac{{\prod_{S}^{SL} + F_{1} }}{{\prod_{S}^{{NO}} + F_{1} }} > 1 \\ \end{aligned} $$

    We have:

    $$k_{2} < \left( {\frac{1 - m - n}{{1 - m}}} \right)^{{\frac{1 - m - n}{n}}} \left( {\frac{1}{1 - n}} \right)^{{\frac{1 - n}{n}}} n\left( {\frac{{\left( {1 - \lambda } \right)a^{2} m}}{{2bk_{1} }}} \right)^{{1/\left( {1 - m} \right)}} \left( {\frac{{\lambda k_{1} }}{{\left( {1 - \lambda } \right)m}}} \right),$$

    so

    $$ N_{3} = \left( {\frac{1 - m - n}{{1 - m}}} \right)^{{\frac{1 - m - n}{n}}} \left( {\frac{1}{1 - n}} \right)^{{\frac{1 - n}{n}}} n\left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{1}{1 - m}}} \left( {\frac{{\lambda k_{1} }}{(1 - \lambda )m}} \right). $$
  4. (4)

    The threshold \(\overline{N}_{1}\) for the platform to choose collaborative innovation under the Nash relationship

    $$ \begin{aligned} \prod_{R}^{NA} & = \left( {\frac{1}{n} - 1} \right)\frac{{k_{2} }}{2}\left( {e_{2}^{NA} } \right)^{2} - F_{2} \;\;\;e_{2}^{NA} = \left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{1}{2(1 - m - n)}}} \left( {\frac{{\lambda nk_{1} }}{{(1 - \lambda )mk_{2} }}} \right)^{{\frac{(1 - m)}{{2(1 - m - n)}}}} \\ \prod_{R}^{NA} & = \frac{{\lambda k_{1} }}{2(1 - \lambda )m}\left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{1}{1 - m}}} - F_{2} \\ \prod_{R}^{NA} & = \left( {\frac{1}{n} - 1} \right)\frac{{k_{2} }}{2}\left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{1}{1 - m - n}}} \left( {\frac{{\lambda nk_{1} }}{{(1 - \lambda )mk_{2} }}} \right)^{{\frac{1 - m}{{1 - m - n}}}} - F_{2} \\ \frac{{\prod_{R}^{NA} + F_{1} }}{{\prod_{R}^{{NO}} + F_{1} }} & = \left( {\frac{1}{n} - 1} \right)\frac{{(1 - \lambda )mk_{2} }}{{\lambda k_{1} }}\left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{n}{(1 - m - n)(1 - m)}}} \left( {\frac{{\lambda nk_{1} }}{{(1 - \lambda )mk_{2} }}} \right)^{{\frac{1 - m}{{1 - m - n}}}} \\ & = \left( {\frac{1}{n} - 1} \right)\left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{n}{(1 - m - n)(1 - m)}}} \left( {\frac{{\lambda k_{1} }}{{(1 - \lambda )mk_{2} }}} \right)^{{\frac{n}{1 - m - n}}} n^{{\frac{1 - m}{{1 - m - n}}}} \\ \end{aligned} $$

    when \(n\left( {1 - n} \right)^{{\frac{1 - m - n}{n}}} > \left( {\frac{{2bk_{1} }}{{(1 - \lambda )a^{2} m}}} \right)^{{\frac{1}{1 - m}}} \left( {\frac{{(1 - \lambda )mk_{2} }}{{\lambda k_{1} }}} \right)\), \(\frac{{\prod_{R}^{NA} + F_{1} }}{{\prod_{R}^{{NO}} + F_{1} }} > 1\)

    That is when \({k}_{2}<n{\left(1-n\right)}^{\frac{1-m-n}{n}}{\left(\frac{(1-\lambda ){a}^{2}m}{2b{k}_{1}}\right)}^{\frac{1}{1-m}}\left(\frac{\lambda {k}_{1}}{(1-\lambda )m}\right)\), \(\frac{{\prod_{R}^{NA} + F_{1} }}{{\prod_{R}^{{NO}} + F_{1} }} > 1\)

    So \(\overline{N}_{1}\)\(=n{\left(1-n\right)}^{\frac{1-m-n}{n}}{\left(\frac{(1-\lambda ){a}^{2}m}{2b{k}_{1}}\right)}^{\frac{1}{1-m}}\left(\frac{\lambda {k}_{1}}{(1-\lambda )m}\right)\).

  5. (5)

    The threshold \(\overline{N}_{2}\) for the platform to choose collaborative innovation under the platform-led relationship

    $$ \begin{aligned} \prod_{R}^{RL} & = \left( {\frac{1 - m}{n} - 1} \right)\frac{{k_{2} }}{2}\left( ({e_{2}^{RL})^{2} } \right)^{2} - F_{2} \;\;\;e_{2}^{RL} = \left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{1}{2(1 - m - n)}}} \left( {\frac{{\lambda nk_{1} }}{{(1 - \lambda )(1 - m)mk_{2} }}} \right)^{{\frac{1 - m}{{2(1 - m - n)}}}} \\ \prod_{R}^{RL} & = \left( {\frac{1 - m - n}{n}} \right)\frac{{k_{2} }}{2}\left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{1}{1 - m - n}}} \left( {\frac{{\lambda nk_{1} }}{{(1 - \lambda )(1 - m)mk_{2} }}} \right)^{{\frac{1 - m}{{1 - m - n}}}} - F_{2} \\ \prod_{R}^{NO} & = \frac{{\lambda k_{1} }}{2(1 - \lambda )m}\left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{1}{1 - m}}} - F_{2} \\ \frac{{\prod_{R}^{RL} + F_{1} }}{{\prod_{R}^{{NO}} + F_{1} }} & = \left( {\frac{1 - m - n}{n}} \right)\frac{{(1 - \lambda )mk_{2} }}{{\lambda k_{1} }}\left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{n}{(1 - m - n)(1 - m)}}} \left( {\frac{{\lambda nk_{1} }}{{(1 - \lambda )(1 - m)mk_{2} }}} \right)^{{\frac{1 - m}{{1 - m - n}}}} \\ \frac{{\prod_{R}^{RL} + F_{1} }}{{\prod_{R}^{{NO}} + F_{1} }} & = \left( {\frac{1 - m - n}{n}} \right)\left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{n}{(1 - m - n)(1 - m)}}} \left( {\frac{{(1 - \lambda )mk_{2} }}{{\lambda k_{1} }}} \right)^{{\frac{ - n}{{1 - m - n}}}} \left( {\frac{n}{1 - m}} \right)^{{\frac{1 - m}{{1 - m - n}}}} \\ \end{aligned} $$

    When \(n\left( {1 - m - n} \right)^{{\frac{1 - m - n}{n}}} \left( {\frac{1}{1 - m}} \right)^{{\frac{1 - m}{n}}} > \left( {\frac{{2bk_{1} }}{{(1 - \lambda )a^{2} m}}} \right)^{{\frac{1}{1 - m}}} \left( {\frac{{(1 - \lambda )mk_{2} }}{{\lambda k_{1} }}} \right)\), \(\frac{{\prod_{R}^{RL} + F_{1} }}{{\prod_{R}^{{NO}} + F_{1} }} > 1\).

    We have \({k}_{2}<n{\left(1-m-n\right)}^{\frac{1-m-n}{n}}{\left(\frac{1}{1-m}\right)}^{\frac{1-m}{n}}\) \({\left(\frac{(1-\lambda ){a}^{2}m}{2b{k}_{1}}\right)}^{1/(1-m)}\left(\frac{\lambda {k}_{1}}{(1-\lambda )m}\right)\)

    So \(\overline{N}_{2} = n\left( {1 - m - n} \right)^{{\frac{1 - m - n}{n}}} \left( {\frac{1}{1 - m}} \right)^{{\frac{1 - m}{n}}} \;\;\left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{1}{1 - m}}} \left( {\frac{{\lambda k_{1} }}{(1 - \lambda )m}} \right)\).

  6. (6)

    The threshold \(\overline{N}_{3}\) for the platform to choose collaborative innovation under the provider-led relationship

    $$\begin{aligned} \prod_{R}^{S} & = \left( {\frac{1}{n} - 1} \right)\frac{{k_{2} }}{2}\left( {e_{2}^{SL} } \right)^{2} - F_{2} \;\;\;e_{2}^{SL} = \left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} (1 - n)}}} \right)^{{\frac{1}{2(1 - m - n)}}} \left( {\frac{{\lambda n(1 - n)k_{1} }}{{(1 - \lambda )mk_{2} }}} \right)^{{\frac{1 - m}{{2(1 - m - n)}}}} \\ \prod_{R}^{SL} & = \left( {\frac{1}{n} - 1} \right)\frac{{k_{2} }}{2}\left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{1}{1 - m - n}}} \left( {\frac{1}{1 - n}} \right)^{{\frac{m}{1 - m - n}}} \left( {\frac{{\lambda nk_{1} }}{{(1 - \lambda )mk_{2} }}} \right)^{{\frac{1 - m}{{1 - m - n}}}} - F_{2} \\ \prod_{R}^{NO} & = \frac{{\lambda k_{1} }}{2(1 - \lambda )m}\left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{1}{1 - m}}} - F_{2} \\ \frac{{\prod_{R}^{SL} + F_{1} }}{{\prod_{R}^{{NO}} + F_{1} }} & = \left( {\frac{1}{n} - 1} \right)\left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{n}{(1 - m - n)(1 - m)}}} \left( {\frac{{(1 - \lambda )mk_{2} }}{{\lambda k_{1} }}} \right)^{{\frac{ - n}{{(1 - m - n)}}}} \left( {\frac{1}{1 - n}} \right)^{{\frac{m}{(1 - m - n)}}} n^{{\frac{1 - m}{{1 - m - n}}}} \\ \end{aligned}$$

    When \(n\left( {1 - n} \right)^{{\frac{1 - 2m - n}{n}}} > \left( {\frac{{2bk_{1} }}{{(1 - \lambda )a^{2} m}}} \right)^{{\frac{1}{1 - m}}} \left( {\frac{{(1 - \lambda )mk_{2} }}{{\lambda k_{1} }}} \right)\), \(\frac{{\prod_{R}^{SL} + F_{1} }}{{\prod_{R}^{{NO}} + F_{1} }} > 1\)

    We have \({k}_{2}<n{\left(1-n\right)}^{\frac{1-2m-n}{n}}{\left(\frac{(1-\lambda ){a}^{2}m}{2b{k}_{1}}\right)}^{\frac{1}{1-m}}\left(\frac{\lambda {k}_{1}}{(1-\lambda )m}\right)\)

    So \(\overline{N}_{3}\)\(=n{\left(1-n\right)}^{\frac{1-2m-n}{n}}{\left(\frac{(1-\lambda ){a}^{2}m}{2b{k}_{1}}\right)}^{\frac{1}{1-m}}\left(\frac{\lambda {k}_{1}}{(1-\lambda )m}\right)\).

  7. (7)

    The proof of \(\overline{N}_{3} > \overline{N}_{2} > \overline{N}_{1}\).

    The proof of \({\bar{N}}_{2}>{\bar{N}}_{1}\), that is \(\frac{{\bar{N}}_{2}}{{\bar{N}}_{1}}>1\):

    \({\left(\frac{1-m-n}{1-n}\right)}^{1-m-n}{\left(\frac{1}{1-m}\right)}^{1-m}>1.\) Set function \(C\left(m,n\right)={\left(\frac{1-m-n}{1-n}\right)}^{1-m-n}{\left(\frac{1}{1-m}\right)}^{1-m}\) and

    $$\begin{aligned}D\left(m,n\right)&=\mathrm{ln}C(m,n)\\D\left(m,n\right)&=\left(1-m-n\right)\left[\mathrm{ln}\left(1-\mathrm{m}-\mathrm{n}\right)-\mathrm{ln}\left(1-\mathrm{n}\right)\right]-\left(1-\mathrm{m}\right)\mathrm{ln}(1-\mathrm{m})\\{D}_{m}^{{\prime}}\left(m,n\right)&=\mathrm{ln}\left(1-n\right)-\mathrm{ln}\left(1-m-n\right)+\mathrm{ln}(1-m)\\{D}_{n}^{{\prime}}\left(m,n\right)&=\mathrm{ln}\left(1-n\right)-\mathrm{ln}\left(1-m-n\right)+\left(1-m-n\right)\left(\frac{1}{1-n}-\frac{1}{1-m-n}\right)\\{D}_{m}^{{\prime}}\left(m,n\right)&=0\quad {D}_{n}^{{\prime}}\left(m,n\right)=0 \end{aligned}$$

    \(D\left(m,n\right)\) is increasing in all directions, whose first-order derivatives are always greater than 0, \({D}_{m}^{{\prime}}\left(m,n\right)>0 \,and\, {D}_{n}^{{\prime}}\left(m,n\right)>0,\) starting from (0, 0), all directions \(D\left(m,n\right)\) is increasing, and the minimum value is obtained at (0, 0), which is 0. As shown in Fig. 9.

    Fig. 9
    figure 9

    Graph of multivariate function D(m, n)

    \(D(m,n) > D_{\min } = 0\), that is \(C(m,n) > 1\), we have \({\left(\frac{1-m-n}{1-n}\right)}^{1-m-n}{\left(\frac{1}{1-m}\right)}^{1-m}>1\), so \({\bar{N}}_{2}>{\bar{N}}_{1}\).

    The proof of \({\bar{N}}_{3}>{\bar{N}}_{1}\), that is \(\frac{{\bar{N}}_{3}}{{\bar{N}}_{1}}>1\). Due to 0 < m, n < 1, \({\left(1-n\right)}^{\frac{-m}{n}}>1\) is always true, we have \(\frac{{\bar{N}}_{3}}{{\bar{N}}_{1}}>1\).

    The proof of \({\bar{N}}_{3}>{\bar{N}}_{2}\), that is \(\frac{{\overline{N}_{3} }}{{\overline{N}_{2} }} > 1\):

    $${\left(\frac{1-n}{1-m-n}\right)}^{1-m-n}{(1-n)}^{-m}{\left(1-m\right)}^{1-m}>1$$

    Set function \(g\left(m,n\right)={\left(\frac{1-n}{1-m-n}\right)}^{1-m-n}{(1-n)}^{-m}{\left(1-m\right)}^{1-m}\) and \(f\left(m,n\right)=\mathrm{ln}g(m,n)\)

    $$\begin{aligned}f\left(m,n\right)&=\left(1-m-n\right)\left[\mathrm{ln}\left(1-n\right)-\mathrm{ln}\left(1-m-n\right)\right]-m\mathrm{ln}\left(1-n\right)+\left(1-m\right)\mathrm{ln}(1-m)\\{f}_{m}^{{\prime}}\left(m,n\right)&=-2\mathrm{ln}\left(1-n\right)+\mathrm{ln}\left(1-m-n\right)-\mathrm{ln}(1-m)\\{f}_{n}^{{\prime}}\left(m,n\right)&=-\mathrm{ln}\left(1-n\right)+\mathrm{ln}\left(1-m-n\right)+\left(1-m-n\right)\left(-\frac{1}{1-n}+\frac{1}{1-m-n}\right)+\frac{m}{1-n}\end{aligned}$$

    \({f}_{m}^{{\prime}}\left(m,n\right)=0\) \({f}_{n}^{{\prime}}\left(m,n\right)=0\) we have obtained the Stagnation point \(\left({m}_{0},{n}_{0}\right),\) where \({m}_{0}=\frac{1-{n}_{0}}{2-{n}_{0}}\), \({n}_{0}\) is the solution of \(ln\frac{1-n}{2-n}+\frac{2}{2-n}=0\), we can know function \(G\left(n\right)=ln\frac{1-n}{2-n}+\frac{2}{2-n}\) is decreasing in (0, 1), we get \({n}_{0}\approx 0.75\) \({m}_{0}\approx 0.2\)

    $$\begin{aligned}&{f}_{mm}^{{\prime\prime} }\left(m,n\right)=\frac{-n}{(1-m)(1-m-n)}<0\quad {f}_{nn}^{{\prime\prime} }\left(m,n\right)=\frac{m(1-2m-n)}{{(1-n)}^{2}(1-m-n)}\\&{f}_{mn}^{{\prime\prime} }\left(m,n\right)=\frac{1-2m-n}{(1-n)(1-m-n)}\\&{f}_{mm}^{{\prime\prime} }\left(m,n\right) {f}_{nn}^{{\prime\prime} }\left(m,n\right)-{{[f}_{mn}^{{\prime\prime} }\left(m,n\right)]}^{2}=\frac{-(1-2m)(1-2m-n)}{{\left(1-n\right)}^{2}(1-m)(1-m-n)}>0\end{aligned}$$

    It can be seen that \(f\left(m,n\right)\) takes the maximum value at \(({m}_{0},{n}_{0})\), which is 0.179.

    Through the partial derivative function \({f}_{mn}^{{\prime\prime} }\left(m,n\right)=\frac{1-2m-n}{(1-n)(1-m-n)}\), we can see that in the interval (0, 1), since 0 < m + n < 1 and 0 < m, n < 1, no matter what value n takes, f(m) has a maximum value; no matter what value m takes, f(n) has a maximum value. It can be seen that the points (0, 0), (0, 1), (1, 0) and (1, 1) can be regarded as the minimum value in the interval, and we find f(0, 0) = 0, f(0, 1) = 0.

    Considering \(\left(m,n\right)=\mathrm{ln}g(m,n)\), we see gmin = 1 and gmax = \(g\left({m}_{0},{n}_{0}\right)\) = 1.196, we find \(1<g\left(m,n\right)<1.196\) is always true.

    So \({\left(\frac{1-n}{1-m-n}\right)}^{1-m-n}{(1-n)}^{-m}{\left(1-m\right)}^{1-m}>1\)

    So \({\bar{N}}_{3}>{\bar{N}}_{2}\).

Appendix 2: Proof of Propositions 4, 5 and Lemma 2

  1. (1)

    The proof of Proposition 4

    When \(m>\frac{2b{k}_{1}}{(1-\lambda ){a}^{2}}\):

    $${\mathrm{Y}}\left(\mathrm{m}\right)=\mathrm{ln}{\bar{N}}_{1}=\mathrm{ln}n+\frac{1-m-n}{n}\mathrm{ln}\left(1-n\right)+\frac{1}{1-m}\mathrm{ln}\left(\frac{(1-\lambda ){a}^{2}}{2b{k}_{1}}\right)+\mathrm{ln}\left(\frac{\lambda {k}_{1}}{(1-\lambda )}\right)+\frac{m}{1-m}\mathrm{ln}m$$

    \({Y}_{m}^{{\prime}}=\frac{n[\mathrm{ln}\left((1-\lambda )m{a}^{2}\right)-\mathrm{ln}\left(2b{k}_{1}\right)+1-m]-{\left(1-m\right)}^{2}\mathrm{ln}\left(1-n\right)}{{n(1-m)}^{2}}\) > 0 is always true.

    Y(m) increases monotonically, indicating that \({\bar{N}}_{1}\) also increases with the increase of m.

    $$\begin{aligned}{\mathrm{W}}\left(\mathrm{m}\right)&=\mathrm{ln}{\bar{N}}_{2}=\mathrm{ln}n+\frac{1-m-n}{n}\mathrm{ln}\left(1-m-n\right)+\frac{1-m}{n}\mathrm{ln}\left(\frac{1}{1-m}\right)\\&\quad +\frac{1}{1-m}\mathrm{ln}\left(\frac{(1-\lambda ){a}^{2}}{2b{k}_{1}}\right)+\mathrm{ln}\left(\frac{\lambda {k}_{1}}{(1-\lambda )}\right)+\frac{m}{1-m}\mathrm{ln}m\end{aligned}$$

    \({W}_{m}^{{\prime}}=\frac{n[\mathrm{ln}\left((1-\lambda )m{a}^{2}\right)-\mathrm{ln}\left(2b{k}_{1}\right)+1-m]+{\left(1-m\right)}^{2}[\mathrm{ln}\left(1-m\right)-\mathrm{ln}(1-m-n)]}{{n(1-m)}^{2}}\) > 0 is always true.

    \(\mathrm{W}\left(\mathrm{m}\right)\) increases monotonically, indicating that \({\bar{N}}_{2}\) also increases with the increase of m.

    $${\mathrm{V}\left(\mathrm{m}\right)=\mathrm{ln}\bar{N}}_{1}=\mathrm{ln}n+\frac{1-2m-n}{n}\mathrm{ln}\left(1-n\right)+\frac{1}{1-m}\mathrm{ln}\left(\frac{(1-\lambda ){a}^{2}}{2b{k}_{1}}\right)+\mathrm{ln}\left(\frac{\lambda {k}_{1}}{(1-\lambda )}\right)+\frac{m}{1-m}\mathrm{ln}m$$

    \({V}_{m}^{{\prime}}=\frac{n[\mathrm{ln}\left((1-\lambda )m{a}^{2}\right)-\mathrm{ln}\left(2b{k}_{1}\right)+1-m]-2{\left(1-m\right)}^{2}\mathrm{ln}\left(1-n\right)}{{n(1-m)}^{2}}\) > 0 is always true.

    \(\mathrm{V}\left(\mathrm{m}\right)\) increases monotonically, indicating that \({\bar{N}}_{3}\) also increases with the increase of m.

  2. (2)

    The proof of Proposition 5 and Lemma 2

    $${\mathrm{S}\left(\mathrm{n}\right)=\mathrm{ln}\bar{N}}_{1}=\mathrm{ln}n+\frac{1-m-n}{n}\mathrm{ln}\left(1-n\right)+\frac{1}{1-m}\mathrm{ln}\left(\frac{(1-\lambda ){a}^{2}}{2b{k}_{1}}\right)+\mathrm{ln}\left(\frac{\lambda {k}_{1}}{(1-\lambda )}\right)+\frac{m}{1-m}\mathrm{ln}m$$

    Due to 0 < n < 1, we see ln(1 − n) < 0. \({S}_{n}^{{\prime}}=\frac{mn-\left(1-n\right)\left(1-m\right)\mathrm{ln}(1-n)}{{n}^{2}(1-n)}\) > 0 is always true.

    \(\mathrm{S}\left(\mathrm{n}\right)\) increases monotonically, indicating that \({\bar{N}}_{1}\) also increases with the increase of n.

    $$\begin{aligned}{\mathrm{R}}\left(\mathrm{n}\right)&=\mathrm{ln}{\bar{N}}_{2}=\mathrm{ln}n+\frac{1-m-n}{n}\mathrm{ln}\left(1-m-n\right)+\frac{1-m}{n}\mathrm{ln}\frac{1}{1-m}\\&\quad+\frac{1}{1-m}\mathrm{ln}\left(\frac{(1-\lambda ){a}^{2}}{2b{k}_{1}}\right)+\mathrm{ln}\left(\frac{\lambda {k}_{1}}{(1-\lambda )}\right)+\frac{m}{1-m}\mathrm{ln}m\end{aligned}$$

    \({R}_{n}^{{\prime}}=\frac{[\mathrm{ln}\left(1-m\right)-\mathrm{ln}(1-m-n)](1-m)}{{n}^{2}}\) > 0 is always true.

    \(\mathrm{R}\left(\mathrm{n}\right)\) increases monotonically, indicating that \({\bar{N}}_{2}\) also increases with the increase of n.

    $$\begin{aligned}{\mathrm{P}}\left(\mathrm{n}\right)&=\mathrm{ln}{\bar{N}}_{3}=\mathrm{ln}n+\frac{1-2m-n}{n}\mathrm{ln}\left(1-n\right)+\frac{1}{1-m}\mathrm{ln}\left(\frac{(1-\lambda ){a}^{2}}{2b{k}_{1}}\right)+\mathrm{ln}\left(\frac{\lambda {k}_{1}}{(1-\lambda )}\right)+\frac{m}{1-m}\mathrm{ln}m\\{P}_{n}^{{\prime}}&=\frac{2mn-\left(1-n\right)\left(1-2m\right)\mathrm{ln}(1-n)}{{n}^{2}(1-n)}\end{aligned}$$

    When m < 0.5, \({P}_{n}^{{\prime}}=\frac{2mn-\left(1-n\right)\left(1-2m\right)\mathrm{ln}(1-n)}{{n}^{2}(1-n)}>0\) is always true.

    When m > 0.5, due to 1 − m − n > 0, so 0 < n < 0.5.

    \(y(n)=2mn-\left(1-n\right)\left(1-2m\right)\mathrm{ln}(1-n)\) increases monotonically, and \({y}_{min}=y\left(0\right)=0\), so \(y\left(n\right)>0\) is always true, so \({P}_{n}^{{\prime}}=\frac{2mn-\left(1-n\right)\left(1-2m\right)\mathrm{ln}(1-n)}{{n}^{2}(1-n)}>0\) is always true.

    \(\mathrm{P}\left(\mathrm{n}\right)\) increases monotonically, indicating that \({\bar{N}}_{3}\) also increases with the increase of n.

  3. (3)

    Graphs of multivariate functions

    See Figs. 10, 11 and 12.

    Fig. 10
    figure 10

    Graph of multivariate function \(k_{2} = \overline{N}_{1} (m,n)\)

    Fig. 11
    figure 11

    Graph of multivariate function \(k_{2} = \overline{N}_{2} (m,n)\)

    Fig. 12
    figure 12

    Graph of multivariate function \(k_{2} = \overline{N}_{3} (m,n)\)

Appendix 3: The results of the cost-sharing contract model

See Table 7.

Table 7 The decisions and profits in different scenario

When both parties innovate together:

$$ \begin{aligned} \prod_{S} & = (1 - \lambda )(ae_{1}^{m} e_{2}^{n} - bp)p - \frac{1}{2}(1 - c)k_{1} e_{1}^{2} - F_{1} \\ \prod_{R} & = \lambda (ae_{1}^{m} e_{2}^{n} - bp)p - \frac{1}{2}ck_{1} e_{1}^{2} - \frac{1}{2}k_{2} e_{2}^{2} - F_{2} \\ \end{aligned} $$

For the convenience of calculation, the platform’s profit can be written as:

$$ \prod_{R} = \left[ {\lambda c(ae_{1}^{m} e_{2}^{n} - bp)p - \frac{1}{2}ck_{1} e_{1}^{2} } \right] + \left[ {\lambda (1 - c)(ae_{1}^{m} e_{2}^{n} - bp)p - \frac{1}{2}k_{2} e_{2}^{2} } \right] - F_{2} $$

When the provider innovates independently:

$$ \begin{aligned} \prod_{S} & = (1 - \lambda )(ae_{1}^{m} - bp)p - \frac{1}{2}k_{1} e_{1}^{2} - F_{1} \\ \prod_{R} & = \lambda (ae_{1}^{m} - bp)p - F_{2} \\ \end{aligned} $$

Appendix 4: Proof of Proposition 6

When \(\prod_{S}^{SL} > \prod_{S}^{NO}\) and \(\prod_{R}^{SL} > \prod_{R}^{NO}\), both parties will choose collaborative innovation. For the provider:

$$ \begin{aligned} e_{1}^{NO} & = \left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{1}{2(1 - m)}}} \;\;\prod_{S}^{NO} = \left( {\frac{1}{m} - 1} \right)\frac{{k_{1} }}{2}\left( {e_{1}^{NO} } \right)^{2} - F_{1} \\ e_{1}^{SL} & = \left( {\frac{{(1 - \lambda )a^{2} m}}{{2b(1 - c)k_{1} }}} \right)^{{\frac{1}{2(1 - m - n)}}} \left( {\frac{{\lambda n(1 - c)k_{1} }}{{(1 - \lambda )mk_{2} }}} \right)^{{\frac{n}{2(1 - m - n)}}} \left( {1 - n} \right)^{{\frac{n - 1}{{2(1 - m - n)}}}} \\ \prod_{S}^{SL} & = \left( {\frac{1 - n}{m} - 1} \right)\frac{{(1 - c)k_{1} }}{2}\left( {e_{1}^{SL} } \right)^{2} - F_{1} \\ \end{aligned} $$

If \(\prod_{S}^{SL} > \prod_{S}^{NO}\), we obtain:

$$ \left( {\frac{1 - m - n}{m}} \right)(1 - n)^{{\frac{n - 1}{{1 - m - n}}}} \frac{{(1 - c)k_{1} }}{2}\left( {\frac{{(1 - \lambda )a^{2} m)}}{{2b(1 - c)k_{1} }}} \right)^{{\frac{1}{1 - m - n}}} \left( {\frac{{\lambda n(1 - c)k_{1} }}{{(1 - \lambda )mk_{2} }}} \right)^{{\frac{n}{1 - m - n}}} > \left( {\frac{1 - m}{m}} \right)\frac{{k_{1} }}{2}\left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{1}{1 - m}}} $$

After simplification:

$$ c > 1 - \left( {\frac{1 - m - n}{{1 - m}}} \right)^{{\frac{1 - m - n}{m}}} \left( {1 - n} \right)^{{\frac{n - 1}{m}}} \left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{n}{m(1 - m)}}} \left( {\frac{{\lambda nk_{1} }}{{(1 - \lambda )mk_{2} }}} \right)^{\frac{n}{m}} $$

Let \(V_{1} = 1 - \left( {\frac{1 - m - n}{{1 - m}}} \right)^{{\frac{1 - m - n}{m}}} \left( {1 - n} \right)^{{\frac{n - 1}{m}}} \left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{n}{m(1 - m)}}} \left( {\frac{{\lambda nk_{1} }}{{(1 - \lambda )mk_{2} }}} \right)^{\frac{n}{m}}.\)

For the platform:

$$ \begin{aligned} e_{1}^{NO} & = \left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{1}{2(1 - m)}}} \;\;\;\prod_{R}^{NO} = \frac{\lambda }{(1 - \lambda )m}\frac{{k_{1} }}{2}\left( {e_{1}^{NO} } \right)^{2} - F_{2} \\ e_{2}^{SL} & = \left( {\frac{{(1 - \lambda )a^{2} m}}{{2b(1 - c)k_{1} }}} \right)^{{\frac{1}{2(1 - m - n)}}} \left( {\frac{{\lambda n(1 - c)k_{1} }}{{(1 - \lambda )mk_{2} }}} \right)^{{\frac{1 - m}{{2(1 - m - n)}}}} (1 - n)^{{\frac{ - m}{{2(1 - m - n)}}}} \\ e_{1}^{SL} & = \left( {\frac{{(1 - \lambda )a^{2} m}}{{2b(1 - c)k_{1} }}} \right)^{{\frac{1}{2(1 - m - n)}}} \left( {\frac{{\lambda n(1 - c)k_{1} }}{{(1 - \lambda )mk_{2} }}} \right)^{{\frac{n}{2(1 - m - n)}}} \left( {1 - n} \right)^{{\frac{n - 1}{{2(1 - m - n)}}}} \\ \prod_{R}^{SL} & = \left( {\frac{\lambda (1 - n)(1 - c)}{{(1 - \lambda )m}} - 1} \right)\frac{{ck_{1} }}{2}\left( {e_{1}^{SL} } \right)^{2} + \left( {\frac{1 - c}{n} - 1} \right)\frac{{k_{2} }}{2}\left( {e_{2}^{SL} } \right)^{2} - F_{2} \\ \end{aligned} $$

If \(\prod_{R}^{SL} > \prod_{R}^{NO}\), we obtain:

$$ \begin{aligned} & \left( {\frac{\lambda }{(1 - \lambda )m} - \frac{1}{(1 - c)(1 - n)}} \right)\frac{{ck_{1} }}{2} + \left( {\frac{1 - c - n}{n}} \right)\frac{{k_{2} }}{2}\left( {\frac{{\lambda nk_{1} }}{{(1 - \lambda )mk_{2} }}} \right) \\ & \quad > \frac{\lambda }{(1 - \lambda )m}\frac{{k_{1} }}{2}\left( {\frac{{(1 - \lambda )a^{2} m}}{{2bk_{1} }}} \right)^{{\frac{ - n}{{(1 - m)(1 - m - n)}}}} [(1 - c)(1 - n)]^{{\frac{m}{1 - m - n}}} \left( {\frac{{\lambda nk_{1} }}{{(1 - \lambda )mk_{2} }}} \right)^{{\frac{ - n}{{1 - m - n}}}} \\ \end{aligned} $$

Let c1 be the smallest solution of the inequality and c2 be the largest solution of the inequality, where \(c_{1} < c < c_{2}\). To sum up, under the provider-led relationship, to ensure that both parties make more profits due to collaborative innovation, the value range of the cost coefficient c that the platform needs to share with the provider is:

$$ \max \{ V_{1} ,c_{1} \} < c < \min \{ c_{2} ,1\} . $$

Appendix 5: Solving process of extended model

Without loss of generality, we set b1 = b2 = b.

The results of independent innovation under the Nash relationship:

$$\begin{aligned} e_{1}^{{\underline{NA} }}& = \left( {\frac{{2a^{2} m[3b + \left( {1 - \lambda } \right)b]^{2} - 3b^{2} \left( {1 - \lambda )^{2} } \right]}}{{bk_{1} [3b - \left( {1 - \lambda } \right)b]^{2} }}} \right)^{{\frac{1}{{2\left( {1 - m} \right)}}}} \\{\varvec{p}}_{\mathbf{1}}^{{\underline{{{\varvec{NA}}}} }} &= \frac{{{\varvec{ae}}_{\mathbf{1}}^{{\varvec{m}}} \left[ {\mathbf{3}{\varvec{b}} + {\varvec{b}}\left( {\mathbf{1} - {\varvec{\lambda}}} \right)} \right]}}{{{\varvec{b}}\left[ {\mathbf{3}{\varvec{b}} - {\varvec{b}}\left( {\mathbf{1} - {\varvec{\lambda}}} \right)} \right]}}{\varvec{p}}_{\mathbf{2}}^{{\underline{{{\varvec{NA}}}} }} = \frac{{\mathbf{3}{\varvec{ae}}_{\mathbf{1}}^{{\varvec{m}}} }}{{\mathbf{3}{\varvec{b}} - {\varvec{b}}\left( {\mathbf{1} - {\varvec{\lambda}}} \right)}}\end{aligned} $$

The results of collaborative innovation under the Nash relationship: \(e_{1}^{NA} = \eta_{1}^{{\frac{1}{2(1 - m - n)}}} \eta_{2}^{{\frac{1 - n}{{2(1 - m - n)}}}} \,e_{2}^{NA} = \eta_{1}^{{\frac{1}{2(1 - m - n)}}} \eta_{2}^{{\frac{m}{2(1 - m - n)}}}\). Note:

$$\begin{aligned} {{\varvec{\eta}}}_{\mathbf{1}}&=\left(\frac{\mathbf{18}{{\varvec{a}}}^{\mathbf{2}}{\varvec{b}}{\varvec{n}}{\varvec{\lambda}}}{{{\varvec{k}}}_{\mathbf{2}}[\mathbf{3}{\varvec{b}}-(\mathbf{1}-{\varvec{\lambda}}){\varvec{b}}{]}^{\mathbf{2}}}\right)\quad {{\varvec{\eta}}}_{\mathbf{2}}=\left(\frac{{{\varvec{k}}}_{\mathbf{2}}{\varvec{m}}\{[\mathbf{3}{\varvec{b}}+(\mathbf{1}-{\varvec{\lambda}}){\varvec{b}}{]}^{\mathbf{2}}-\mathbf{3}{{\varvec{b}}}^{\mathbf{2}}(\mathbf{1}-{\varvec{\lambda}}{)}^{\mathbf{2}}}{\mathbf{9}{{\varvec{b}}}^{\mathbf{2}}{{\varvec{k}}}_{\mathbf{1}}{\varvec{n}}{\varvec{\lambda}}}\right) \\{{\varvec{p}}}_{\mathbf{1}}^{{\varvec{N}}{\varvec{A}}}&=\frac{{\varvec{a}}{{\varvec{e}}}_{\mathbf{1}}^{{\varvec{m}}}[\mathbf{3}{\varvec{b}}+{\varvec{b}}(\mathbf{1}-{\varvec{\lambda}})]}{{\varvec{b}}[\mathbf{3}{\varvec{b}}-{\varvec{b}}(\mathbf{1}-{\varvec{\lambda}})]}\quad {{\varvec{p}}}_{\mathbf{2}}^{{\varvec{N}}{\varvec{A}}}=\frac{\mathbf{3}{\varvec{a}}{{\varvec{e}}}_{\mathbf{1}}^{{\varvec{m}}}}{\mathbf{3}{\varvec{b}}-{\varvec{b}}(\mathbf{1}-{\varvec{\lambda}})}.\end{aligned}$$

The results of independent innovation under the provider-led relationship:

$$\begin{aligned} e_{1}^{{\underline{SL} }} &= \left( {\frac{{a^{2} m\left[ {9b + 8b\left( {1 - \lambda } \right)} \right]}}{{2bk_{1} \left[ {2b - b\left( {1 - \lambda } \right)} \right]}}} \right)^{{\frac{1}{{2\left( {1 - m} \right)}}}} \\{\varvec{p}}_{\mathbf{1}}^{{\underline{{{\varvec{SL}}}} }} &= \frac{{{\varvec{ae}}_{\mathbf{1}}^{{\varvec{m}}} \left[ {\mathbf{3}{\varvec{b}} + {\varvec{b}}\left( {\mathbf{1} - {\varvec{\lambda}}} \right)} \right]}}{{{\varvec{b}}\left[ {\mathbf{2}{\varvec{b}} - {\varvec{b}}\left( {\mathbf{1} - {\varvec{\lambda}}} \right)} \right]}}\quad {\varvec{p}}_{\mathbf{2}}^{{\underline{{{\varvec{SL}}}} }} = \frac{{\mathbf{5}{\varvec{ae}}_{\mathbf{1}}^{{\varvec{m}}} }}{{\mathbf{2}\left[ {\mathbf{2}{\varvec{b}} - {\varvec{b}}\left( {\mathbf{1} - {\varvec{\lambda}}} \right)} \right]}} \end{aligned}$$

The results of collaborative innovation under the provider-led relationship: \(e_{1}^{SL} = \eta_{3}^{{\frac{n}{2(1 - m - n)}}} \eta_{4}^{{\frac{1 - n}{{2(1 - m - n)}}}} \,e_{2}^{SL} = \eta_{3}^{{\frac{1 - m}{{2(1 - m - n)}}}} \eta_{4}^{{\frac{m}{2(1 - m - n)}}}\). Note:

$$\begin{aligned} {\varvec{\eta}}_{\mathbf{3}} &= \left( {\frac{{\mathbf{25}\varvec{\lambda a}^{\mathbf{2}} {\varvec{bn}}}}{{\mathbf{2}{\varvec{k}}_{\mathbf{2}} [\left( {\mathbf{1} - {\varvec{\lambda}}} \right){\varvec{b}} - 2{\varvec{b}}]^{\mathbf{2}} }}} \right) \quad \varvec{ \eta }_{\mathbf{4}} = \left( {\frac{{\mathbf{4}{\varvec{m}}\left[ {\left( {\mathbf{1} - {\varvec{\lambda}}} \right){\varvec{b}} + \frac{\mathbf{9}}{\mathbf{8}}{\varvec{b}}} \right]{\varvec{a}}^{\mathbf{2}} }}{{\left[ {\mathbf{2}{\varvec{b}}_{\mathbf{2}} - \left( {\mathbf{1} - {\varvec{\lambda}}} \right){\varvec{b}}} \right]\left( {\mathbf{1} - {\varvec{n}}} \right){\varvec{bk}}_{\mathbf{1}} }}} \right)\\{\varvec{p}}_{\mathbf{1}}^{{{\varvec{SL}}}} &= \frac{{{\varvec{ae}}_{\mathbf{1}}^{{\varvec{m}}} {\varvec{e}}_{\mathbf{2}}^{{\varvec{n}}} \left[ {\mathbf{3}{\varvec{b}} + {\varvec{b}}\left( {\mathbf{1} - {\varvec{\lambda}}} \right)} \right]}}{{{\varvec{b}}\left[ {\mathbf{2}{\varvec{b}} - {\varvec{b}}\left( {\mathbf{1} - {\varvec{\lambda}}} \right)} \right]}}\quad {\varvec{p}}_{\mathbf{2}}^{{{\varvec{SL}}}} = \frac{{\mathbf{5}{\varvec{ae}}_{\mathbf{1}}^{{\varvec{m}}} {\varvec{e}}_{\mathbf{2}}^{{\varvec{n}}} }}{{\mathbf{2}\left[ {\mathbf{2}{\varvec{b}} - {\varvec{b}}\left( {\mathbf{1} - {\varvec{\lambda}}} \right)} \right]}} \end{aligned}$$

The results of independent innovation under the platform-led relationship:

$$\begin{aligned} e_{1}^{{\underline{RL} }} &= \left( {\frac{{a^{2} m\left[ {25b + 23b\left( {1 - \lambda } \right)} \right]}}{{8bk_{1} \left[ {b - b\left( {1 - \lambda } \right)} \right]}}} \right)^{{\frac{1}{{2\left( {1 - m} \right)}}}}\\ {\varvec{p}}_{\mathbf{1}}^{{\underline{{{\varvec{RL}}}} }} &= \frac{{{\varvec{ae}}_{\mathbf{1}}^{{\varvec{m}}} \left[ {\mathbf{5}{\varvec{b}} + {\varvec{b}}\left( {\mathbf{1} - {\varvec{\lambda}}} \right)} \right]}}{{\mathbf{4}{\varvec{b}}_{\mathbf{1}} \left[ {{\varvec{b}} - {\varvec{b}}\left( {\mathbf{1} - {\varvec{\lambda}}} \right)} \right]}}\quad {\varvec{p}}_{\mathbf{2}}^{{\underline{{{\varvec{RL}}}} }} = \frac{{\mathbf{3}{\varvec{ae}}_{\mathbf{1}}^{{\varvec{m}}} }}{{\mathbf{2}\left[ {{\varvec{b}} - {\varvec{b}}\left( {\mathbf{1} - {\varvec{\lambda}}} \right)} \right]}} \end{aligned}$$

The results of collaborative innovation under the platform-led relationship: \(e_{1}^{RL} = \eta_{5}^{{\frac{n}{2(1 - m - n)}}} \eta_{6}^{{\frac{1 - n}{{2(1 - m - n)}}}}\) \(e_{2}^{RL} = \eta_{5}^{{\frac{1 - m}{{2(1 - m - n)}}}} \eta_{6}^{{\frac{m}{2(1 - m - n)}}}\). Note:

$$ \eta_{5} = \left( {\frac{{9\lambda na^{2} }}{{4k_{2} \left( {1 - m} \right)\left[ {b - b\left( {1 - \lambda } \right)} \right]}}} \right). $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Long, S., Liang, Y. et al. The influence of leadership and smart level on the strategy choice of the smart logistics platform: a perspective of collaborative innovation participation. Ann Oper Res 324, 893–935 (2023). https://doi.org/10.1007/s10479-021-04063-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04063-7

Keywords

Navigation