Skip to main content
Log in

Robust generalized Merton-type financial portfolio models with generalized utility

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We include the notion of uncertainty and incomplete information within the classical Merton’s portfolio model. Incomplete information on the set of preferences is interpreted by means of a set-valued utility function. The model is formulated as set-valued optimization problems by construction. We provide scalarization techniques and equivalent formulations to reduce the complexity. The proposed models are robust with respect to noise induced by statistical estimation or data bias. Illustrative examples show how our new formulations work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aouni, B., Ben Abdelaziz, F., & La Torre, D. (2012). The stochastic goal programming model: Theory and application. Journal of Multi-Criteria Analysis, 19, 5–6.

    Google Scholar 

  • Aouni, B., Colapinto, C., & La Torre, D. (2014). Financial portfolio management through the goal programming model: Current state-of-the-art. European Journal of Operational Research, 234, 536–545.

    Article  Google Scholar 

  • Arrow, K. J. (1965). Aspects of the Theory of Risk Bearing, The Theory of Risk Aversion, Helsinki: Yrjo Jahnssonin Saatio. Reprinted in: Essays in the Theory of Risk Bearing, Markham Publ. Co., Chicago, 1971, pp. 90–109.

  • Aubin, J.-P., & Frankowska, H. (1990). Set-valued analysis. Birkhauser.

  • Aumann, R. J. (1965). Integrals of set-valued functions. Journal of Mathematical Analysis and Applications, 12, 1–12.

    Article  Google Scholar 

  • Benson, H. P. (1985). Multiple objective linear programming with parametric criteria coefficients. Management Science, 31(11), 461–474.

    Article  Google Scholar 

  • Bernoulli, D. (1954). Exposition of a New Theory on the Measurement of Risk, Econometrica 22(1), pp. 23–36. Originally published as Specimen Theoriae Novae de Mensura Sortis in St.Petersburg (1738).

  • Ben Abdelaziz, F. (2012). Solution approaches for the multiobjective stochastic programming. European Journal of Operational Research, 216(1), 1–16.

    Article  Google Scholar 

  • Ben Abdelaziz, F., Colapinto, C., La Torre, D., & Liuzzi, D. (2020). A stochastic dynamic multiobjective model for sustainable decision making. Annals of Operations Research, 293, 539–556.

    Article  Google Scholar 

  • Ben Abdelaziz, F., Lang, P., & Nadeau, R. (1994). Pointwise efficiency in multiobjective stochastic linear programming. Journal of the Operational Research Society, 45(11), 1324–1334.

    Article  Google Scholar 

  • Ben Abdelaziz, F., Lang, P., & Nadeau, R. (1995). Distributional efficiency in multiobjective stochastic linear programming. European Journal of Operational Research, 85(2), 399–415.

    Article  Google Scholar 

  • Ben Abdelaziz, F., Lang, P., & Nadeau, R. (1999). Dominance and efficiency in multicriteria decision under uncertainty. Theory and Decision, 47(3), 191–211.

    Article  Google Scholar 

  • Ben Abdelaziz, F., & Masri, H. (2005). Stochastic programming with fuzzy linear partial information on probability distribution. European Journal of Operational Research, 162, 619–629.

    Article  Google Scholar 

  • Bentham, J. (1780). An introduction to the principles of morals and legislation. Dover Publications.

  • Bitran, G. R. (1980). Linear multiple objective problemswith interval coefficients. Management Science, 26(7), 694–706.

    Article  Google Scholar 

  • Chang, F.-R. (2004). Stochastic optimization in continuous time. Cambridge University Press.

  • Debreu, G. (1954). Representation of a preference ordering by a numerical function. Decision Processes, 3, 159–167.

    Google Scholar 

  • Doumpos, M., & Zopounidis, C. (2014). Multicriteria analysis in finance. Springer.

  • Dupačová, J. (1994). Applications of stochastic programming under incomplete information. Journal of Computational and Applied Mathematics, 56, 113–125.

    Article  Google Scholar 

  • Fishburn, P. C. (1964). Decision and value theory. Wiley.

  • Fishburn, P. C. (1988). Generalizations of expected utility theories: A survey of recent proposals. Annals of Operations Research, 19, 3–28.

    Google Scholar 

  • Fishburn, P. C., & Vickson, G. V. (1978). Theoretical foundations of stochastic dominance. In G. A. Whitmore & M. C. Findlay (Eds.), Stochastic dominance (pp. 37–114). Lexington Books.

  • Gennotte, G. (1986). Optimal portfolio choice under incomplete information. The Journal of Finance, 41, 733–746.

    Article  Google Scholar 

  • Hamacher, H. W., Pedersen, C. R., & Ruzika, S. (2007). Introduction to stochastic control. Holt.

  • Hannan, E. L. (1981). Obtaining Nondominated priority vectors for multiple objective decision problems with different combinations of cardinal and ordinal information. IEEE Transaction on Systems, Man and Cybernetics, 11, 538–543.

    Article  Google Scholar 

  • Hazen, G. B. (1986). Partial information, dominance, and potential optimality in multiattribute utility theory. Operations Research, 34(2), 296–310.

    Article  Google Scholar 

  • Keenney, R. L., & Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value tradeoffs. Wiley.

  • Kushner, H. (1971). Finding representative systems for discrete bicriterion optimization problems. Operations Research Letters, 35, 336–344.

    Google Scholar 

  • Lai, T. Y. (1991). Portfolio selection with skewness: A multi-objetive approach. Review of Quantitative Finance and Accounting, 293–305.

  • Laumanns, M., Thiele, L., & Zitzler, E. (2006). An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. European Journal of Operational Research, 169, 932–942.

    Article  Google Scholar 

  • Lehmann, E. L. (1955). Ordered families of distributions. Annals of Mathematical Statistics, 26, 399–419.

    Article  Google Scholar 

  • Levhari, D., Paroush, J., & Peleg, B. (1975). Efficiency analysis for multivariate distributions. Review of Economic Studies, 42, 87–91.

    Article  Google Scholar 

  • Liang, J., & Navara, M. (2007). Implementation of calculating steiner point for 2D objects. In The 2007 international conference on intelligent systems and knowledge engineering (pp. 1592–1598).

  • La Torre, D., & Mendivil, F. (2015). The Monge-Kantorovich metric on multimeasures and self-similar multimeasures. Set-Valued and Variational Analysis, 23(2), 319–331.

    Article  Google Scholar 

  • La Torre, D., & Mendivil, F. (2007). Iterated function systems on multifunctions and inverse problems. Journal of Mathematical Analysis and Applications, 340(2), 1469–1479.

    Article  Google Scholar 

  • La Torre, D., & Mendivil, F. (2018). Portfolio optimization under partial uncertainty and incomplete information: A probability multimeasure-based approach. Annals of Operations Research, 267, 267–279.

    Article  Google Scholar 

  • Lee, S. M. (1972). Goal programming for decision analysis. Auerbach Publishing.

  • Markowitz, H. (1952). Portfolio selection. The. Journal of Finance, 7, 77–91.

    Google Scholar 

  • Marti, K. (1990). Computation of efficient solutions of stochastic optimization problems with applications to regression and scenario analysis. In R. Slowinski & J. Teghem (Eds.), Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty (pp. 163–188). Kluwer Academic Publishers.

  • Mathieu-Nicot, B. (1986). Fuzzy expected utility. Fuzzy Sets and Systems, 20, 163–173.

    Article  Google Scholar 

  • Mavrotas, G. (2009). Effective implementation of the \epsilon -constraint method in Multi-Objective Mathematical Programming problems. Applied Mathematics and Computation, 213, 455–465.

    Article  Google Scholar 

  • Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: The continuous-time case. The Review of Economics and Statistics, 51, 247–257.

    Article  Google Scholar 

  • Merton, R. C. (1971). Optimum consumption and portfolio rules in a continuous-time model. Journal of Economic Theory, 3(4), 373–413.

    Article  Google Scholar 

  • Merton, R. C. (1987). A simple model of capital market equilibrium with incomplete information. Journal of Finance, 42(3), 483–510.

    Article  Google Scholar 

  • Mill, J. S. (1863). Utilitarianism, London: Parker, Son and Bourn, West Strand. Retrieved 6 June 2015. via Google Books Mill, John Stuart (1998). Crisp, Roger (ed.). Utilitarianism. Oxford University Press.

  • Molchanov, I. (2005). Theory of random sets. Springer.

  • Monoyios, M. (2004). Finite horizon portfolio selection with transaction costs. Journal of Economic Dynamics and Control, 28, 889–913.

    Article  Google Scholar 

  • Mosler, K. C. (1984). Stochastic dominance decision rules when the attributes are utility independent. Management Science, 30, 1311–1322.

    Article  Google Scholar 

  • Moskowitz, H., Preckel, P. V., & Yang, A. (1993). Decision analysis with incomplete utility and probability information. Operations Research, 41(5), 864–879.

    Article  Google Scholar 

  • Pascal, B. (1670). Pensées. Re-printed several times, for instance 1972 in French byLe Livre de Poche, and 1995 in English by Penguin Classics.

  • Pratt, J. W. (1964). Risk aversion in the small and in the large. Econometrica, 32(1/2), 122–136.

    Article  Google Scholar 

  • Quiggin, J. (1993). Generalized expected utility theory: The rank dependant model. Kluwer Academic Publishers.

  • Rockafellar, R. T., & Wets, R.J.-B. (1997). Variational analysis. Springer.

  • Scarsini, M. (1988). Dominance conditions for multivariate utility functions. Management Science, 34, 454–460.

    Article  Google Scholar 

  • Urli, B., & Nadeau, R. (1990). Multiobjective stochastic linear programming with incomplete information: A general methodology. In R. Slowinski & J. Teghem (Eds.), Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty (pp. 131–161). Kluwer Academic Publishers.

  • Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton University Press.

  • Wang, Q., Hamel, A., & Rudloff, B. (2011). The utility maximization problem in markets with transaction costs: A set valued approach: Department of Mathematics. rinceton University.

  • Wibowo, R. B. E., & Muslikh, M. (2014). The Henstock-Kurzweil integral of set-valued function. International Journal of Mathematical Analysis, 55, 2741–2755.

    Article  Google Scholar 

  • Wolf, H. (1985). Die Ermittlung effizienter Lösungen zur stochastischen linearen Optimierungsaufgabe. OR Spektrum, 7, 81–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide La Torre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Abdelaziz, F., La Torre, D. Robust generalized Merton-type financial portfolio models with generalized utility. Ann Oper Res 330, 55–72 (2023). https://doi.org/10.1007/s10479-021-04051-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04051-x

Keywords

Navigation