Skip to main content
Log in

Multi-objective solid transportation-location problem with variable carbon emission in inventory management: a hybrid approach

  • Original - OR Modeling/Case Study
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The most important strategic issue for several industries is where to find facilities so as to discover a transportation path for optimizing the objectives at the same time. This paper acquaints a streamlining model with incorporate the facility location problem, solid transportation problem, and inventory management under multi-objective environment. The aims of the stated formulation are multi-fold: (i) to seek the optimum locations for potential facilities in Euclidean plane; (ii) to find the amount of distributed commodities; and (iii) to reduce the overall transportation cost, transportation time, and inventory cost along with the carbon emission cost. Here, variable carbon emission cost is taken into consideration because of the variable locations of facilities and the amount of distributed products. After that, a new hybrid approach is introduced dependent on an alternating locate-allocate heuristic and the intuitionistic fuzzy programming to get the Pareto-optimal solution of the proposed formulation. In fact, the performances of our findings are discussed with two numerical examples. Sensitivity analysis is executed to check the resiliency of the parameters. Ultimately, managerial insights, conclusions and avenues of future studies are offered at the end of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FLP:

Facility location problem,

STP:

Solid transportation problem,

MOST-LP:

Multi-objective solid transportation-location problem,

DM:

Decision maker

FS:

Fuzzy set

IFS:

Intuitionistic fuzzy set

ST-LP:

Solid transportation-location problem

IFP:

Intuitionistic fuzzy programming

References

  • Amin, S. H., & Baki, F. (2017). A facility location model for global closed-loop supply chain network design. Applied Mathematical Modelling, 41, 316–330.

    Google Scholar 

  • Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87–96.

    Google Scholar 

  • Carlo, H. J., David, V., & Salvat, G. (2017). Transportation-location problem with unknown number of facilities. Computers & Industrial Engineering, 112, 212–220.

    Google Scholar 

  • Cicek, C. T., Gultekin, H., & Tavli, B. (2019). The location-allocation problem of drone base stations. Computers & Operations Research, 111, 155–176.

    Google Scholar 

  • Cooper, L. (1964). Heuristic methods for location-allocation problems. SIAM Review, 6, 37–53.

    Google Scholar 

  • Cooper, L. (1972). The transportation-location problem. Operations Research, 20, 94–108.

    Google Scholar 

  • Das, S. K., & Roy, S. K. (2019). Effect of variable carbon emission in a multi-objective transportation-\(p\)-facility location problem under neutrosophic environment. Computers & Industrial Engineering, 132, 311–324.

    Google Scholar 

  • Das, S. K., Roy, S. K., & Weber, G.-W. (2020a). Heuristic approaches for solid transportation-\(p\)-facility location problem. Central European Journal of Operations Research, 28, 939–961.

    Google Scholar 

  • Das, S. K., Roy, S. K., & Weber, G.-W. (2020b). An exact and a heuristic approach for the transportation-\(p\)-facility location problem. Computational Management Science,. https://doi.org/10.1007/s10287-020-00363-8.

    Article  Google Scholar 

  • Das, S. K., Roy, S. K., & Weber, G.-W. (2020c). Application of type-2 fuzzy logic to a multi-objective green solid transportation-location problem with dwell time under carbon tax, cap and offset policy: Fuzzy vs. non-fuzzy techniques. IEEE Transactions on Fuzzy Systems. https://doi.org/10.1109/TFUZZ.2020.3011745.

  • Diabat, A., & Theodorou, E. (2015). A location-inventory supply chain problem: Reformulation and piecewise linearization. Computers & Industrial Engineering, 90, 381–389.

    Google Scholar 

  • Elhedhli, S., & Merrick, R. (2012). Green supply chain network design to reduce carbon emissions. Transportation Research Part D: Transport & Environment, 17(5), 370–379.

    Google Scholar 

  • Farahani, R. Z., SteadieSeifi, M., & Asgari, N. (2010). Multiple criteria facility location problems: A survey. Applied Mathematical Modelling, 34(7), 1689–1709.

    Google Scholar 

  • Farahani, R. Z., Bajgan, H. R., Fahimnia, B., & Kaviani, M. (2015). Location-inventory problem in supply chains: A modelling review. International Journal of Production Research, 53(12), 3769–3788.

    Google Scholar 

  • Gadegaard, S. L., Klose, A., & Nielsen, L. R. (2018). A bi-objective approach to discrete cost-bottleneck location problems. Annals of Operations Research, 267(1–2), 179–201.

    Google Scholar 

  • Goli, A., Tirkolaee, E. B., Malmir, B., Bian, G.-B., & Sangaiah, A. K. (2019). A multi-objective invasive weed optimization algorithm for robust aggregate production planning under uncertain seasonal demand. Computing, 101(6), 499–529.

    Google Scholar 

  • Goyal, S. K. (1985). Economic order quantity under conditions of permissible delay in payments. Journal of the Operational Research Society, 36(4), 335–338.

    Google Scholar 

  • Haley, K. B. (1962). New methods in mathematical programming-the solid transportation problem. Operations Research, 10(4), 448–463.

    Google Scholar 

  • Harris, I., Mumford, C. L., & Naima, M. M. (2014). A hybrid multi-objective approach to capacitated facility location with flexible store allocation for green logistics modeling. Transportation Research Part E, 66, 1–22.

    Google Scholar 

  • Khalilpourazari, S., Mirzazadeh, A., Weber, G.-W., & Pasandideh, S. H. R. (2019). A robust fuzzy approach for constrained multi-product economic production quantity with imperfect items and rework process. Optimization, 69(1), 63–90.

    Google Scholar 

  • Klibi, W., Lasalle, F., Martel, A., & Ichoua, S. (2010). The stochastic multiperiod location transportation problem. Transportation Science, 44(2), 221–237.

    Google Scholar 

  • Maity, G., Roy, S. K., & Verdegay, J. L. (2019). Time variant multi-objective interval-valued transportation problem in sustainable development. Sustainability, 11(21), 6161. https://doi.org/10.3390/su11216161.

    Article  Google Scholar 

  • Maity, G., Roy, S. K., & Verdegay, J. L. (2016). Multi-objective transportation problem with cost reliability under uncertain environment. International Journal of Computational Intelligence Systems, 9(5), 839–849.

    Google Scholar 

  • Manatkar, R. P., Karthik, K., Kumar, S. K., & Tiwari, M. K. (2016). An integrated inventory optimization model for facility location-allocation problem. International Journal of Production Research, 54(12), 3640–3658.

    Google Scholar 

  • Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management—a review. European Journal of Operational Research, 196(2), 401–412.

    Google Scholar 

  • Mis̆ković, S., Stanimirović, Z., & Grujic̆ić, I. (2017). Solving the robust two-stage capacitated facility location problem with uncertain transportation costs. Optimization Letters, 11(6), 1169–1184.

    Google Scholar 

  • Perl, J., & Sirisoponsilp, S. (1988). Distribution networks: Facility location, transportation and inventory. International Journal of Physical Distribution & Logistics Management, 18(6), 18–26.

    Google Scholar 

  • Paksoy, T., Pehlivan, N. Y., & Özceylan, E. (2012). Fuzzy multi-objective optimization of a green supply chain network with risk management that includes environmental hazards. Human and Ecological Risk Assessment: An International Journal, 18(5), 1120–1151.

    Google Scholar 

  • Pervin, M., Roy, S. K., & Weber, G.-W. (2018). Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration. Annals of Operations Research, 260(1–2), 437–460.

    Google Scholar 

  • Pervin, M., Roy, S. K., & Weber, G.-W. (2019). Multi-item deteriorating two-echelon inventory model with price-and stock-dependent demand: A trade-credit policy. Journal of Industrial & Management Optimization, 15(3), 1345. (pages).

    Google Scholar 

  • Reddy, K. N., Kumar, A., Sarkis, J., & Tiwari, M. K. (2020). Effect of carbon tax on reverse logistics network design. Computers & Industrial Engineering, 139, 106184. (pages).

    Google Scholar 

  • Roy, S. K., & Bhaumik, A. (2018). Intelligent water management: A triangular type-2 intuitionistic fuzzy matrix games approach. Water Resources Management, 32(3), 949–968.

    Google Scholar 

  • Roy, S. K., Maity, G., Weber, G.-W., & Gök, S. Z. A. (2017a). Conic scalarization approach to solve multi-choice multi-objective transportation problem with interval goal. Annals of Operations Research, 253(1), 599–620.

    Google Scholar 

  • Roy, S. K., Maity, G., & Weber, G.-W. (2017b). Multi-objective two-stage grey transportation problem using utility function with goals. Central European Journal of Operations Research, 25(2), 417–439.

    Google Scholar 

  • Roy, S. K., & Midya, S. (2019). Multi-objective fixed-charge solid transportation problem with product blending under intuitionistic fuzzy environment. Applied Intelligence, 49(10), 3524–3538.

    Google Scholar 

  • Roy, S. K., Ebrahimnejad, A., Verdegay, J. L., & Das, S. (2018). New approach for solving intuitionistic fuzzy multi-objective transportation problem. Sadhana, 43(1), 3. https://doi.org/10.1007/s12046-017-0777-7.

    Article  Google Scholar 

  • Roy, S. K., Pervin, M., & Weber, G. W. (2020). A two-warehouse probabilistic model with price discount on backorders under two levels of trade-credit policy. Journal of Industrial & Management Optimization., 16(2), 553–578.

    Google Scholar 

  • Saha, A. K., Paul, A., Azeem, A., & Paul, S. K. (2020). Mitigating partial-disruption risk: A joint facility location and inventory model considering customers’ preferences and the role of substitute products and backorder offers. Computers & Operations Research, 117, 104884. (pages).

    Google Scholar 

  • Saif, A., & Elhedhli, S. (2016). A Lagrangian heuristic for concave cost facility location problems: the plant location and technology acquisition problem. Optimization Letters, 10(5), 1087–1100.

    Google Scholar 

  • Sarkar, B., Ganguly, B., Sarkar, M., & Pareek, S. (2016). Effect of variable transportation and carbon emission in a three-echelon supply chain model. Transportation Research Part E, 91, 112–128.

    Google Scholar 

  • Shahabi, M., Akbarinasaji, S., Unnikrishnan, A., & James, R. (2013). Integrated inventory control and facility location decisions in a multi-echelon supply chain network with hubs. Networks and Spatial Economics, 13, 497–514.

    Google Scholar 

  • Shell, E. (1955). Distribution of a product by several properties. In Directorate of management analysis, proceedings 2nd symp on linear programming (Vol. 2, pp. 615–642).

  • Tirkolaee, E. B., Mahdavi, I., Esfahani, M. M. S., & Weber, G.-W. (2020). A robust green location-allocation-inventory problem to design an urban waste management system under uncertainty. Waste Management, 102, 340–350.

    Google Scholar 

  • Turken, N., Carrillo, J., & Verter, V. (2017). Facility location and capacity acquisition under carbon tax and emissions limits: To centralize or to decentralize? International Journal of Production Economics, 187, 126–141.

    Google Scholar 

  • Wu, P., Jin, Y., Shi, Y., & Shyu, H. (2017). The impact of carbon emission costs on manufacturers’ production and location decision. International Journal of Production Economics, 193, 193–206.

    Google Scholar 

  • Yang, Z., Chen, H., Chu, F., & Wang, N. (2019). An effective hybrid approach to the two-stage capacitated facility location problem. European Journal of Operational Research, 275(2), 467–480.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information & Control, 8(3), 338–353.

    Google Scholar 

  • Zare Mehrjerdi, Y., & Lotfi, R. (2019). Development of a mathematical model for sustainable closed-loop supply chain with efficiency and resilience systematic framework. International Journal of Supply and Operations Management, 6(4), 360–388.

    Google Scholar 

Download references

Acknowledgements

The research of Soumen Kumar Das is funded by the Department of Science and Technology (DST) of India under the [SRF-P (DST-INSPIRE Program)] scheme (No. DST/INSPIRE Fellowship/2015/IF 150209 dated 01/10/2015). Special thanks to the editor, Professor Endre Boros, the guest editors, Professors Paulina Golińska-Dawson, Beata Mrugalska, Kin Keung Lai and all the anonymous referees for their valuable comments and suggestions, which significantly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Kumar Roy.

Ethics declarations

Conflicts of Interest

The authors declare that there is no conflict of interests regarding the publication of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Iterative formula

  1. I.

    Herein, the iterations of

    $$\begin{aligned} Z_{1(x,y)}= \sum _{i\in I}\sum _{j \in J}\sum _{k \in K}\sum _{l \in L}\big (\alpha _{i}\phi _l(u_{i},v_{i};r_{k},s_{k})+\alpha ^\prime _{k}\phi _l(r_{k},s_{k};x_{j},y_{j})\big )w_{ikj}^{lB} \end{aligned}$$

    are derived iteratively in similar way of Das et al. (2020b) (see Appendix A) which are used at the ‘Solution methodology’ Sect. 3. Hence, the iterations of \((x_j,y_j)\) are as per the following:

    $$\begin{aligned}&x^{k^{\prime }+1}_j=\frac{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\frac{\alpha ^\prime _{k}\epsilon _lw_{ikj}^{lB}r_k}{\varphi (r_{k},s_{k};x_{j}^{k^{\prime }},y_{j}^{k^{\prime }})}}{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\frac{\alpha ^\prime _{k}\epsilon _lw_{ikj}^{lB}}{\varphi (r_{k},s_{k};x_{j}^{k^{\prime }},y_{j}^{k^{\prime }})}}~~~~( j=1,2,\ldots ,p;~k^{\prime }\in {\mathbb {N}}), \\&y^{k^{\prime }+1}_j=\frac{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\frac{\alpha ^\prime _{k}\epsilon _lw_{ikj}^{lB}s_k}{\varphi (r_{k},s_{k};x_{j}^{k^{\prime }},y_{j}^{k^{\prime }})}}{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\frac{\alpha ^\prime _{k}\epsilon _lw_{ikj}^{lB}}{\varphi (r_{k},s_{k};x_{j}^{k^{\prime }},y_{j}^{k^{\prime }})}}~~~~( j=1,2,\ldots ,p;~k^{\prime }\in {\mathbb {N}}), \end{aligned}$$

    where \(\varphi (r_{k},s_{k};x_{j}^{k^{\prime }},y_{j}^{k^{\prime }})=[{(r_{k}-x_{j}^{k^{\prime }})^{2}+(s_{k}-y_{j}^{k^{\prime }})^{2}}+\delta _{kj}]^{1/2}\). The initial iteration of \((x_j,y_j)\) is the weighted mean coordinate:

    $$\begin{aligned}&x_j^{0}=\frac{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\beta ^\prime _{k}\epsilon ^{\prime }_lw_{ikj}^{lB}r_k}{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\beta ^\prime _{k}\epsilon ^{\prime }w_{ikj}^{lB}}~~~~( j=1,2,\ldots , p), \\&y_j^{0}=\frac{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\beta ^\prime _{k}\epsilon ^{\prime }w_{ikj}^{lB}s_k}{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\beta ^\prime _{k}\epsilon ^{\prime }w_{ikj}^{lB}}~~~~( j=1,2,\ldots , p). \end{aligned}$$
  2. II.

    Similarly, the iterations for

    $$\begin{aligned} Z_{2(x,y)} = \sum _{i\in I}\sum _{j \in J}\sum _{k \in K}\sum _{l \in L}\big (\beta _{i}\psi _l(u_{i},v_{i};r_{k},s_{k})+\beta ^\prime _{k}\psi _l(r_{k},s_{k};x_{j},y_{j})\big )\zeta \left( w_{ikj}^{lB}\right) \end{aligned}$$

    are

    $$\begin{aligned}&x_j^{0}=\frac{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\beta ^\prime _{k}\epsilon ^{\prime }_l\zeta \left( w_{ikj}^{lB}\right) r_k}{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\beta ^\prime _{k}\epsilon ^{\prime }_l\zeta \left( w_{ikj}^{lB}\right) }~~~~( j=1,2,\ldots , p), \\&y_j^{0}=\frac{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\beta ^\prime _{k}\epsilon ^{\prime }_l\zeta \left( w_{ikj}^{lB}\right) s_k}{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\beta ^\prime _{k}\epsilon ^{\prime }_l\zeta \left( w_{ikj}^{lB}\right) }~~~~( j=1,2,\ldots , p),\\&x^{k^{\prime }+1}_j=\frac{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\frac{\beta ^\prime _{k}\epsilon ^{\prime }_l\zeta \left( w_{ikj}^{lB}\right) r_k}{\tau (r_{k},s_{k};x_{j}^{k^{\prime }},y_{j}^{k^{\prime }})}}{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\frac{\beta ^\prime _{k}\epsilon ^{\prime }_l\zeta \left( w_{ikj}^{lB}\right) }{\tau (r_{k},s_{k};x_{j}^{k^{\prime }},y_{j}^{k^{\prime }})}}~~~~( j=1,2,\ldots ,p;~k^{\prime }\in {\mathbb {N}}), \\&y^{k^{\prime }+1}_j=\frac{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\frac{\beta ^\prime _{k}\epsilon ^{\prime }_l\zeta \left( w_{ikj}^{lB}\right) s_k}{\tau (r_{k},s_{k};x_{j}^{k^{\prime }},y_{j}^{k^{\prime }})}}{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\frac{\beta ^\prime _{k}\epsilon ^{\prime }_l\zeta \left( w_{ikj}^{lB}\right) }{\tau (r_{k},s_{k};x_{j}^{k^{\prime }},y_{j}^{k^{\prime }})}}~~~~( j=1,2,\ldots ,p;~k^{\prime }\in {\mathbb {N}}), \end{aligned}$$

    where \(\tau (r_{k},s_{k};x_{j}^{k^{\prime }},y_{j}^{k^{\prime }})=[{(r_{k}-x_{j}^{k^{\prime }})^{2}+(s_{k}-y_{j}^{k^{\prime }})^{2}}+t_{kj}+\delta _{kj}]^{1/2}\).

  3. III.

    Furthermore, the iterative formula for \(Z_3\) are:

    The iterations for

    $$\begin{aligned} Z_{3(x,y)}= & {} \sum _{i\in I}\sum _{j \in J}\sum _{k \in K}\sum _{l \in L}\big (d_{2k}A_{ik}+d_{1j}G_{kj}\big )w_{ikj}^{lB}+\sum _{i\in I}\sum _{j \in J}\sum _{k \in K}\sum _{l \in L} H_kw_{ikj}^{lB}\\&+\sum _{i\in I}\sum _{j \in J}\sum _{k \in K}\sum _{l \in L}D_kw_{ikj}^{lB}+\sum _{i\in I}\sum _{j \in J}\sum _{k \in K}\sum _{l \in L} B_iw_{ikj}^{lB}+\sum _{i\in I}\sum _{j \in J}\sum _{k \in K}\sum _{l \in L}g_kw_{ikj}^{lB}\\&+\sum _{k \in K} f_k+\gamma \sum _{i\in I}\sum _{j \in J}\sum _{k \in K}\sum _{l \in L}\big (\rho _l(u_{i},v_{i};r_{k},s_{k})+\rho _l(r_{k},s_{k};x_{j},y_{j})\big )w_{ikj}^{lB} \end{aligned}$$

    are stated subsequently:

    $$\begin{aligned}&x_j^{0}=\frac{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\epsilon ^{\prime \prime }_lw_{ikj}^{lB}r_k}{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\epsilon ^{\prime \prime }_lw_{ikj}^{lB}}~~~~( j=1,2,\ldots , p), \\&y_j^{0}=\frac{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\epsilon ^{\prime \prime }_lw_{ikj}^{lB}s_k}{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\epsilon ^{\prime \prime }_lw_{ikj}^{lB}}~~~~( j=1,2,\ldots , p),\\&x^{k^{\prime }+1}_j=\frac{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\frac{\epsilon ^{\prime \prime }_lw_{ikj}^{lB}r_k}{\varrho (r_{k},s_{k};x_{j}^{k^{\prime }},y_{j}^{k^{\prime }})}}{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\frac{\epsilon ^{\prime \prime }_lw_{ikj}^{lB}}{\varrho (r_{k},s_{k};x_{j}^{k^{\prime }},y_{j}^{k^{\prime }})}}~~~~( j=1,2,\ldots ,p;~k^{\prime }\in {\mathbb {N}}), \\&y^{k^{\prime }+1}_j=\frac{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\frac{\epsilon ^{\prime \prime }_lw_{ikj}^{lB}s_k}{\varrho (r_{k},s_{k};x_{j}^{k^{\prime }},y_{j}^{k^{\prime }})}}{\sum _{i\in I}\sum _{k \in K}\sum _{l \in L}\frac{\epsilon ^{\prime \prime }_lw_{ikj}^{lB}}{\varrho (r_{k},s_{k};x_{j}^{k^{\prime }},y_{j}^{k^{\prime }})}}~~~~( j=1,2,\ldots ,p;~k^{\prime }\in {\mathbb {N}}), \end{aligned}$$

    where \(\varrho (r_{k},s_{k};x_{j}^{k^{\prime }},y_{j}^{k^{\prime }})=[{(r_{k}-x_{j}^{k^{\prime }})^{2}+(s_{k}-y_{j}^{k^{\prime }})^{2}}+\delta _{kj}]^{1/2}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S.K., Pervin, M., Roy, S.K. et al. Multi-objective solid transportation-location problem with variable carbon emission in inventory management: a hybrid approach. Ann Oper Res 324, 283–309 (2023). https://doi.org/10.1007/s10479-020-03809-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03809-z

Keywords

Navigation