Skip to main content
Log in

Solution approaches for equitable multiobjective integer programming problems

  • S.I.: MOPGP19
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We consider multi-objective optimization problems where the decision maker (DM) has equity concerns. We assume that the preference model of the DM satisfies properties related to inequity-aversion, hence we focus on finding nondominated solutions in line with the properties of inequity-averse preferences, namely the equitably nondominated solutions. We discuss two algorithms for finding good subsets of equitably nondominated solutions. The first approach is an extension of an interactive approach developed for finding the most preferred nondominated solution when the utility function is assumed to be quasiconcave. We find the most preferred equitably nondominated solution when the utility function is assumed to be symmetric quasiconcave. In the second approach we generate an evenly distributed subset of the set of equitably nondominated solutions to be considered further by the DM. We show the computational feasibility of the two algorithms on equitable multi-objective knapsack problem, in which projects in different categories are to be funded subject to a limited budget. We perform experiments to show and discuss the performances of the algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alves, M. J., & Clímaco, J. (2007). A review of interactive methods for multiobjective integer and mixed-integer programming. European Journal of Operational Research, 180(1), 99–115.

    Article  Google Scholar 

  • Antunes, C. H., Alves, M. J., & Clímaco, J. (2016). Multiobjective linear and integer programming. Berlin: Springer.

    Book  Google Scholar 

  • Baatar, D., & Wiecek, M. M. (2006). Advancing equitability in multiobjective programming. Computers & Mathematics with Applications, 52(1–2), 225–234.

    Article  Google Scholar 

  • Bazgan, C., Hugot, H., & Vanderpooten, D. (2009). Solving efficiently the 0–1 multi-objective knapsack problem. Computers & Operations Research, 36(1), 260–279.

    Article  Google Scholar 

  • Beamon, B. M., & Balcik, B. (2008). Performance measurement in humanitarian relief chains. International Journal of Public Sector Management, 21(1), 4–25.

    Article  Google Scholar 

  • Ceyhan, G., Köksalan, M., & Lokman, B. (2019). Finding a representative nondominated set for multi-objective mixed integer programs. European Journal of Operational Research, 272(1), 61–77.

    Article  Google Scholar 

  • Clímaco, J., Ferreira, C., & Captivo, M. E. (1997). Multicriteria integer programming: An overview of the different algorithmic approaches. In J. Clímaco (Ed.), Multicriteria analysis (pp. 248–258). Springer.

  • Deb, K. (2014). Multi-objective optimization. In E. Burke, & G. Kendall (Eds.), Search methodologies (pp. 403–449). Springer.

  • Ehrgott, M., & Gandibleux, X. (2000). A survey and annotated bibliography of multiobjective combinatorial optimization. OR-Spektrum, 22(4), 425–460.

    Article  Google Scholar 

  • Figueira, J. R., Paquete, L., Simões, M., & Vanderpooten, D. (2013). Algorithmic improvements on dynamic programming for the bi-objective \(\{\)0, 1\(\}\) knapsack problem. Computational Optimization and Applications, 56(1), 97–111.

    Article  Google Scholar 

  • Hazen, G. (1983). Preference convex unanimity in multiple criteria decision making. Mathematics of operations research, 8(4), 505–516.

    Article  Google Scholar 

  • Holzmann, T., & Smith, J. (2018). Solving discrete multi-objective optimization problems using modified augmented weighted tchebychev scalarizations. European Journal of Operational Research, 271(2), 436–449.

    Article  Google Scholar 

  • Karsu, Ö. (2013). Using holistic multicriteria assessments: The convex cones approach. In J. J. Cochran, L. A. Cox Jr., P. Keskinocak, J. P. Kharoufeh, & J. C. Smith (Eds.), Wiley encyclopedia of operations research and management science (pp. 1–14). Wiley.

  • Karsu, Ö., & Morton, A. (2014). Incorporating balance concerns in resource allocation decisions: A bi-criteria modelling approach. Omega, 44, 70–82.

    Article  Google Scholar 

  • Karsu, Ö., & Morton, A. (2015). Inequity averse optimization in operational research. European Journal of Operational Research, 245(2), 343–359.

    Article  Google Scholar 

  • Karsu, Ö., Morton, A., & Argyris, N. (2018). Capturing preferences for inequality aversion in decision support. European Journal of Operational Research, 264(2), 686–706.

    Article  Google Scholar 

  • Kellerer, H., Pferschy, U., & Pisinger, D. (2003). Knapsack problems. 2004. Berlin: Springer.

  • Kirlik, G., & Sayın, S. (2014). A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems. European Journal of Operational Research, 232(3), 479–488.

    Article  Google Scholar 

  • Klamroth, K., & Wiecek, M. M. (2000). Dynamic programming approaches to the multiple criteria knapsack problem. Naval Research Logistics, 47(1), 57–76.

    Article  Google Scholar 

  • Köksalan, M. (2008). Multiobjective combinatorial optimization: Some approaches. Journal of Multi-Criteria Decision Analysis, 15(3–4), 69–78.

    Article  Google Scholar 

  • Korhonen, P., Wallenius, J., & Zionts, S. (1984). Solving the discrete multiple criteria problem using convex cones. Management Science, 30(11), 1336–1345.

    Article  Google Scholar 

  • Kostreva, M. M., & Ogryczak, W. (1999). Linear optimization with multiple equitable criteria. RAIRO-Operations Research, 33(3), 275–297.

    Article  Google Scholar 

  • Kostreva, M. M., Ogryczak, W., & Wierzbicki, A. (2004). Equitable aggregations and multiple criteria analysis. European Journal of Operational Research, 158(2), 362–377.

    Article  Google Scholar 

  • Laumanns, M., Thiele, L., & Zitzler, E. (2006). An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. European Journal of Operational Research, 169(3), 932–942.

    Article  Google Scholar 

  • Lokman, B., & Köksalan, M. (2013). Finding all nondominated points of multi-objective integer programs. Journal of Global Optimization, 57(2), 347–365.

    Article  Google Scholar 

  • Lokman, B., & Köksalan, M. (2014). Finding highly preferred points for multi-objective integer programs. IIE Transactions, 46(11), 1181–1195.

    Article  Google Scholar 

  • Lokman, B., Köksalan, M., Korhonen, P. J., & Wallenius, J. (2016). An interactive algorithm to find the most preferred solution of multi-objective integer programs. Annals of Operations Research, 245(1–2), 67–95.

    Article  Google Scholar 

  • Mansour, I. B., & Alaya, I. (2015). Indicator based ant colony optimization for multi-objective knapsack problem. Procedia Computer Science, 60, 448–457.

    Article  Google Scholar 

  • Mansour, I. B., Alaya, I., & Tagina, M. (2019). A gradual weight-based ant colony approach for solving the multiobjective multidimensional knapsack problem. Evolutionary Intelligence, 12(2), 253–272.

    Article  Google Scholar 

  • Mansour, I. B., Basseur, M., & Saubion, F. (2018). A multi-population algorithm for multi-objective knapsack problem. Applied Soft Computing, 70, 814–825.

    Article  Google Scholar 

  • Mavrotas, G., & Diakoulaki, D. (1998). A branch and bound algorithm for mixed zero-one multiple objective linear programming. European Journal of Operational Research, 107(3), 530–541.

    Article  Google Scholar 

  • Mavrotas, G., & Florios, K. (2013). An improved version of the augmented \(\varepsilon \)-constraint method (augmecon2) for finding the exact pareto set in multi-objective integer programming problems. Applied Mathematics and Computation, 219(18), 9652–9669.

    Article  Google Scholar 

  • Ogryczak, W., & Śliwiński, T. (2003). On solving linear programs with the ordered weighted averaging objective. European Journal of Operational Research, 148(1), 80–91.

    Article  Google Scholar 

  • Özlen, M., & Azizoğlu, M. (2009). Multi-objective integer programming: A general approach for generating all non-dominated solutions. European Journal of Operational Research, 199(1), 25–35.

    Article  Google Scholar 

  • Ozlen, M., Burton, B. A., & MacRae, C. A. (2014). Multi-objective integer programming: An improved recursive algorithm. Journal of Optimization Theory and Applications, 160(2), 470–482.

    Article  Google Scholar 

  • Sayın, S. (2000). Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming. Mathematical Programming, 87(3), 543–560.

    Article  Google Scholar 

  • Sen, A., & Foster, J. (1997). On economic inequality. Oxford: Clarendon Press. (expanded Edition).

    Google Scholar 

  • Shorrocks, A. (1983). Ranking income distributions. Economica, 50, 3–17.

    Article  Google Scholar 

  • Silvano, M., & Paolo, T. (1990). Knapsack problems: Algorithms and computer implementations. Wiley.

  • Steuer, R. (1986). Multiple criteria optimization: Theory, computation, and application. New York: Willey.

    Google Scholar 

  • Sylva, J., & Crema, A. (2004). A method for finding the set of non-dominated vectors for multiple objective integer linear programs. European Journal of Operational Research, 158(1), 46–55.

    Article  Google Scholar 

  • Ulungu, E. L., & Teghem, J. (1994). Multi-objective combinatorial optimization problems: A survey. Journal of Multi-Criteria Decision Analysis, 3(2), 83–104.

    Article  Google Scholar 

  • Visée, M., Teghem, J., Pirlot, M., & Ulungu, E. L. (1998). Two-phases method and branch and bound procedures to solve the bi-objective knapsack problem. Journal of Global Optimization, 12(2), 139–155.

    Article  Google Scholar 

  • White, D. (1990). A bibliography on the applications of mathematical programming multiple-objective methods. Journal of the Operational Research Society, 41, 669–691.

    Article  Google Scholar 

  • Zhang, W., & Reimann, M. (2014). A simple augmented\(\varepsilon \)-constraint method for multi-objective mathematical integer programming problems. European Journal of Operational Research, 234(1), 15–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özlem Karsu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Proof of Theorem 6

Proof

PART 1: We will show that if \(z \in \bar{{CD_{Symm}}}(z^{m},z^{k})\) (it is equitably dominated by \(C(\overrightarrow{z^{m}};\overrightarrow{z^{k}}))\) then Eqs. 7 and 8 hold. Let z be cone dominated, i.e. \( \exists \) \(\mu \ge 0: z^{\prime }=\overrightarrow{z^k}+\mu (\overrightarrow{z^k}-\overrightarrow{z^m}) \) and \(z \preceq _{e} z'\). Then by Theorem 5, \(\sum _{i=1}^{t}\overrightarrow{z_{i}} \le \sum _{j \in a}z^{\prime }_j \quad \forall t, \forall a \in K^t\). That is:

$$\begin{aligned} \sum _{i=1}^{t}\overrightarrow{z_{i}} \le \sum _{j \in a}( \overrightarrow{z_j^k}+\mu (\overrightarrow{z_j^k}-\overrightarrow{z_j^m})) \quad \forall t, \forall a \in K^t \end{aligned}$$
(31)

Note that \(K^t=K^t_{km} \cup K^t_{mk}\) and \(K^t_{km} \cap K^t_{mk}=\emptyset \quad \forall t\). Then:

$$\begin{aligned}&\sum _{i=1}^{t_1}\overrightarrow{z_{i}} \le \sum _{j \in b}( \overrightarrow{z_j^k}+\mu (\overrightarrow{z_j^k}-\overrightarrow{z_j^m})) \quad \forall t_1 \in P, \forall b \in K^{t_1}_{mk} \end{aligned}$$
(32)
$$\begin{aligned}&\sum _{i=1}^{t_2}\overrightarrow{z_{i}} \le \sum _{l \in c}( \overrightarrow{z_l^k}+\mu (\overrightarrow{z_l^k}-\overrightarrow{z_l^m})) \quad \forall t_2 \in P, \forall c \in K^{t_2}_{km} \end{aligned}$$
(33)

Since \(\sum _{j \in b} (\overrightarrow{z_j^k}-\overrightarrow{z_j^m}) \le 0\) by definition, Eq. 32 can be rewritten as:

$$\begin{aligned} \mu \sum _{j \in b}(\overrightarrow{z_j^m}-\overrightarrow{z_j^k}) \le \sum _{j \in b}\overrightarrow{z_j^k}-\sum _{i=1}^{t_1}\overrightarrow{z_{i}}\text { } \forall t_1 \in P, \forall b \in K^{t_1}_{mk} \end{aligned}$$
(34)

Since \(\mu \ge 0\) and \(\sum _{j \in b} (\overrightarrow{z_j^m}-\overrightarrow{z_j^k}) \ge 0\), \(\sum _{j \in b}\overrightarrow{z_j^k}-\sum _{i=1}^{t_1}\overrightarrow{z_{i}} \ge 0 \quad \forall t_1\in P\text {, }\forall b \in K^{t_1}_{mk}\) should hold. That is, Eq. 7 holds.

Equation 33 can be rewritten as:

$$\begin{aligned} \sum _{i=1}^{t_2}\overrightarrow{z_{i}}-\sum _{l \in c}\overrightarrow{z_l^k} \le \mu \sum _{l \in c} (\overrightarrow{z_l^k}-\overrightarrow{z_l^m}) \text { } \forall t_2 \in P, \forall c \in K^{t_2}_{km} \end{aligned}$$
(35)

Since \(\sum _{l \in c} (\overrightarrow{z_l^k}-\overrightarrow{z_l^m}) > 0\) and \(\sum _{j \in b} (\overrightarrow{z_j^m}-\overrightarrow{z_j^k}) \ge 0\), from Eqs. 34 and 35 we have the following (by multiplying Eq. 34 by \(\sum _{l \in c} (\overrightarrow{z_l^k}-\overrightarrow{z_l^m})\) and Eq. 35 by \(\sum _{j \in b} (\overrightarrow{z_j^m}-\overrightarrow{z_j^k})\)):

\((\sum _{i=1}^{t_2}\overrightarrow{z_{i}}-\sum _{l \in c}\overrightarrow{z_l^k}) (\sum _{j \in b}(\overrightarrow{z_j^m}-\overrightarrow{z_j^k}) ) \le \mu (\sum _{l \in c} (\overrightarrow{z_l^k}-\overrightarrow{z_l^m}))(\sum _{j \in b} (\overrightarrow{z_j^m}-\overrightarrow{z_j^k})) \le (\sum _{j \in b}\overrightarrow{z_j^k}-\sum _{i=1}^{t_1}\overrightarrow{z_{i}})(\sum _{l \in c} (\overrightarrow{z_l^k}-\overrightarrow{z_l^m})) \forall t_1 \in P, \forall t_2 \in P, \forall b \in K^{t_1}_{mk}, \forall c \in K^{t_2}_{km} \)

PART 2: Now suppose that Eqs. 7 and 8 hold. We will show that z is cone dominated, i.e. \(\exists \mu \ge 0 : z \preceq _{e} ( \overrightarrow{z^k}+\mu (\overrightarrow{z^k}-\overrightarrow{z^m}))\). Note that \(K^{t_1}_{mk}\) consists of two subsets \(K^{t_1}_{strict\_mk}\) and \( K^{t_1}_{equal\_mk}\) as follows: \(\sum _{j \in b} \overrightarrow{z^m_{j}} > \sum _{j \in b} \overrightarrow{z^k_{j}}\) for all \( b \in K^{t_1}_{strict\_mk} \) and \(\sum _{j \in b} \overrightarrow{z^m_{j}} = \sum _{j \in b} \overrightarrow{z^k_{j}}\) for all \( b \in K^{t_1}_{equal\_mk} \).

Since for \(b\in K^{t_1}_{strict\_mk}\) we have \(\sum _{j \in b}(\overrightarrow{z^m_j} - \overrightarrow{z^k_j} )>0\) and for \(c\in K^{t_2}_{km}\) \(\sum _{l \in c}(\overrightarrow{z^k_l} - \overrightarrow{z^m_l} )>0\) , Eq. 8 implies the following:

$$\begin{aligned} \frac{(\sum _{i=1}^{t_2}\overrightarrow{z_i}-\sum _{l \in c}\overrightarrow{z^k_l})}{\sum _{l \in c} (\overrightarrow{z^k_l} - \overrightarrow{z^m_l} )} \le \frac{(\sum _{j \in b}\overrightarrow{z^k_j}-\sum _{i=1}^{t_1}\overrightarrow{z_i})}{ \sum _{j \in b}( \overrightarrow{z^m_j} -\overrightarrow{z^k_j} )} \text { } \forall t_1\in P,\forall t_2\in P, b\in K^{t_1}_{strict\_mk} \text {, } c \in K^{t_2}_{km} \end{aligned}$$
(36)

We will find a \(\mu \ge 0\) that makes z equitably dominated by \(\overrightarrow{z^k}+\mu (\overrightarrow{z^k}-\overrightarrow{z^m}))\). One can define

$$\begin{aligned} {\bar{\mu }}=\min _{t_1 \in P, b\in K^{t_1}_{strict\_mk}} \frac{(\sum _{j \in b}\overrightarrow{z^k_j}-\sum _{i=1}^{t_1}\overrightarrow{z_i})}{\sum _{j \in b}( \overrightarrow{z^m_j} -\overrightarrow{z^k_j} )}. \end{aligned}$$
(37)

Since \((\sum _{j \in b}\overrightarrow{z^k_j}-\sum _{i=1}^t\overrightarrow{z_i}) \ge 0\) (see Eq. 7) and \(\sum _{j \in b} (\overrightarrow{z^m_j} -\overrightarrow{z^k_j} )>0\) for all \(b\in K_{strict\_mk}\) , \({\bar{\mu }}\ge 0\) holds.

Note that the following holds for this \({\bar{\mu }}\):

$$\begin{aligned}&\frac{(\sum _{i=1}^{t_2}\overrightarrow{z_i}-\sum _{l \in c}\overrightarrow{z^k_l})}{\sum _{l \in c} (\overrightarrow{z^k_l} - \overrightarrow{z^m_l} )} \le {\bar{\mu }} \le \frac{(\sum _{j \in b}\overrightarrow{z^k_j}-\sum _{i=1}^{t_1}\overrightarrow{z_i})}{ \sum _{j \in b}( \overrightarrow{z^m_j} -\overrightarrow{z^k_j} )}\nonumber \\&\quad \forall t_1\in P, \forall t_2\in P, b\in K^{t_1}_{strict\_mk} \text {, } c \in K^{t_2}_{km} \end{aligned}$$
(38)

\(\sum _{i=1}^{t_2}\overrightarrow{z_i}\le \sum _{l \in c}\overrightarrow{z^k_l}+{\bar{\mu }}\sum _{l \in c} (\overrightarrow{z^k_l} - \overrightarrow{z^m_l} ) \text { } \forall t_2 \in P \text {, } \forall c\in K^{t_2}_{km}\)(From the left side of Eq. 38)

\(\sum _{i=1}^{t_1}\overrightarrow{z_i} \le \sum _{j \in b}\overrightarrow{z^k_j}+{\bar{\mu }} \sum _{j \in b} (\overrightarrow{z^k_j} - \overrightarrow{z^m_j} )\text { } \forall t_1\in P \text {, } \forall b\in K^{t_1}_{strict\_mk}\)(From the right side of Eq. 38).

\(\sum _{i=1}^t\overrightarrow{z_i} \le \sum _{j \in b}\overrightarrow{z^k_j}+{\bar{\mu }} \sum _{j \in b} (\overrightarrow{z^k_j} -\overrightarrow{z^m_j})=\sum _{j \in b}\overrightarrow{z^k_j} \text { } \forall t\in P \text {, } \forall b\in K^t_{equal\_mk}\) (From condition 7).

Note that \(K^t= K^t_{strict\_mk}\cup K^t_{equal\_mk} \cup K^t_{km}\). Therefore the conditions of Theorem 5 are satisfied, making z equitably dominated by \(\overrightarrow{z^k}+{\bar{\mu }}(\overrightarrow{z^k}-\overrightarrow{z^m})\). \(\square \)

Proof of Proposition 7

For \(P=\lbrace 1,2,\cdots ,p\rbrace \):

$$\begin{aligned}&y_1=\overrightarrow{z}_1\\&y_2=\overrightarrow{z}_1+\overrightarrow{z}_2\\&\vdots \\&y_p=\overrightarrow{z}_1+\overrightarrow{z}_2+\cdots +\overrightarrow{z}_p \end{aligned}$$

and \(\overrightarrow{z}_1 \le \overrightarrow{z}_2\le \cdots \le \overrightarrow{z}_p\)

We will prove Proposition 7 by induction. The base case is at \(p=2\) where \(P=\lbrace 1,2\rbrace \). To show that Proposition 7 holds for the base case, we need to show that \(y_2\ge 2y_1\).

Since by definition \(y_1=\overrightarrow{z}_1\) and \(y_2=\overrightarrow{z}_1+\overrightarrow{z}_2\) where \(\overrightarrow{z}_2 \ge \overrightarrow{z}_1\), then \(y_2=\overrightarrow{z}_1+\overrightarrow{z}_1+\epsilon \ge 2\overrightarrow{z}_1=2y_1\) where \(\epsilon \ge 0\). Hence \(y_2\ge 2y_1\).

Hypothesis 1

Assume that Proposition 7 holds for \(p=s\).

To complete the proof, we need to show that Proposition 7 holds for \(p=s+1\). Due to Hypothesis 1, we just have to show that Proposition 7 holds for all \((j,s+1): 1 \le j \le s\).

\(jy_s\ge sy_j\) for all \(1\le j \le s\) (Due to Hypothesis 1)

$$\begin{aligned}&\overrightarrow{z}_{s+1} \ge \overrightarrow{z}_j=y_j-y_{j-1}\\&jy_s+j\overrightarrow{z}_{s+1}\ge sy_j+j\overrightarrow{z}_j \\&jy_s+j\overrightarrow{z}_{s+1}\ge sy_j+j(y_j-y_{j-1}).\\&j(y_s+\overrightarrow{z}_{s+1})\ge (s+1)y_j+\underbrace{(j-1)y_j-jy_{j-1}}_{\ge 0, \text { Due to Hypothesis }1}.\\&\hbox {Hence }jy_{s+1}\ge (s+1)y_j. \end{aligned}$$

Therefore, Proposition 7 holds for any p.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, B., Karsu, Ö. Solution approaches for equitable multiobjective integer programming problems. Ann Oper Res 311, 967–995 (2022). https://doi.org/10.1007/s10479-020-03613-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03613-9

Keywords

Navigation