Skip to main content
Log in

Set optimization of set-valued risk measures

  • S.I.: MOPGP 2017
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A new approach to optimizing or hedging a portfolio of financial instruments to reduce risk is presented. Central to this approach are concepts and tools of set-optimization theory. It focuses on the problem of minimizing set-valued risk measures applied to portfolios. We present sufficient conditions for the existence of solutions of a set-valued risk minimization problem under some semi-continuity assumption. The methodology is applied to the optimization of set-valued Value at Risk and Average Value at Risk. Two examples at the end illustrate various features of the theoretical construction, among them the geometry of the image sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9, 203–228.

    Article  Google Scholar 

  • Aubin, J.-P., & Frankowska, H. (1990). Set-valued analysis. Boston: Birhäuser.

    Google Scholar 

  • Barrieu, P., & El Karoui, N. (2005). Pricing, hedging and optimally designing derivatives via minimization of risk measures. In R. Carmona (Ed.), Indifference pricing: Theory and applications (pp. 77–144). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Basak, S., & Shapiro, A. (1998). Value-at-risk based management: Optimal policies and asset prices. Working Paper. Wharton School, University of Pennsylvania (can be downloaded: http://www.gloriamundi.org).

  • Bellini, F., & Rosazza Gianin, E. (2008). Optimal portfolios with Haezendonck risk measures. Statistics & Decisions, 26, 89–108.

    Article  Google Scholar 

  • Ben-Tal, A., & Teboulle, M. (2007). An old-new concept of convex risk measures: The optimized certainty equivalent. Mathematical Finance, 17(3), 449–476.

    Article  Google Scholar 

  • Bertsimas, D., Lauprete, G. J., & Samarov, A. (2004). Shortfall as a risk measure: Properties, optimization and applications. Journal of Economic Dynamics and Control, 28, 1353–1381.

    Article  Google Scholar 

  • Boonen, T. J., Tsanakas, A., & Wüthrich, M. V. (2017). Capital allocation for portfolios with non-linear risk aggregation. Insurance: Mathematics and Economics, 72, 95–106.

    Google Scholar 

  • Carr, P., Geman, H., & Madan, D. B. (2001). Pricing and hedging in incomplete markets. Journal of Financial Economics, 62(1), 131–167.

    Article  Google Scholar 

  • Crespi, G., Kuroiwa, D., & Rocca, M. (2014). Convexity and global well-posedness in set-optimization. Taiwanese Journal of Mathematics, 18(6), 1897–1908.

    Article  Google Scholar 

  • Crespi, G.P., & Mastrogiacomo, E. (2020). Qualitative robustness of set-valued value-at-risk. Mathematical Methods of Operations Research. https://doi.org/10.1007/s00186-020-00707-9.

  • Daniilidis, A., & Pang, J. C. (2011). Continuity and differentiability of set-valued maps revisited in the light of tame geometry. Journal of the London Mathematical Society, 83(3), 637–658.

    Article  Google Scholar 

  • Filipović, D., & Kupper, M. (2008). Optimal capital and risk transfers for group diversification. Mathematical Finance, 18(1), 55–76.

    Article  Google Scholar 

  • Föllmer, H., & Schied, A. (2011). Stochastic finance: An introduction in discrete time. Berlin: Walter de Gruyter.

    Book  Google Scholar 

  • Frittelli, M., & Rosazza, Gianin E. (2002). Putting order in risk measures. Journal of Banking & Finance, 26(7), 1473–1486.

    Article  Google Scholar 

  • Frittelli, M., & Rosazza Gianin, E. (2004). Dynamic convex risk measures. In G. Szegö (Ed.), Risk measures for the 21st century (pp. 227–248). Chichester: Wiley.

  • Gaivoronski, A. A., & Pflug, G. (2000). Value at risk in portfolio optimization: Properties and Computational Approach. Working Paper 00/2. Norwegian University of Science and Technology

  • Gaivoronski, A. A., & Pflug, G. (2005). Value-at-risk in portfolio optimization: Properties and computational approach. Journal of Risk, 7(2), 1–31.

    Article  Google Scholar 

  • Göpfert, A., Riahi, H., Tammer, C., & Zalinescu, C. (2003). Variational methods in partially ordered spaces. CMS books in mathematics (Vol. 17). New York: Springer.

    Google Scholar 

  • Gorokhovik, V. V. (2008). Representations of affine multifunctions by affine selections. Set-Valued Analysis, 16, 185–198.

    Article  Google Scholar 

  • Hamel, A. H., & Kostner, D. (2018). Cone distribution functions and quantiles for multivariate random variables. Journal of Multivariate Analysis, 167, 97–113.

    Article  Google Scholar 

  • Hamel, A. H., Rudloff, B., & Yankova, M. (2013). Set-valued average value at risk and its computation. Mathematics and Financial Economics, 7(2), 229–246.

    Article  Google Scholar 

  • Hamel, A. H., & Heyde, F. (2010). Duality for set-valued measures of risk. SIAM Journal on Financial Mathematics, 1(1), 66–95.

    Article  Google Scholar 

  • Heath, D. (2000). Back to the future. In Plenary Lecture: First World Congress of the Bachelier Finance Society, Paris.

  • Hernández, E., & Rodríguez-Marín, L. (2007). Existence theorems for set-optimization problems. Nonlinear Analysis: Theory, Methods & Applications, 67(6), 1726–1736.

    Article  Google Scholar 

  • Huang, X. X. (2001). Extended and strongly extended well-posedness of set-valued optimization problems. Mathematical Methods of Operations Research, 53, 101–116.

    Article  Google Scholar 

  • Huang, X. X. (2001). Pointwise well-posedness of perturbed vector optimization problems in a vector-valued variational principle. Journal of Optimization Theory and Applications, 108(3), 671–686.

    Article  Google Scholar 

  • Hu, R., & Fang, Y. P. (2007). Set-valued increasing-along-rays maps and well-posed set-valued star-shaped optimization. Journal of Mathematical Analysis and Applications, 331, 1371–1383.

    Article  Google Scholar 

  • Jouini, E., Meddeb, M., & Touzi, N. (2004). Vector-valued coherent risk measures. Finance and Stochastics, 8(4), 531–552.

    Article  Google Scholar 

  • Kuroiwa, D. (1998). The natural criteria in set-valued optimization. RIMS Kokyuroku, 1031, 85–90.

    Google Scholar 

  • Kuroiwa, D. (2001). On set-valued optimization. Nonlinear Analysis, 47, 1395–1400.

    Article  Google Scholar 

  • Kuroiwa, D. (2003). Existence theorems of set-optimization with set-valued maps. Journal of Information and Optimization Sciences, 1, 73–84.

    Article  Google Scholar 

  • Kuroiwa, D. (2011). Set optimization with DC objective function. In S. Akashi, D. S. Kim, T. H. Kim, G. M. Lee, W. Takahashi, T. Tanaka (eds) Nonlinear and convex analysis, pp. 291–297

  • Kuroiwa, D., Popovici, N., & Rocca, M. (2015). A characterization of cone-convexity for set-valued functions by cone-quasiconvexity. Set-Valued and Variational Analysis, 23, 295–304.

    Article  Google Scholar 

  • Lignola, M. B. (2006). Well-posedness and L-well-posedness for quasivariational inequalities. Journal of Optimization Theory and Applications, 128(1), 119–138.

    Article  Google Scholar 

  • Markowitz, H. M. (1987). Mean–variance analysis in portfolio choice and capital markets. Oxford, UK: Blackwell Publishing.

    Google Scholar 

  • Mastrogiacomo, E., & Rosazza Gianin, E. (2015). Portfolio optimization with quasiconvex risk measures. Mathematics of Operations Research, 40(4), 1042–1059.

    Article  Google Scholar 

  • Miglierina, E., Molho, E., & Rocca, M. (2005). Well-posedness and scalarization in vector optimization. Journal of Optimization Theory and Applications, 126, 391–409.

    Article  Google Scholar 

  • Rao, R. R. (1962). Relations between weak and uniform convergence of measures with applications. The Annals of Mathematical Statistics, 33(2), 659–680.

    Article  Google Scholar 

  • Ruszczyński, A., & Shapiro, A. (2006). Optimization of convex risk functions. Mathematics of Operations Research, 31(3), 433–452.

    Article  Google Scholar 

  • Rockafellar, R. T., & Uryasev, S. P. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2, 21–42.

    Article  Google Scholar 

  • Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7), 1443–1471.

    Article  Google Scholar 

  • Rockafellar, R. T., & Wets, R. (1998). Variational analysis. Berlin: Springer.

    Book  Google Scholar 

  • Tasche, D. (1999). Risk contributions and performance measurement. Preprint, TU Munich.

  • Tykhonov, A. N. (1966). On the stability of the functional optimization problem. USSR Computational Mathematics and Mathematical Physics, 6, 28–33.

    Article  Google Scholar 

  • Zhang, W. Y., Li, S. J., & Teo, K. L. (2009). Well-posedness for set-optimization problems. Nonlinear Analysis: Theory, Methods & Applications, 71(9), 3769–3778.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referees for their reports, that helped to improve the research, and, hopefully, will lead to further development in the future.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Mastrogiacomo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastrogiacomo, E., Rocca, M. Set optimization of set-valued risk measures. Ann Oper Res 296, 291–314 (2021). https://doi.org/10.1007/s10479-020-03541-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03541-8

Keywords

Mathematics Subject Classification

Navigation