Skip to main content
Log in

Demand signal transmission in a certified refurbishing supply chain: rules and incentive analysis

  • S.I.: Information- Transparent Supply Chains
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Retailers, who sell certified refurbished products, usually have accumulated big data on demand properties, and hence, hold demand signal advantages over the other supply chain parties. In practice, we observe that this signal might be voluntarily shared to a rival who sells regular products. We are therefore interested in the incentives of demand signal transmission of the retailer selling certified refurbished products, and the value of an accurate signal for the other supply chain parties, especially in a one-to-two supply chain comprising a manufacturer (producing both regular and certified refurbished products) and two retailers (selling regular and certified refurbished products, respectively). We formulate the two retailers’ competition and demand signal properties, and find that it is of the best interest for the manufacturer to produce two products, regardless of the possible downstream competition. We derive interesting demand signal transmission rules that the retailer selling certified refurbished products would voluntarily transmit the signal to the retailer (the rival) selling regular products, while it will not transmit the signal to the upstream manufacturer (the business partner). Even if the retailer selling regular products obtains the signal, it will not transmit the signal to the manufacturer either. We discuss the resulting insights regarding the production cost reduction, the government subsidy, and the product quality improvement. We find that the signal transmission rule is robust, and the retailers’ profits may be reduced by the quality improvement of the certified refurbished product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://www.bangkok.com/shopping-mall/pantip-plaza.htm.

  2. https://www.crunchbase.com/organization/overcart#section-overview.

References

  • Agrawal, V., Atasu, A., & Ittersum, K. (2015). Remanufacturing, third-party competition, and consumers’ perceived value of new products. Management Science, 61(1), 60–72.

    Google Scholar 

  • Anand, K., & Goyal, M. (2009). Strategic information management under leakage in a supply chain. Management Science, 55(3), 438–452.

    Google Scholar 

  • Atasu, A., Sarvary, M., & Van Wassenhove, L. (2008). Remanufacturing as a marketing strategy. Management Science, 54(10), 1731–1746.

    Google Scholar 

  • Aydin, R., Kwong, C., & Ji, P. (2016). Coordination of the closed-loop supply chain for product line design with consideration of remanufactured products. Journal of Cleaner Production, 114(15), 286–298.

    Google Scholar 

  • Chen, Y., & Xiao, W. (2012). Impact of reseller’s forecasting accuracy on channel member performance. Production and Operations Management, 21(6), 1075–1089.

    Google Scholar 

  • Choi, T. (2015). Sustainable management of mining operations with accidents: A mean-variance optimization model. Resources Policy, 46, 116–122.

    Google Scholar 

  • Choi, T., Chan, H., & Yue, X. (2017). Recent development in big data analytics for business operations and risk management. IEEE Transaction on Cybernetics, 47(1), 81–92.

    Google Scholar 

  • Choi, T., & Shen, B. (2019). A system of systems framework for sustainable fashion supply chain management in the big data era. In IEEE 14th international conference on industrial informatics, 2019.

  • De, A., Kumar, S. K., Gunasekaran, A., et al. (2017). Sustainable maritime inventory routing problem with time window constraints. Engineering Applications of Artificial Intelligence, 61, 77–95.

    Google Scholar 

  • Dong, C., Shen, B., Chow, L., et al. (2016). Sustainability investment under cap-and-trade regulation. Annals of Operations Research, 240(2), 509–531.

    Google Scholar 

  • Drake, D., & Spinler, S. (2013). OM forum—Sustainable operations management: An enduring stream or a passing fancy? Manufacturing and Service Operations Management, 15(4), 689–700.

    Google Scholar 

  • Dukes, A., Gal-Or, E., & Geylani, T. (2011). Who benefits from bilateral information exchange in a retail channel? Economics Letters, 112(2), 210–212.

    Google Scholar 

  • Ferguson, M. E., & Souza, G. C. (2010). Closed-loop supply chains—Regular developments to improve the sustainability of business practices. London: Taylor & Francis Group.

    Google Scholar 

  • Galbreth, M., Boyaci, T., & Verter, V. (2013). Product reuse in innovative industries. Production and Operations Management, 22(4), 1011–1033.

    Google Scholar 

  • Gal-Or, E., Geylani, T., & Dukes, A. (2008). Information sharing in a channel with partially informed retailers. Marketing Science, 27(4), 642–658.

    Google Scholar 

  • Guide, V., & Wassenhove, Van. (2009). OR FORUM—The evolution of closed-loop supply chain research. Operation Research, 57(1), 10–18.

    Google Scholar 

  • Ha, A., & Tong, S. (2008). Contracting and information sharing under supply chain competition. Management Science, 54(4), 701–715.

    Google Scholar 

  • Hahm, J. H., & Lee, S. (2011). Economic effects of positive credit information sharing: the case of Korea. Applied Economics, 43, 4879–4890.

    Google Scholar 

  • Hua, G., Cheng, T., & Wang, S. (2011). Managing carbon footprints in inventory management. International Journal of Production Economics, 132, 178–185.

    Google Scholar 

  • Huang, S., Guan, X., & Chen, Y. J. (2018). Retailer information sharing with supplier encroachment. Production and Operations Management, 27(6), 1133–1147.

    Google Scholar 

  • Jha, A., Fernandes, K., Xiong, Y., et al. (2017). Effects of demand forecast and resource sharing on collaborative new product development in supply chain. International Journal of Production Economics, 193, 207–221.

    Google Scholar 

  • Kong, G., Rajagopalan, S., & Zhang, H. (2013). Revenue sharing and information leakage in a supply chain. Management Science, 59(3), 556–572.

    Google Scholar 

  • Lan, Y., Liu, Z., & Niu, B. (2017a). Pricing and design of after-sales service contract: the value of mining asymmetric sales cost information. Asia-Pacific Journal of Operational Research, 34(1), 1740002-1–1740002-25.

    Google Scholar 

  • Lan, Y., Peng, J., Wang, F., et al. (2017b). Quality disclosure with information value under competition. International Journal of Machine Leaning and Cybernetics. https://doi.org/10.1007/s13042-017-0658-8.

    Article  Google Scholar 

  • Li, L. (2002). Information sharing in a supply chain with horizontal competition. Management Science, 48(9), 1196–1212.

    Google Scholar 

  • Liu, L., Wang, Z., Xu, L., et al. (2017). Collection effort and reverse channel choices in a closed-loop supply chain. Journal of Cleaner Production, 144, 492–500.

    Google Scholar 

  • Mishra, B., Raghunathan, S., & Yue, X. (2007). Information sharing in supply chains: Incentives for information distortion. IIE Transaction, 39, 863–877.

    Google Scholar 

  • Naeem, M., Dias, D., Tibrewal, R., et al. (2013). Production planning optimization for manufacturing and remanufacturing system in stochastic environment. Journal of Intelligent Manufacturing, 24(4), 717–728.

    Google Scholar 

  • Niu, B., & Zou, Z. (2017). Better demand signal, better decisions? Evaluation of big data in a licensed remanufacturing supply chain with environmental risk considerations. Risk Analysis, 37(8), 1550–1565.

    Google Scholar 

  • Raju, J. S., & Roy, A. (2000). Market information and firm performance. Management Science, 46(8), 1075–1084.

    Google Scholar 

  • Savaskan, R., Bhattacharya, S., & Van Wassenhove, L. (2004). Closed-loop supply chain models with product remanufacturing. Management Science, 50(2), 239–252.

    Google Scholar 

  • Shang, W., Ha, A., & Tong, S. (2016). Information sharing in a supply chain with a common retailer. Management Science, 62(1), 245–263.

    Google Scholar 

  • Shen, B., & Chan, H. (2017). Forecast information sharing for managing supply chains in the big data era: Recent development and future research. Asia-Pacific Journal of Operational Research, 34(1), 1740001-1–1740001-26.

    Google Scholar 

  • Shen, B., Choi, T., & Chan, H. (2019). Selling green first or not? A Bayesian analysis with service levels and environmental impact considerations in the Big Data Era. Technological Forecasting and Social Change, 144, 412–420.

    Google Scholar 

  • Shen, B., Choi, T., & Minner, S. (2018). A review on supply chain contracting with information considerations: information updating and information asymmetry. International Journal of Production Research. https://doi.org/10.1080/00207543.2018.1467062.

    Article  Google Scholar 

  • Song, S., Govindan, K., Xu, L., et al. (2017). Capacity and production planning with carbon emission constraints. Transportation Research Part E: Logistics and Transportation Review, 97, 132–150.

    Google Scholar 

  • Souza, G. (2013). Closed-loop supply chain: A critical review, and future research. Decision Sciences, 44(1), 7–38.

    Google Scholar 

  • Taylor, T., & Xiao, W. (2010). Does a manufacturer benefit from selling to a better-forecasting retailer? Management Science, 56(9), 1584–1598.

    Google Scholar 

  • Tian, L., & Jiang, B. J. (2018). Effects of consumer-to-consumer product sharing on distribution channel. Production and Operations Management, 27(2), 350–367.

    Google Scholar 

  • Tonergreen. Printer toner and inkjet cartridges. Eco-friendly, Recycled & Remanufactured Ink Toner Cartridges. http://www.tonergreen.com/.2014.8.17. Accessed 20 Oct 2019.

  • Vives, X. (1984). Duopoly information equilibrium: Cournot and Bertrand. Journal of Economic Theory, 34(1), 71–94.

    Google Scholar 

  • Wang, J., Lau, H., & Lau, A. (2009). When should a manufacturer share truthful manufacturing cost information with a dominant retailer? European Journal of Operational Research, 1(16), 266–286.

    Google Scholar 

  • Wang, K., Zhao, Y., Cheng, Y., et al. (2014). Cooperation or competition? Channel choice for a remanufacturing fashion supply chain with government subsidy. Sustainability, 6(10), 7292–7310.

    Google Scholar 

  • Wang, Z., Wang, Y., & Wang, J. (2016). Optimal distribution channel strategy for new and remanufactured products. Electronic Commerce Research, 16(2), 269–295.

    Google Scholar 

  • Wu, X., & Zhang, F. (2014). Home or overseas? An analysis of sourcing strategies under competition. Management Science, 60(5), 1223–1240.

    Google Scholar 

  • Xu, X., Zhang, P., He, X., et al. (2017). Production and pricing problems in make-to-order supply chain with cap-and-trade regulation. Omega, 66(Part B), 248–257.

    Google Scholar 

  • Yan, W., Xiong, Y., Xiong, Z., et al. (2015). Bricks vs. clicks: Which is better for marketing remanufactured products? European Journal of Operational Research, 242(2), 434–444.

    Google Scholar 

  • Yang, C., Liu, H., Ji, P., et al. (2016). Optimal acquisition and remanufacturing policies for multi-product remanufacturing systems. Journal of Cleaner Production, 135, 1571–1579.

    Google Scholar 

  • Yang, C., Wang, J., & Ji, P. (2015). Optimal acquisition policy in remanufacturing under general core quality distributions. International Journal of Production Research, 53(5), 1425–1438.

    Google Scholar 

  • Zou, Z., Wang, J., Deng, G., & Chen, H. (2016). Third-party remanufacturing mode selection: Outsourcing or authorization? Transportation Research Part E: Logistics and Transportation Review, 87, 1–19.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the managing editor Prof. Li Guo, the guest editor, and the reviewers for their helpful comments. The first author’s work was supported by NSFC Excellent Young Scientists Fund (No. 71822202), NSFC (No. 71571194), Chang Jiang Scholars Program (Niu Baozhuang 2017), GDUPS (Niu Baozhuang 2017). The corresponding author is Zongbao Zou. The co-first author Lei Chen’s work was supported by the Joint Supervision Scheme with the Chinese Mainland, Taiwan and Macao Universities from HKPolyU and RGC of Hong Kong (No. G-SB0T).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongbao Zou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Process of Solving Game in Each State

Appendix: Process of Solving Game in Each State

1.1 State R

In State R, only retailer r has signal. We first consider the retailers’ decisions in the second stage given the wholesale prices \( w_{n} {\text{and }}w_{r} \) for the two types of products. The uninformed retailer n’s decision is made according to the manufacturer’s wholesale prices. Similar to Gal-Or (2008) and Wu and Zhang (2014), we assume that retailer n uses the decision rule \( q_{n} = A_{1} + A_{2} w_{n} + A_{3} w_{r} \) to set the quantity. However, the informed retailer r sets quantity according to the wholesale prices \( w_{n} {\text{and }}w_{r} \) and signal \( \varGamma , \) i.e., \( q_{R} = B_{1} + B_{2} w_{r} + B_{3} \varGamma + B_{4} w_{n} \). The expected profit of retailer n is

$$ \pi_{n} = E\left[ {\left( {1 - q_{n} - \delta q_{r} - {\text{w}}_{\text{n}} } \right)q_{n} } \right], $$

and retailer r’s expected profit conditional on signal \( \varGamma \) is

$$ \pi_{r} = E\left[ {\left[ {\delta \left( {1 - q_{n} - q_{r} } \right) + \varepsilon - w_{r} } \right]q_{r} \left| \varGamma \right.} \right] $$

The two first-order conditions yield

$$ q_{n} = \frac{1}{2}\left( {1 - \delta E[q_{r} ] - w_{n} } \right) $$
(1)
$$ q_{r} = \frac{1}{2\delta }\left( {\delta \left( {1 - E[q_{n} \left| \varGamma \right.]} \right) + E[\varepsilon \left| \varGamma \right.] - w_{r} } \right) $$
(2)

Substituting \( q_{n} = A_{1} + A_{2} w_{n} + A_{3} w_{r} \) and \( q_{R} = B_{1} + B_{2} w_{r} + B_{3} \varGamma + B_{4} w_{n} \) into the right side of (1) and (2), we can obtain

$$ \left\{ {\begin{array}{*{20}l} {A_{1} = \frac{{1 - \delta B_{1} }}{2}} \hfill \\ {A_{2} = - \frac{{1 + \delta B_{4} }}{2}} \hfill \\ {A_{3} = - \frac{{\delta B_{2} }}{2}} \hfill \\ {B_{1} = \frac{{1 - A_{1} }}{2}} \hfill \\ {B_{2} = - \frac{{1 + \delta A_{3} }}{2\delta }} \hfill \\ {B_{3} = \frac{{\sigma^{2} }}{{2\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}} \hfill \\ {B_{4} = - \frac{{A_{2} }}{2}} \hfill \\ \end{array} } \right. $$
(3)

Solving the equations in (3) leads to

$$ \left\{ {\begin{array}{*{20}l} {A_{1} = \frac{2 - \delta }{4 - \delta }} \hfill \\ {A_{2} = - \frac{2}{4 - \delta }} \hfill \\ {A_{3} = \frac{1}{4 - \delta }} \hfill \\ {B_{1} = \frac{1}{4 - \delta }} \hfill \\ {B_{2} = - \frac{2}{{\delta \left( {4 - \delta } \right)}}} \hfill \\ {B_{3} = \frac{{\sigma^{2} }}{{2\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}} \hfill \\ {B_{4} = \frac{1}{4 - \delta }} \hfill \\ \end{array} } \right. $$

Thus, given the wholesale prices \( w_{n} {\text{and }}w_{r} \), retailers’ quantities are

$$ \begin{aligned} q_{n} & = \frac{2 - \delta }{4 - \delta } - \frac{2}{4 - \delta }w_{n} + \frac{1}{4 - \delta }w_{r} \\ q_{r} & = \frac{1}{4 - \delta } - \frac{2}{{\delta \left( {4 - \delta } \right)}}w_{r} + \frac{{\sigma^{2} }}{{2\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}\varGamma + \frac{1}{4 - \delta }w_{n} \\ \end{aligned} $$

Then we proceed to analyze the wholesale price decision of manufacturer m in the first stage. Without signal, the objective function of the manufacturer m maximizing the expected profit is

$$ \pi_{m} = E\left[w_{n} \left( {\frac{{2 - \delta - 2w_{n} + w_{r} }}{4 - \delta }} \right) + w_{r} \left( {\frac{{\delta - 2w_{r} + \delta w_{n} }}{{\delta \left( {4 - \delta } \right)}} + \frac{{\sigma^{2} }}{{2\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}\varGamma } \right)\right] $$

The wholesale prices set by manufacturer m satisfy

$$ \left\{ {\begin{array}{*{20}l} {\frac{{\partial \pi_{m} }}{{\partial w_{n} }} = \frac{{2 - \delta - 4w_{n} + 2w_{r} }}{4 - \delta } = 0} \hfill \\ {\frac{{\partial \pi_{m} }}{{dw_{r} }} = \frac{{\delta + 2\delta w_{n} - 4w_{r} }}{{\delta \left( {4 - \delta } \right)}} + E\left[ \varGamma \right] = 0 } \hfill \\ \end{array} } \right. $$

which yields equilibrium wholesale prices

$$ {\text{w}}_{\text{n}}^{R} = \frac{1}{2},w_{r}^{R} = \frac{\delta }{2} $$

1.2 State RM

In State RM, manufacturer m and retailer r have signal. Similarly, we first consider the retailers’ decisions in the second stage for given the wholesale prices \( w_{n} {\text{and}} w_{r} \) of the two products. We assume that the manufacturer doesn’t share information with retailer n, though the former has demand information. We assume retailer n doesn’t have inference ability. Because retailer n only observes wholesale price \( w_{n} {\text{and}} w_{r} \), we assume that retailer n uses the decision rule \( q_{n} = A_{1} + A_{2} w_{n} + A_{3} w_{r} \) to set the quantity. However, the informed retailer r sets quantity according to the wholesale prices \( w_{n} {\text{and}} w_{r} \) and signal Γ, i.e., \( q_{R} = B_{1} + B_{2} w_{r} + B_{3} \varGamma + B_{4} w_{n} \). The expected profit of retailer n is\( \pi_{n} = E\left[ {\left( {1 - q_{n} - \delta q_{r} - {\text{w}}_{\text{n}} } \right)q_{n} } \right] \), and retailer r’s expected profit conditional on signal \( \varGamma \) is

$$ \pi_{r} = E\left[ {\left[ {\delta \left( {1 - q_{n} - q_{r} } \right) + \varepsilon - w_{r} } \right]q_{r} \left| \varGamma \right.} \right] $$

The two first-order conditions yield

$$ q_{n} = \frac{1}{2}\left( {1 - \delta E\left[ {q_{r} } \right] - E\left[ {w_{n} } \right]} \right) $$
(4)
$$ q_{r} = \frac{1}{2\delta }\left( {\delta \left( {1 - E[q_{n} \left| \varGamma \right.]} \right) + E[\varepsilon \left| \varGamma \right.] - w_{r} } \right) $$
(5)

Substitute \( q_{n} = A_{1} + A_{2} w_{n} + A_{3} w_{r} \) and \( q_{r} = B_{1} + B_{2} w_{r} + B_{3} \varGamma + B_{4} w_{n} \) into (4) and (5), and we have

$$ \left\{ {\begin{array}{*{20}l} {A_{1} = \frac{{1 - \delta B_{1} }}{2}} \hfill \\ {A_{2} = - \frac{{1 + \delta B_{4} }}{2}} \hfill \\ {A_{3} = - \frac{{\delta B_{2} }}{2}} \hfill \\ {B_{1} = \frac{{1 - A_{1} }}{2}} \hfill \\ {B_{2} = - \frac{{1 + \delta A_{3} }}{2\delta }} \hfill \\ {B_{3} = \frac{{\sigma^{2} }}{{2\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}} \hfill \\ {B_{4} = - \frac{{A_{2} }}{2}} \hfill \\ \end{array} } \right. $$

Solving the equations leads to

$$ \left\{ {\begin{array}{*{20}l} {A_{1} = \frac{2 - \delta }{4 - \delta }} \hfill \\ {A_{2} = - \frac{2}{4 - \delta }} \hfill \\ {A_{3} = \frac{1}{4 - \delta }} \hfill \\ {B_{1} = \frac{1}{4 - \delta }} \hfill \\ {B_{2} = - \frac{2}{{\delta \left( {4 - \delta } \right)}}} \hfill \\ {B_{3} = \frac{{\sigma^{2} }}{{2\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}} \hfill \\ {B_{4} = \frac{1}{4 - \delta }} \hfill \\ \end{array} } \right. $$

Therefore, the order quantity decisions of retailers are

$$ \begin{aligned} q_{n} & = \frac{2 - \delta }{4 - \delta } - \frac{2}{4 - \delta }w_{n} + \frac{1}{4 - \delta }w_{r} \\ q_{r} & = \frac{1}{4 - \delta } - \frac{2}{{\delta \left( {4 - \delta } \right)}}w_{r} + \frac{{\sigma^{2} }}{{2\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}\varGamma + \frac{1}{4 - \delta }w_{n} \\ \end{aligned} $$

Next, the wholesale price decision by the informed manufacturer m is in the first stage, who can accurately forecast the order quantity decision by retailer n and retailer r in the second stage, to maximize the profit. The objective function is

$$ \pi_{m} = E\left[w_{n} \left( {\frac{{2 - \delta - 2w_{n} + w_{r} }}{4 - \delta }} \right) + w_{r} \left( {\frac{{\delta - 2w_{r} + \delta w_{n} }}{{\delta \left( {4 - \delta } \right)}} + \frac{{\sigma^{2} }}{{2\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}\varGamma } \right)\left| \varGamma \right.\right] $$

Compared to state R, in state RM the manufacturer has the signal \( \varGamma \). Thus, the wholesale prices set by manufacturer m satisfy

$$ \left\{ {\begin{array}{*{20}l} {\frac{{\partial \pi_{m} }}{{\partial w_{n} }} = \frac{2 - \delta }{4 - \delta } - \frac{4}{4 - \delta }w_{n} + \frac{2}{4 - \delta }w_{r} = 0} \hfill \\ {\frac{{\partial \pi_{m} }}{{\partial w_{r} }} = \frac{1}{4 - \delta } - \frac{4}{{\delta \left( {4 - \delta } \right)}}w_{r} + \frac{{\sigma^{2} }}{{2\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}\varGamma + \frac{2}{4 - \delta }w_{n} = 0} \hfill \\ \end{array} } \right. $$

Therefore, we derive the equilibrium wholesale prices

$$ w_{n}^{RM} = \frac{1}{2} + \frac{{\sigma^{2} \varGamma }}{{4\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}, w_{r}^{RM} = \frac{\delta }{2} + \frac{{\sigma^{2} \varGamma }}{{2\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} $$

1.3 State RN

In State RN, only retailer n and retailer r have signal. First we consider the retailers’ decisions in the second stage when manufacturer m has given the wholesale price \( {\text{w}}_{\text{n}} ,w_{r} \) for the two products. Since both retailers have the same signal, the expected profits of the retailers are

$$ \begin{aligned} \pi_{n} & = E[\left( {1 - q_{n} - \delta q_{r} - w_{n} } \right)q_{n} \left| \varGamma \right.] \\ \pi_{r} & = E[\left( {\delta \left( {1 - q_{n} - q_{r} } \right) + \varepsilon - w_{r} } \right)q_{r} \left| \varGamma \right.] \\ \end{aligned} $$

The two first-order conditions yield

$$ q_{n} = \frac{{1 - \delta E[q_{r} \left| \varGamma \right.] - w_{n} }}{2} $$
(6)
$$ q_{r} = \frac{1}{2\delta }\left( {\delta \left( {1 - E[q_{n} \left| \varGamma \right.]} \right) + E[\varepsilon \left| \varGamma \right.] - w_{r} } \right) $$
(7)

In this state, having signal, the retailers set their quantities according to the wholesale prices \( w_{n} {\text{and }}w_{r} \) and signal \( \varGamma , \) i.e., \( q_{n} = A_{1} + A_{2} w_{n} + A_{3} w_{r} + A_{4} \varGamma \) and \( q_{R} = B_{1} + B_{2} w_{r} + B_{3} \varGamma + B_{4} w_{n} \). Substituting \( q_{n} = A_{1} + A_{2} w_{n} + A_{3} w_{r} + A_{4} \varGamma \) and \( q_{R} = B_{1} + B_{2} w_{r} + B_{3} \varGamma + B_{4} w_{n} \) into the right sides of (6) and (7), we can obtain

$$ \begin{aligned} q_{n} & = \frac{{1 - \delta B_{1} }}{2} - \frac{{1 + \delta B_{3} }}{2}w_{n} - \frac{{\delta B_{2} }}{2}w_{r} - \frac{{\delta B_{4} \varGamma }}{2} \\ q_{r} & = \frac{{1 - A_{1} }}{2} - \frac{{1 + \delta A_{3} }}{2\delta }w_{r} - \frac{{A_{2} }}{2}w_{n} + \frac{{\left( {\sigma^{2} - \delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)A_{4} } \right)}}{{2\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}\varGamma \\ \end{aligned} $$

Therefore, we have

$$ \left\{ {\begin{array}{*{20}l} {A_{1} = \frac{{1 - \delta B_{1} }}{2}} \hfill \\ {B_{1} = \frac{{1 - A_{1} }}{2}} \hfill \\ {A_{2} = - \frac{{1 + \delta B_{3} }}{2}} \hfill \\ {B_{2} = - \frac{{1 + \delta A_{3} }}{2\delta }} \hfill \\ {A_{3} = - \frac{{\delta B_{2} }}{2}} \hfill \\ {B_{3} = - \frac{{A_{2} }}{2}} \hfill \\ {A_{4} = - \frac{{\delta B_{4} }}{2}} \hfill \\ {B_{4} = \frac{{\left( {\sigma^{2} - \delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)A_{4} } \right)}}{{2\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}} \hfill \\ \end{array} } \right. $$
(8)

Solving the system of equations in (8) leads to

$$ \left\{ {\begin{array}{*{20}l} {A_{1} = \frac{2 - \delta }{4 - \delta }} \hfill \\ {B_{1} = \frac{1}{4 - \delta }} \hfill \\ {A_{2} = - \frac{2}{4 - \delta }} \hfill \\ {B_{2} = - \frac{2}{{\delta \left( {4 - \delta } \right)}}} \hfill \\ {A_{3} = \frac{1}{4 - \delta }} \hfill \\ {B_{3} = \frac{1}{4 - \delta }} \hfill \\ {A_{4} = - \frac{{\sigma^{2} }}{{\left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}} \hfill \\ {B_{4} = \frac{{2\sigma^{2} }}{{\delta \left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}} \hfill \\ \end{array} } \right. $$

Thus, given the wholesale prices \( w_{n} {\text{and }}w_{r} \), retailers’ quantities are

$$ \begin{aligned} q_{n} & = \frac{2 - \delta }{4 - \delta } - \frac{2}{4 - \delta }w_{n} + \frac{1}{4 - \delta }w_{r} - \frac{{\sigma^{2} }}{{\left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}\varGamma \\ q_{r} & = \frac{1}{4 - \delta } - \frac{2}{{\delta \left( {4 - \delta } \right)}}w_{r} + \frac{1}{4 - \delta }w_{n} + \frac{{2\sigma^{2} }}{{\delta \left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}\varGamma \\ \end{aligned} $$

Then we analyze the wholesale price decision by manufacturer m in the first stage. Without signal, manufacturer m maximizes the expected profit and the objective function is

$$ \begin{aligned} \pi_{m} & = E[w_{n} \left( {\frac{{2 - \delta - 2w_{n} + w_{r} }}{4 - \delta } - \frac{{\sigma^{2} }}{{\left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}\varGamma } \right) + w_{R} \left( {\frac{{\delta - 2w_{r} + \delta w_{n} }}{{\delta \left( {4 - \delta } \right)}} + \frac{{2\sigma^{2} }}{{2\delta \left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}\varGamma } \right)] \\ & = w_{n} \left( {\frac{{2 - \delta - 2w_{n} + w_{r} }}{4 - \delta }} \right) + w_{R} \left( {\frac{{\delta - 2w_{r} + \delta w_{n} }}{{\delta \left( {4 - \delta } \right)}}} \right) \\ \end{aligned} $$

The two first-order conditions lead to the following two equations

$$ \left\{ {\begin{array}{*{20}c} {\frac{{\partial \pi_{m} }}{{\partial w_{n} }} = 0} \\ {\frac{{\partial \pi_{m} }}{{\partial w_{r} }} = 0} \\ \end{array} } \right. $$

Thus, we have

$$ {\text{w}}_{\text{n}}^{RN} = \frac{1}{2},w_{r}^{RN} = \frac{\delta }{2} $$

1.4 State RNM

In State RNM, all players have signal. First we consider the retailers’ decisions in the second stage, for given the wholesale prices \( w_{n} {\text{and}} w_{r} \) for the two products. In state RNM, both retailers have the same signal \( \varGamma \). The retailers set their quantities according to the wholesale prices \( w_{n} {\text{and }}w_{r} \) and signal \( \varGamma , \) i.e., \( q_{n} = A_{1} + A_{2} w_{n} + A_{3} w_{r} + A_{4} \varGamma \) and \( q_{R} = B_{1} + B_{2} w_{r} + B_{3} \varGamma + B_{4} w_{n} \). The expected profits of the retailers are

$$ \begin{aligned} \pi_{n} & = E[\left( {1 - q_{n} - \delta q_{r} - w_{n} } \right)q_{n} \left| \varGamma \right.] \\ \pi_{r} & = E[\left( {\delta \left( {1 - q_{n} - q_{r} } \right) + \varepsilon - w_{r} } \right)q_{r} \left| \varGamma \right.] \\ \end{aligned} $$

The two first-order conditions yield

$$ q_{n} = \frac{{1 - \delta E[q_{r} \left| \varGamma \right.] - w_{n} }}{2} $$
(9)
$$ q_{r} = \frac{1}{2\delta }\left( {\delta \left( {1 - E[q_{n} \left| \varGamma \right.]} \right) + E[\varepsilon \left| \varGamma \right.] - w_{r} } \right) $$
(10)

Substituting \( q_{n} = A_{1} + A_{2} w_{n} + A_{3} w_{r} + A_{4} \varGamma \) and \( q_{R} = B_{1} + B_{2} w_{r} + B_{3} \varGamma + B_{4} w_{n} \) into the right side of (9) and (10), we can obtain

$$ \begin{aligned} q_{n} & = \frac{{1 - \delta B_{1} }}{2} - \frac{{1 + \delta B_{3} }}{2}w_{n} - \frac{{\delta B_{2} }}{2}w_{r} - \frac{{\delta B_{4} \varGamma }}{2} \\ q_{r} & = \frac{{1 - A_{1} }}{2} - \frac{{1 + \delta A_{3} }}{2\delta }w_{r} - \frac{{A_{2} }}{2}w_{n} + \frac{{\left( {\sigma^{2} - \delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)A_{4} } \right)}}{{2\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}\varGamma \\ \end{aligned} $$

Therefore, we have

$$ \left\{ {\begin{array}{*{20}l} {A_{1} = \frac{{1 - \delta B_{1} }}{2}} \hfill \\ {B_{1} = \frac{{1 - A_{1} }}{2}} \hfill \\ {A_{2} = - \frac{{1 + \delta B_{3} }}{2}} \hfill \\ {B_{2} = - \frac{{1 + \delta A_{3} }}{2\delta }} \hfill \\ {A_{3} = - \frac{{\delta B_{2} }}{2}} \hfill \\ {B_{3} = - \frac{{A_{2} }}{2}} \hfill \\ {A_{4} = - \frac{{\delta B_{4} }}{2}} \hfill \\ {B_{4} = \frac{{\left( {\sigma^{2} - \delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)A_{4} } \right)}}{{2\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}} \hfill \\ \end{array} } \right. $$

Solving the equations leads to

$$ \left\{ {\begin{array}{*{20}l} {A_{1} = \frac{2 - \delta }{4 - \delta }} \hfill \\ {B_{1} = \frac{1}{4 - \delta }} \hfill \\ {A_{2} = - \frac{2}{4 - \delta }} \hfill \\ {B_{2} = - \frac{2}{{\delta \left( {4 - \delta } \right)}}} \hfill \\ {A_{3} = \frac{1}{4 - \delta }} \hfill \\ {B_{3} = \frac{1}{4 - \delta }} \hfill \\ {A_{4} = - \frac{{\sigma^{2} }}{{\left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}} \hfill \\ {B_{4} = \frac{{2\sigma^{2} }}{{\delta \left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}} \hfill \\ \end{array} } \right. $$

So, the retailers’ quantity decisions are as follows

$$ \begin{aligned} q_{n} & = \frac{2 - \delta }{4 - \delta } - \frac{2}{4 - \delta }w_{n} + \frac{1}{4 - \delta }w_{r} - \frac{{\sigma^{2} }}{{\left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}\varGamma \\ q_{r} & = \frac{1}{4 - \delta } - \frac{2}{{\delta \left( {4 - \delta } \right)}}w_{r} + \frac{1}{4 - \delta }w_{n} + \frac{{2\sigma^{2} }}{{\delta \left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}\varGamma \\ \end{aligned} $$

Next we consider the wholesale price decision by manufacturer M, with the signal, m can accurately forecast the order quantity decision by retailer n and retailer r so as to maximize the profit. Therefore manufacturer m’s objective function is

$$ \pi_{m} = E\left[w_{n} \left( {\frac{{2 - \delta - 2w_{n} + w_{r} }}{4 - \delta } - \frac{{\sigma^{2} }}{{\left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}\varGamma } \right) + w_{R} \left( {\frac{{\delta - 2w_{r} + \delta w_{n} }}{{\delta \left( {4 - \delta } \right)}} + \frac{{2\sigma^{2} }}{{2\delta \left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}\varGamma } \right)\left| \varGamma \right.\right] $$

The wholesale prices given by manufacturer m satisfy

$$ \left\{ {\begin{array}{*{20}l} {\frac{{\partial \pi_{\text{m}} }}{{\partial w_{n} }} = \frac{{2 - \delta - 4w_{n} + 2w_{r} }}{4 - \delta } = 0} \hfill \\ {\frac{{\partial \pi_{m} }}{{dw_{r} }} = \frac{{\delta + 2\delta w_{n} - 4w_{r} }}{{\delta \left( {4 - \delta } \right)}} + = 0 } \hfill \\ \end{array} } \right. $$

by the first-order conditions, we derive the equilibrium wholesale prices

$$ {\text{w}}_{\text{n}}^{RNM} = \frac{1}{2},w_{r}^{RNM} = \frac{\delta }{2} + \frac{{\sigma^{2} \varGamma }}{{2\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} $$

Proof for Proposition 4

Cost-Equilibrium Analysis

We first summarize the equilibrium outcomes as follows.

Equilibrium Outcomes in State R

$$ \begin{aligned} w_{n}^{R - O} & = \frac{1}{2}\left( {1 + c_{n} } \right) \\ w_{r}^{R - O} & = \frac{1}{2}\left( {\delta + c_{r} } \right) \\ q_{n}^{R - O} & = \frac{{2 - \delta - 2c_{n} + c_{r} }}{8 - 2\delta } \\ q_{r}^{R - O} & = \frac{{\delta + \delta c_{n} - 2c_{r} }}{{2\delta \left( {4 - \delta } \right)}} + \frac{{\sigma^{2} \varGamma }}{{2\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\Pi }_{n}^{R - O} & = \frac{{\left( {2 - \delta - 2c_{n} + c_{r} } \right)^{2} }}{{4\left( {4 - \delta } \right)^{2} }} \\ \widehat{\Pi }_{r}^{R - O} & = \frac{{\left( {\delta + \delta c_{n} - 2c_{r} } \right)^{2} }}{{4\delta \left( {4 - \delta } \right)^{2} }} + \frac{{\sigma^{4} }}{{4\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\Pi }_{m}^{R - O} & = \frac{{\delta - 2\delta c_{n} + \delta^{2} c_{n} + \delta c_{n}^{2} - \delta c_{r} - \delta c_{n} c_{r} + c_{r}^{2} }}{{2\delta \left( {4 - \delta } \right)}} \\ \end{aligned} $$

Equilibrium Outcomes in State RM

$$ \begin{aligned} w_{n}^{RM - O} & = \frac{1}{2}\left( {1 + c_{n} } \right) + \frac{{\sigma^{2} \varGamma }}{{4\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ w_{r}^{RM - O} & = \frac{1}{2}\left( {\delta + c_{r} } \right) + \frac{{\sigma^{2} \varGamma }}{{2\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ q_{n}^{RM - O} & = \frac{{2 - \delta - 2c_{n} + c_{r} }}{{2\left( {4 - \delta } \right)}} \\ q_{r}^{RM - O} & = \frac{{\delta + \delta c_{n} - 2c_{r} }}{{2\delta \left( {4 - \delta } \right)}} + \frac{{\sigma^{2} \varGamma }}{{4\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\Pi }_{n}^{RM - O} & = \frac{{\left( {2 - \delta - 2c_{n} + c_{r} } \right)^{2} }}{{4\left( {4 - \delta } \right)^{2} }} \\ \widehat{\Pi }_{r}^{RM - O} & = \frac{{\left( {\delta + \delta c_{n} - 2c_{r} } \right)^{2} }}{{4\delta \left( {4 - \delta } \right)^{2} }} + \frac{{\sigma^{4} }}{{16\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\Pi }_{m}^{RM - O} & = \frac{{\delta - 2\delta c_{n} + \delta^{2} c_{n} + \delta c_{n}^{2} - \delta c_{r} - \delta c_{n} c_{r} + c_{r}^{2} }}{{2\delta \left( {4 - \delta } \right)}} + \frac{{\sigma^{4} }}{{8\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \end{aligned} $$

Equilibrium Outcomes in State RN

$$ \begin{aligned} w_{n}^{RN - O} & = \frac{1}{2}\left( {1 + c_{n} } \right) \\ w_{r}^{RN - O} & = \frac{1}{2}\left( {\delta + c_{r} } \right) \\ q_{n}^{RN - O} & = \frac{{2 - \delta - 2c_{n} + c_{r} }}{{2\left( {4 - \delta } \right)}} - \frac{{\sigma^{2} \varGamma }}{{\left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ q_{r}^{RN - O} & = \frac{{\delta + \delta c_{n} - 2c_{r} }}{{2\delta \left( {4 - \delta } \right)}} + \frac{{2\sigma^{2} \varGamma }}{{\delta \left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\varPi }_{n}^{RN - O} & = \frac{{\left( {2 - \delta - 2c_{n} + c_{r} } \right)^{2} }}{{4\left( {4 - \delta } \right)^{2} }} + \frac{{\sigma^{4} }}{{\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\Pi }_{r}^{RN - O} & = \frac{{\left( {\delta + \delta c_{n} - 2c_{r} } \right)^{2} }}{{4\delta \left( {4 - \delta } \right)^{2} }} + \frac{{4\sigma^{4} }}{{\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\Pi }_{m}^{RN - O} & = \frac{{\delta - 2\delta c_{n} + \delta^{2} c_{n} + \delta c_{n}^{2} - \delta c_{r} - \delta c_{n} c_{r} + c_{r}^{2} }}{{2\delta \left( {4 - \delta } \right)}} \\ \end{aligned} $$

Equilibrium Outcomes in State RNM

$$ \begin{aligned} w_{n}^{RNM - O} & = \frac{1}{2}\left( {1 + c_{n} } \right) \\ w_{r}^{RNM - O} & = \frac{1}{2}\left( {\delta + c_{r} } \right) + \frac{{\sigma^{2} \varGamma }}{{2\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ q_{n}^{RNM - O} & = \frac{{2 - \delta - 2c_{n} + c_{r} }}{{2\left( {4 - \delta } \right)}} - \frac{{\sigma^{2} \varGamma }}{{2\left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ q_{r}^{RNM - O} & = \frac{{\delta + \delta c_{n} - 2c_{r} }}{{2\delta \left( {4 - \delta } \right)}} + \frac{{\sigma^{2} \varGamma }}{{\delta \left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\varPi }_{n}^{RNM - O} & = \frac{{\left( {2 - \delta - 2c_{n} + c_{r} } \right)^{2} }}{{4\left( {4 - \delta } \right)^{2} }} + \frac{{\sigma^{4} }}{{4\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\varPi }_{r}^{RNM - O} & = \frac{{\left( {\delta + \delta c_{n} - 2c_{r} } \right)^{2} }}{{4\delta \left( {4 - \delta } \right)^{2} }} + \frac{{\sigma^{4} }}{{\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\varPi }_{m}^{RNM - O} & = \frac{{\delta - 2\delta c_{n} + \delta^{2} c_{n} + \delta c_{n}^{2} - \delta c_{r} - \delta c_{n} c_{r} + c_{r}^{2} }}{{2\delta \left( {4 - \delta } \right)}} + \frac{{\sigma^{4} }}{{2\delta \left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \end{aligned} $$

Then, we conduct the comparison and have the results as follows:

Comparison: State R versus State RM

$$ \begin{aligned} & \widehat{\Pi }_{n}^{R - O} - \widehat{\Pi }_{n}^{RM - O} = 0 \\ & \widehat{\Pi }_{r}^{R - O} - \widehat{\Pi }_{r}^{RM - O} = \frac{{3\sigma^{4} }}{{16\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \\ & \widehat{\Pi }_{m}^{R - O} - \widehat{\Pi }_{m}^{RM - O} = - \frac{{\sigma^{4} }}{{8\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\Pi }_{n}^{R - O} + \widehat{\Pi }_{r}^{R - O} + \widehat{\Pi }_{m}^{R - O} - \left( {\widehat{\Pi }_{n}^{RM - O} + \widehat{\Pi }_{r}^{RM - O} + \widehat{\Pi }_{m}^{RM - O} } \right) = \frac{{\sigma^{4} }}{{16\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \\ \end{aligned} $$

Comparison: State R versus State RN

$$ \begin{aligned} & \widehat{\Pi }_{n}^{R - O} - \widehat{\Pi }_{n}^{RN - O} = - \frac{{\sigma^{4} }}{{\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\Pi }_{r}^{R - O} - \widehat{\Pi }_{r}^{RN - O} = - \frac{{\left( {8 - \delta } \right)\sigma^{4} }}{{4\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\Pi }_{m}^{R - O} - \widehat{\Pi }_{m}^{RN - O} = 0 \\ & \widehat{\Pi }_{n}^{R - O} + \widehat{\Pi }_{r}^{R - O} + \widehat{\Pi }_{m}^{R - O} - \left( {\widehat{\Pi }_{n}^{RN - O} + \widehat{\Pi }_{r}^{RN - O} + \widehat{\Pi }_{m}^{RN - O} } \right) = - \frac{{\left( {12 - \delta } \right)\sigma^{4} }}{{4\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ \end{aligned} $$

Comparison: State R versus State RNM

$$ \begin{aligned} & \widehat{\Pi }_{n}^{R - O} - \widehat{\Pi }_{n}^{RNM - O} = - \frac{{\sigma^{4} }}{{4\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\Pi }_{r}^{R - O} - \widehat{\Pi }_{r}^{RNM - O} = \frac{{\left( {12 - 8\delta + \delta^{2} } \right)\sigma^{4} }}{{4\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \\ & \widehat{\Pi }_{m}^{R - O} - \widehat{\Pi }_{m}^{RNM - O} = - \frac{{\sigma^{4} }}{{2\delta \left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\Pi }_{n}^{R - O} + \widehat{\Pi }_{r}^{R - O} + \widehat{\Pi }_{m}^{R - O} - \left( {\widehat{\Pi }_{n}^{RNM - O} + \widehat{\Pi }_{r}^{RNM - O} + \widehat{\Pi }_{m}^{RNM - O} } \right) = \frac{{\left( {4 - 7\delta + \delta^{2} } \right)\sigma^{4} }}{{4\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}\left\{ {\begin{array}{*{20}c} { \ge 0, \;\;if \delta \in \left[ {0,\frac{{7 - \sqrt {33} }}{2}} \right]} \\ { < 0,\;\; if \delta \in \left( {\frac{{7 - \sqrt {33} }}{2},1} \right)} \\ \end{array} } \right. \\ \end{aligned} $$

Comparison: State RM versus State RN

$$ \begin{aligned} & \widehat{\Pi }_{n}^{RM - O} - \widehat{\Pi }_{n}^{RN - O} = - \frac{{\sigma^{4} }}{{\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\Pi }_{r}^{RM - O} - \widehat{\Pi }_{r}^{RN - O} = - \frac{{\left( {48 + 8\delta - \delta^{2} } \right)\sigma^{4} }}{{16\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\Pi }_{m}^{RM - O} - \widehat{\Pi }_{m}^{RN - O} = \frac{{\sigma^{4} }}{{8\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \\ & \widehat{\Pi }_{n}^{RM - O} + \widehat{\Pi }_{r}^{RM - O} + \widehat{\Pi }_{m}^{RM - O} - \left( {\widehat{\Pi }_{n}^{RN - O} + \widehat{\Pi }_{r}^{RN - O} + \widehat{\Pi }_{m}^{RN - O} } \right) = - \frac{{\left( {16 + 40\delta - 3\delta^{2} } \right)\sigma^{4} }}{{16\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ \end{aligned} $$

Comparison: State RM versus State RNM

$$ \begin{aligned} & \widehat{\Pi }_{n}^{RM - O} - \widehat{\Pi }_{n}^{RNM - O} = - \frac{{\sigma^{4} }}{{4\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\Pi }_{r}^{RM - O} - \widehat{\Pi }_{r}^{RNM - O} = - \frac{{\left( {8 - \delta } \right)\sigma^{4} }}{{16\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\Pi }_{m}^{RM - O} - \widehat{\Pi }_{m}^{RNM - O} = - \frac{{\sigma^{4} }}{{8\left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\Pi }_{n}^{RM - O} + \widehat{\Pi }_{r}^{RM - O} + \widehat{\Pi }_{m}^{RM - O} - \left( {\widehat{\Pi }_{n}^{RNM - O} + \widehat{\Pi }_{r}^{RNM - O} + \widehat{\Pi }_{m}^{RNM - O} } \right) = - \frac{{\left( {20 - 3\delta } \right)\sigma^{4} }}{{16\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ \end{aligned} $$

Comparison: State RN versus State RNM

$$ \begin{aligned} & \widehat{\Pi }_{n}^{RN - O} - \widehat{\Pi }_{n}^{RNM - O} = \frac{{3\sigma^{4} }}{{4\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \\ & \widehat{\Pi }_{r}^{RN - O} - \widehat{\Pi }_{r}^{RNM - O} = \frac{{3\sigma^{4} }}{{\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \\ & \widehat{\Pi }_{m}^{RN - O} - \widehat{\Pi }_{m}^{RNM - O} = - \frac{{\sigma^{4} }}{{2\delta \left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\Pi }_{n}^{RN - O} + \widehat{\Pi }_{r}^{RN - O} + \widehat{\Pi }_{m}^{RN - O} - \left( {\widehat{\Pi }_{n}^{RNM - O} + \widehat{\Pi }_{r}^{RNM - O} + \widehat{\Pi }_{m}^{RNM - O} } \right) = \frac{{\left( {4 + 5\delta } \right)\sigma^{4} }}{{4\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \\ \end{aligned} $$

Based on the foregoing equilibria and the comparison results, we have

$$ \begin{aligned} & \widehat{\Pi }_{n}^{RN - O} > \widehat{\Pi }_{n}^{RNM - O} > \widehat{\Pi }_{n}^{R - O} = \widehat{\Pi }_{n}^{RM - O} \\ & \widehat{\Pi }_{r}^{RN - O} > \widehat{\Pi }_{r}^{R - O} > \widehat{\Pi }_{r}^{RNM - O} > \widehat{\Pi }_{r}^{RM - O} \\ & \widehat{\Pi }_{m}^{RNM - O} > \widehat{\Pi }_{m}^{RM - O} > \widehat{\Pi }_{m}^{R - O} = \widehat{\Pi }_{m}^{RN - O} \\ & \widehat{\Pi }_{n}^{RN - O} + \widehat{\Pi }_{r}^{RN - O} + \widehat{\Pi }_{m}^{RN - O} > \widehat{\Pi }_{n}^{RNM - O} + \widehat{\Pi }_{r}^{RNM - O} \\ & \quad + \widehat{\Pi }_{m}^{RNM - O} \left( {\widehat{\Pi }_{n}^{R - O} + \widehat{\Pi }_{r}^{R - O} + \widehat{\Pi }_{m}^{R - O} } \right) > \widehat{\Pi }_{n}^{RM - O} + \widehat{\Pi }_{r}^{RM - O} + \widehat{\Pi }_{m}^{RM - O} \\ \end{aligned} $$

It is clearly, the equilibrium state is state RN, i.e., the retailer r will transmit demand signal to the retailer n. Neither retailer r or the retailer n voluntarily transmits the signal to manufacturer.

Proof for Proposition 5

Upstream Subsidy-Equilibrium Analysis

Similar to that for Proposition 1(in Sect. 3.2), we derive the outcomes in state R, RM, RN, and RNM as follows:

Equilibrium Outcomes in State R

$$ \begin{aligned} w_{n}^{R - U} & = \frac{1}{2} \\ w_{r}^{R - U} & = \frac{1}{2}\left( {\delta + \eta_{u} } \right) \\ q_{n}^{R - U} & = \frac{{2 - \delta - \eta_{u} }}{{2\left( {4 - \delta } \right)}} \\ q_{r}^{R - U} & = \frac{{\delta + 2\eta_{u} }}{{2\delta \left( {4 - \delta } \right)}} + \frac{{\sigma^{2} \varGamma }}{{2\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\Pi }_{r}^{R - U} & = \frac{{\left( {\delta + 2\eta_{u} } \right)^{2} }}{{4\delta \left( {4 - \delta } \right)^{2} }} + \frac{{\sigma^{4} }}{{4\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\Pi }_{m}^{R - U} & = \frac{{\delta + \delta \eta_{u} + \eta_{u}^{2} }}{{2\delta \left( {4 - \delta } \right)}} \\ \end{aligned} $$

Equilibrium Outcomes in State RM

$$ \begin{aligned} w_{n}^{RM - U} & = \frac{1}{2} + \frac{{\sigma^{2} \varGamma }}{{4\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ w_{r}^{RM - U} & = \frac{1}{2}\left( {\delta + \eta_{u} } \right) + \frac{{\sigma^{2} \varGamma }}{{2\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ q_{n}^{RM - U} & = \frac{{2 - \delta - \eta_{u} }}{{2\left( {4 - \delta } \right)}} \\ q_{r}^{MU} & = \frac{{\delta + 2\eta_{u} }}{{2\delta \left( {4 - \delta } \right)}} + \frac{{\sigma^{2} \varGamma }}{{4\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\Pi }_{n}^{RM - U} & = \frac{{\left( {2 - \delta - \eta_{u} } \right)^{2} }}{{4\left( {4 - \delta } \right)^{2} }} \\ \widehat{\Pi }_{r}^{RM - U} & = \frac{{\left( {\delta + 2\eta_{u} } \right)^{2} }}{{4\delta \left( {4 - \delta } \right)^{2} }} + \frac{{\sigma^{4} }}{{16\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\Pi }_{m}^{RM - U} & = \frac{{\delta + \eta_{u} \delta + \eta_{u}^{2} }}{{2\delta \left( {4 - \delta } \right)}} + \frac{{\sigma^{4} }}{{8\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \end{aligned} $$

Equilibrium Outcomes in State RN

$$ \begin{aligned} w_{n}^{RN - U} & = \frac{1}{2} \\ w_{r}^{RN - U} & = \frac{1}{2}\left( {\delta + \eta_{u} } \right) \\ q_{n}^{RN - U} & = \frac{{2 - \delta - \eta_{u} }}{{2\left( {4 - \delta } \right)}} - \frac{{\sigma^{2} \varGamma }}{{\left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ q_{r}^{RN - U} & = \frac{{\delta + 2\eta_{u} }}{{2\delta \left( {4 - \delta } \right)}} + \frac{{2\sigma^{2} \varGamma }}{{\delta \left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\Pi }_{n}^{RN - U} & = \frac{{\left( {2 - \delta - \eta_{u} } \right)^{2} }}{{4\left( {4 - \delta } \right)^{2} }} + \frac{{\sigma^{4} }}{{\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\Pi }_{r}^{RN - U} & = \frac{{\left( {\delta + 2\eta_{u} } \right)^{2} }}{{4\delta \left( {4 - \delta } \right)^{2} }} + \frac{{4\sigma^{4} }}{{\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\Pi }_{m}^{RN - U} & = \frac{{\delta + \delta \eta_{u} + \eta_{u}^{2} }}{{2\delta \left( {4 - \delta } \right)}} \\ \end{aligned} $$

Equilibrium Outcomes in State RNM

$$ \begin{aligned} w_{n}^{RNM - U} & = \frac{1}{2} \\ w_{r}^{RNM - U} & = \frac{1}{2}\left( {\delta + \eta_{u} } \right) + \frac{{\sigma^{2} \varGamma }}{{2\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ q_{n}^{RNM - U} & = \frac{{2 - \delta - \eta_{u} }}{{2\left( {4 - \delta } \right)}} - \frac{{\sigma^{2} \varGamma }}{{2\left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ q_{r}^{RNM - U} & = \frac{{\delta + 2\eta_{u} }}{{2\delta \left( {4 - \delta } \right)}} + \frac{{\sigma^{2} \varGamma }}{{\delta \left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\Pi }_{n}^{RNM - U} & = \frac{{\left( {2 - \delta - \eta_{u} } \right)^{2} }}{{4\left( {4 - \delta } \right)^{2} }} + \frac{{\sigma^{4} }}{{4\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\Pi }_{r}^{RNM - U} & = \frac{{\left( {\delta + 2\eta_{u} } \right)^{2} }}{{4\delta \left( {4 - \delta } \right)^{2} }} + \frac{{\sigma^{4} }}{{\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \end{aligned} $$

We then conduct the comparison and derive the results as follows:

Comparison: State R versus State RM

$$ \begin{aligned} & \widehat{\Pi }_{n}^{R - U} - \widehat{\Pi }_{n}^{RM - U} = 0 \\ & \widehat{\Pi }_{r}^{R - U} - \widehat{\Pi }_{r}^{RM - U} = \frac{{3\sigma^{4} }}{{16\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \\ & \widehat{\Pi }_{m}^{R - U} - \widehat{\Pi }_{m}^{RM - U} = - \frac{{\sigma^{4} }}{{8\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\Pi }_{n}^{R - U} + \widehat{\Pi }_{r}^{R - U} + \widehat{\Pi }_{m}^{R - U} - \left( {\widehat{\Pi }_{n}^{RM - U} + \widehat{\Pi }_{r}^{RM - U} + \widehat{\Pi }_{m}^{RM - U} } \right) = \frac{{\sigma^{4} }}{{16\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \\ \end{aligned} $$

Comparison: State R versus State RN

$$ \begin{aligned} & \widehat{\Pi }_{n}^{R - U} - \widehat{\Pi }_{n}^{RN - U} = - \frac{{\sigma^{4} }}{{\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\Pi }_{r}^{R - U} - \widehat{\Pi }_{r}^{RN - U} = - \frac{{\left( {8 - \delta } \right)\sigma^{4} }}{{4\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\Pi }_{m}^{R - U} - \widehat{\Pi }_{m}^{RN - U} = 0 \\ & \widehat{\Pi }_{n}^{R - U} + \widehat{\Pi }_{r}^{R - U} + \widehat{\Pi }_{m}^{R - U} - \left( {\widehat{\Pi }_{n}^{RN - U} + \widehat{\Pi }_{r}^{RN - U} + \widehat{\Pi }_{m}^{RN - U} } \right) = - \frac{{\left( {12 - \delta } \right)\sigma^{4} }}{{4\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ \end{aligned} $$

Comparison: State R versus State RNM

$$ \begin{aligned} & \widehat{\varPi }_{n}^{R - U} - \widehat{\varPi }_{n}^{RNM - U} = - \frac{{\sigma^{4} }}{{4\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\varPi }_{r}^{R - U} - \widehat{\varPi }_{r}^{RNM - U} = \frac{{\left( {12 - 8\delta + \delta^{2} } \right)\sigma^{4} }}{{4\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \\ & \widehat{\varPi }_{m}^{R - U} - \widehat{\varPi }_{m}^{RNM - U} = - \frac{{\sigma^{4} }}{{2\delta \left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\varPi }_{n}^{R - U} + \widehat{\varPi }_{r}^{R - U} + \widehat{\varPi }_{m}^{R - U} - \left( {\widehat{\varPi }_{n}^{RNM - U} + \widehat{\varPi }_{r}^{RNM - U} + \widehat{\varPi }_{m}^{RNM - U} } \right) = \frac{{\left( {4 - 7\delta + \delta^{2} } \right)\sigma^{4} }}{{4\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}\left\{ {\begin{array}{*{20}c} { \ge 0,\;\; if \delta \in \left[ {0,\frac{{7 - \sqrt {33} }}{2}} \right]} \\ { < 0, \;\;if \delta \in \left( {\frac{{7 - \sqrt {33} }}{2},1} \right)} \\ \end{array} } \right. \\ \end{aligned} $$

Comparison: State RM versus State RN

$$ \begin{aligned} & \widehat{\varPi }_{n}^{RM - U} - \widehat{\varPi }_{n}^{RN - U} = - \frac{{\sigma^{4} }}{{\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\varPi }_{r}^{RM - U} - \widehat{\varPi }_{r}^{RN - U} = - \frac{{\left( {48 + 8\delta - \delta^{2} } \right)\sigma^{4} }}{{16\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\varPi }_{m}^{RM - U} - \widehat{\varPi }_{m}^{RN - U} = \frac{{\sigma^{4} }}{{8\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \\ & \widehat{\varPi }_{n}^{RM - U} + \widehat{\varPi }_{r}^{RM - U} + \widehat{\varPi }_{m}^{RM - U} - \left( {\widehat{\varPi }_{n}^{RN - U} + \widehat{\varPi }_{r}^{RN - U} + \widehat{\varPi }_{m}^{RN - U} } \right) = - \frac{{\left( {16 + 40\delta - 3\delta^{2} } \right)\sigma^{4} }}{{16\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ \end{aligned} $$

Comparison: State RM versus State RNM

$$ \begin{aligned} & \widehat{\varPi }_{n}^{RM - U} - \widehat{\varPi }_{n}^{RNM - U} = - \frac{{\sigma^{4} }}{{4\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\varPi }_{r}^{RM - U} - \widehat{\varPi }_{r}^{RNM - U} = - \frac{{\left( {8 - \delta } \right)\sigma^{4} }}{{16\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\varPi }_{m}^{RM - U} - \widehat{\varPi }_{m}^{RNM - U} = - \frac{{\sigma^{4} }}{{8\left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\varPi }_{n}^{RM - U} + \widehat{\varPi }_{r}^{RM - U} + \widehat{\varPi }_{m}^{RM - U} - \left( {\widehat{\varPi }_{n}^{RNM - U} + \widehat{\varPi }_{r}^{RNM - U} + \widehat{\varPi }_{m}^{RNM - U} } \right) = - \frac{{\left( {20 - 3\delta } \right)\sigma^{4} }}{{16\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ \end{aligned} $$

Comparison: State RM versus State RNM

$$ \begin{aligned} & \widehat{\varPi }_{n}^{RN - U} - \widehat{\varPi }_{n}^{RNM - U} = \frac{{3\sigma^{4} }}{{4\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \\ & \widehat{\varPi }_{r}^{RN - U} - \widehat{\varPi }_{r}^{RNM - U} = \frac{{3\sigma^{4} }}{{\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \\ & \widehat{\varPi }_{m}^{RN - U} - \widehat{\varPi }_{m}^{RNM - U} = - \frac{{\sigma^{4} }}{{2\delta \left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\varPi }_{n}^{RN - U} + \widehat{\varPi }_{r}^{RN - U} + \widehat{\varPi }_{m}^{RN - U} - \left( {\widehat{\varPi }_{n}^{RNM - U} + \widehat{\varPi }_{r}^{RNM - U} + \widehat{\varPi }_{m}^{RNM - U} } \right) = \frac{{\left( {4 + 5\delta } \right)\sigma^{4} }}{{4\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \\ \end{aligned} $$

Based on the foregoing equilibria and the comparison results, we have:

$$ \begin{aligned} & \widehat{\varPi }_{n}^{RN - U} > \widehat{\varPi }_{n}^{RNM - U} > \widehat{\varPi }_{n}^{R - U} = \widehat{\varPi }_{n}^{RM - U} \\ & \widehat{\varPi }_{r}^{RN - U} > \widehat{\varPi }_{r}^{R - U} > \widehat{\varPi }_{r}^{RNM - U} > \widehat{\varPi }_{r}^{RM - U} \\ & \widehat{\varPi }_{m}^{RNM - U} > \widehat{\varPi }_{m}^{RM - U} > \widehat{\varPi }_{m}^{R - U} = \widehat{\varPi }_{m}^{RN - U} \\ & \widehat{\varPi }_{n}^{RN - U} + \widehat{\varPi }_{r}^{RN - U} + \widehat{\varPi }_{m}^{RN - U} > \widehat{\varPi }_{n}^{RNM - U} + \widehat{\varPi }_{r}^{RNM - U} + \widehat{\varPi }_{m}^{RNM - U} \left( {\widehat{\varPi }_{n}^{R - U} + \widehat{\varPi }_{r}^{R - U} + \widehat{\varPi }_{m}^{R - U} } \right) \\ & \quad > \widehat{\varPi }_{n}^{RM - U} + \widehat{\varPi }_{r}^{RM - U} + \widehat{\varPi }_{m}^{RM - U} \\ \end{aligned} $$

We find that, when the government subsidy is given to the retailer, the five rules in Proposition 1 still hold.

Downstream Subsidy-Equilibrium Analysis

We derive the outcomes in state R, RM, RN, and RNM as follows:

Equilibrium Outcomes in State R

$$ \begin{aligned} w_{n}^{R - D} & = \frac{1}{2} \\ w_{r}^{R - D} & = \frac{1}{2}\left( {\delta - \eta_{d} } \right) \\ q_{n}^{R - D} & = \frac{{2 - \delta - \eta_{d} }}{{2\left( {4 - \delta } \right)}} \\ q_{r}^{R - D} & = \frac{{\delta + 2\eta_{d} }}{{2\delta \left( {4 - \delta } \right)}} + \frac{{\sigma^{2} \varGamma }}{{2\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\varPi }_{n}^{R - D} & = \frac{{\left( {2 - \delta - \eta_{d} } \right)^{2} }}{{4\left( {4 - \delta } \right)^{2} }} \\ \widehat{\varPi }_{r}^{R - D} & = \frac{{\left( {\delta + 2\eta_{d} } \right)^{2} }}{{4\delta \left( {4 - \delta } \right)^{2} }} + \frac{{\sigma^{4} }}{{4\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\varPi }_{m}^{R - D} & = \frac{{\delta + \delta \eta_{d} + \eta_{d}^{2} }}{{2\delta \left( {4 - \delta } \right)}} \\ \end{aligned} $$

Equilibrium Outcomes in State RM

$$ \begin{aligned} w_{n}^{RM - D} & = \frac{1}{2} + \frac{{\sigma^{2} \varGamma }}{{4\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ w_{r}^{RM - D} & = \frac{1}{2}\left( {\delta - \eta_{d} } \right) + \frac{{\sigma^{2} \varGamma }}{{2\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ q_{n}^{RM - D} & = \frac{{2 - \delta - \eta_{d} }}{{2\left( {4 - \delta } \right)}} \\ q_{r}^{RM - D} & = \frac{{\delta + 2\eta_{d} }}{{2\delta \left( {4 - \delta } \right)}} + \frac{{\sigma^{2} \varGamma }}{{4\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\varPi }_{n}^{RM - D} & = \frac{{\left( {2 - \delta - \eta_{d} } \right)^{2} }}{{4\left( {4 - \delta } \right)^{2} }} \\ \widehat{\varPi }_{r}^{RM - D} & = \frac{{\left( {\delta + 2\eta_{d} } \right)^{2} }}{{4\delta \left( {4 - \delta } \right)^{2} }} + \frac{{\sigma^{4} }}{{16\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\varPi }_{m}^{RM - D} & = \frac{{\delta + \eta_{d} \delta + \eta_{d}^{2} }}{{2\delta \left( {4 - \delta } \right)}} + \frac{{\sigma^{4} }}{{8\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \end{aligned} $$

Equilibrium Outcomes in State RN

$$ \begin{aligned} w_{n}^{RN - D} & = \frac{1}{2} \\ w_{r}^{RN - D} & = \frac{1}{2}\left( {\delta - \eta_{d} } \right) \\ q_{n}^{RN - D} & = \frac{{2 - \delta - \eta_{d} }}{{2\left( {4 - \delta } \right)}} - \frac{{\sigma^{2} \varGamma }}{{\left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ q_{r}^{RN - D} & = \frac{{\delta + 2\eta_{d} }}{{2\delta \left( {4 - \delta } \right)}} + \frac{{2\sigma^{2} \varGamma }}{{\delta \left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\varPi }_{n}^{RN - D} & = \frac{{\left( {2 - \delta - \eta_{d} } \right)^{2} }}{{4\left( {4 - \delta } \right)^{2} }} + \frac{{\sigma^{4} }}{{\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\varPi }_{r}^{RN - D} & = \frac{{\left( {\delta + 2\eta_{d} } \right)^{2} }}{{4\delta \left( {4 - \delta } \right)^{2} }} + \frac{{4\sigma^{4} }}{{\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\varPi }_{m}^{RN - D} & = \frac{{\delta + \delta \eta_{d} + \eta_{d}^{2} }}{{2\delta \left( {4 - \delta } \right)}} \\ \end{aligned} $$

Equilibrium Outcomes in State RNM

$$ \begin{aligned} w_{n}^{RNM - D} & = \frac{1}{2} \\ w_{r}^{RNM - D} & = \frac{1}{2}\left( {\delta - \eta_{d} } \right) + \frac{{\sigma^{2} \varGamma }}{{2\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ q_{n}^{RNM - D} & = \frac{{2 - \delta - \eta_{d} }}{{2\left( {4 - \delta } \right)}} - \frac{{\sigma^{2} \varGamma }}{{2\left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ q_{r}^{RNM - D} & = \frac{{\delta + 2\eta_{d} }}{{2\delta \left( {4 - \delta } \right)}} + \frac{{\sigma^{2} \varGamma }}{{\delta \left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\varPi }_{n}^{RNM - D} & = \frac{{\left( {2 - \delta - \eta_{d} } \right)^{2} }}{{4\left( {4 - \delta } \right)^{2} }} + \frac{{\sigma^{4} }}{{4\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\varPi }_{r}^{RNM - D} & = \frac{{\left( {\delta + 2\eta_{d} } \right)^{2} }}{{4\delta \left( {4 - \delta } \right)^{2} }} + \frac{{\sigma^{4} }}{{\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\varPi }_{m}^{RNM - D} & = \frac{{\delta + \delta \eta_{d} + \eta_{d}^{2} }}{{2\delta \left( {4 - \delta } \right)}} + \frac{{\sigma^{4} }}{{2\delta \left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \end{aligned} $$

We then conduct the comparison and derive the results as follows:

Comparison: State R versus State RM

$$ \begin{aligned} & \widehat{\varPi }_{n}^{R - D} - \widehat{\varPi }_{n}^{RM - D} = 0 \\ & \widehat{\varPi }_{r}^{R - D} - \widehat{\varPi }_{r}^{RM - D} = \frac{{3\sigma^{4} }}{{16\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \\ & \widehat{\varPi }_{m}^{R - D} - \widehat{\varPi }_{m}^{RM - D} = - \frac{{\sigma^{4} }}{{8\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\varPi }_{n}^{R - D} + \widehat{\varPi }_{r}^{R - D} + \widehat{\varPi }_{m}^{R - D} - \left( {\widehat{\varPi }_{n}^{RM - D} + \widehat{\varPi }_{r}^{RM - D} + \widehat{\varPi }_{m}^{RM - D} } \right) = \frac{{\sigma^{4} }}{{16\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \\ \end{aligned} $$

Comparison: State R versus State RN

$$ \begin{aligned} & \widehat{\varPi }_{n}^{R - D} - \widehat{\varPi }_{n}^{RN - D} = - \frac{{\sigma^{4} }}{{\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\varPi }_{r}^{R - D} - \widehat{\varPi }_{r}^{RN - D} = - \frac{{\left( {8 - \delta } \right)\sigma^{4} }}{{4\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\varPi }_{m}^{R - D} - \widehat{\varPi }_{m}^{RN - D} = 0 \\ & \widehat{\varPi }_{n}^{R - D} + \widehat{\varPi }_{r}^{R - D} + \widehat{\varPi }_{m}^{R - D} - \left( {\widehat{\varPi }_{n}^{RN - D} + \widehat{\varPi }_{r}^{RN - D} + \widehat{\varPi }_{m}^{RN - D} } \right) = - \frac{{\left( {12 - \delta } \right)\sigma^{4} }}{{4\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ \end{aligned} $$

Comparison: State R versus State RNM

$$ \begin{aligned} & \widehat{\varPi }_{n}^{R - D} - \widehat{\varPi }_{n}^{RNM - D} = - \frac{{\sigma^{4} }}{{4\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\varPi }_{r}^{R - D} - \widehat{\varPi }_{r}^{RNM - D} = \frac{{\left( {12 - 8\delta + \delta^{2} } \right)\sigma^{4} }}{{4\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \\ & \widehat{\varPi }_{m}^{R - D} - \widehat{\varPi }_{m}^{RNM - D} = - \frac{{\sigma^{4} }}{{2\delta \left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\varPi }_{n}^{R - D} + \widehat{\varPi }_{r}^{R - D} + \widehat{\varPi }_{m}^{R - D} - \left( {\widehat{\varPi }_{n}^{RNM - D} + \widehat{\varPi }_{r}^{RNM - D} + \widehat{\varPi }_{m}^{RNM - D} } \right) = \frac{{\left( {4 - 7\delta + \delta^{2} } \right)\sigma^{4} }}{{4\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}\left\{ {\begin{array}{*{20}c} { \ge 0,\;\; if \delta \in \left[ {0,\frac{{7 - \sqrt {33} }}{2}} \right]} \\ { < 0, \;\;if \delta \in \left( {\frac{{7 - \sqrt {33} }}{2},1} \right)} \\ \end{array} } \right. \\ \end{aligned} $$

Comparison: State RM versus State RN

$$ \begin{aligned} &\widehat{\varPi }_{n}^{RM - D} - \widehat{\varPi }_{n}^{RN - D} = - \frac{{\sigma^{4} }}{{\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \hfill \\ &\widehat{\varPi }_{r}^{RM - D} - \widehat{\varPi }_{r}^{RN - D} = - \frac{{\left( {48 + 8\delta - \delta^{2} } \right)\sigma^{4} }}{{16\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \hfill \\ &\widehat{\varPi }_{m}^{RM - D} - \widehat{\varPi }_{m}^{RN - D} = \frac{{\sigma^{4} }}{{8\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \hfill \\ &\widehat{\varPi }_{n}^{RM - D} + \widehat{\varPi }_{r}^{RM - D} + \widehat{\varPi }_{m}^{RM - D} - \left( {\widehat{\varPi }_{n}^{RN - D} + \widehat{\varPi }_{r}^{RN - D} + \widehat{\varPi }_{m}^{RN - D} } \right) = - \frac{{\left( {16 + 40\delta - 3\delta^{2} } \right)\sigma^{4} }}{{16\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \hfill \\ \end{aligned} $$

Comparison: State RM versus State RNM

$$ \begin{aligned} & \widehat{\varPi }_{n}^{RM - D} - \widehat{\varPi }_{n}^{RNM - D} = - \frac{{\sigma^{4} }}{{4\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\varPi }_{r}^{RM - D} - \widehat{\varPi }_{r}^{RNM - D} = - \frac{{\left( {8 - \delta } \right)\sigma^{4} }}{{16\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\varPi }_{m}^{RM - D} - \widehat{\varPi }_{m}^{RNM - D} = - \frac{{\sigma^{4} }}{{8\left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\varPi }_{n}^{RM - D} + \widehat{\varPi }_{r}^{RM - D} + \widehat{\varPi }_{m}^{RM - D} - \left( {\widehat{\varPi }_{n}^{RNM - D} + \widehat{\varPi }_{r}^{RNM - D} + \widehat{\varPi }_{m}^{RNM - D} } \right) = - \frac{{\left( {20 - 3\delta } \right)\sigma^{4} }}{{16\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ \end{aligned} $$

Comparison between State RN versus State RNM

$$ \begin{aligned} & \widehat{\varPi }_{n}^{RN - D} - \widehat{\varPi }_{n}^{RNM - D} = \frac{{3\sigma^{4} }}{{4\left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \\ & \widehat{\varPi }_{r}^{RN - D} - \widehat{\varPi }_{r}^{RNM - D} = \frac{{3\sigma^{4} }}{{\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \\ & \widehat{\varPi }_{m}^{RN - D} - \widehat{\varPi }_{m}^{RNM - D} = - \frac{{\sigma^{4} }}{{2\delta \left( {4 - \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} < 0 \\ & \widehat{\varPi }_{n}^{RN - D} + \widehat{\varPi }_{r}^{RN - D} + \widehat{\varPi }_{m}^{RN - D} - \left( {\widehat{\varPi }_{n}^{RNM - D} + \widehat{\varPi }_{r}^{RNM - D} + \widehat{\varPi }_{m}^{RNM - D} } \right) = \frac{{\left( {4 + 5\delta } \right)\sigma^{4} }}{{4\delta \left( {4 - \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 \\ \end{aligned} $$

Based on the foregoing equilibria and the comparison results, we have:

$$ \begin{aligned} & \widehat{\varPi }_{n}^{RN - D} > \widehat{\varPi }_{n}^{RNM - D} > \widehat{\varPi }_{n}^{R - D} = \widehat{\varPi }_{n}^{RM - D} \\ & \widehat{\varPi }_{r}^{RN - D} > \widehat{\varPi }_{r}^{R - D} > \widehat{\varPi }_{r}^{RNM - D} > \widehat{\varPi }_{r}^{RM - D} \\ & \widehat{\varPi }_{m}^{RNM - D} > \widehat{\varPi }_{m}^{RM - D} > \widehat{\varPi }_{m}^{R - D} = \widehat{\varPi }_{m}^{RN - D} \\ & \widehat{\varPi }_{n}^{RN - D} + \widehat{\varPi }_{r}^{RN - D} + \widehat{\varPi }_{m}^{RN - D} > \widehat{\varPi }_{n}^{RNM - D} + \widehat{\varPi }_{r}^{RNM - D} + \widehat{\varPi }_{m}^{RNM - D} \left( {\widehat{\varPi }_{n}^{R - D} + \widehat{\varPi }_{r}^{R - D} + \widehat{\varPi }_{m}^{R - D} } \right) \\ & \quad > \widehat{\varPi }_{n}^{RM - D} + \widehat{\varPi }_{r}^{RM - D} + \widehat{\varPi }_{m}^{RM - D} \\ \end{aligned} $$

Thus, similar to upstream subsidy model, we find the three rules in Proposition 1 still hold.

Proof for Proposition 6

We take the derivate of the equilibrium outcomes with respect to \( \eta_{u} {\text{and}} \eta_{d} \) respectively, and derive:

In upstream subsidy model (\( {\text{i}} \in \left\{ {{\text{R}},{\text{RM}},{\text{RN}},{\text{RNM}}} \right\} \))

$$ \begin{aligned} \frac{{dw_{n}^{i - U} }}{{d\eta_{u} }} & = 0 \\ \frac{{dw_{r}^{i - U} }}{{d\eta_{u} }} & = \frac{1}{2} > 0 \\ \frac{{dq_{n}^{i - U} }}{{d\eta_{u} }} & = \frac{ - 1}{{2\left( {4 - \delta } \right)}} < 0 \\ \frac{{dq_{r}^{i - U} }}{{d\eta_{u} }} & = \frac{1}{{\delta \left( {4 - \delta } \right)}} > 0 \\ \frac{{d\widehat{\varPi }_{n}^{i - U} }}{{d\eta_{u} }} & = - \frac{{2 - \delta - \eta_{u} }}{{2\left( {4 - \delta } \right)^{2} }} < 0 \\ \frac{{d\widehat{\varPi }_{r}^{i - U} }}{{d\eta_{u} }} & = \frac{{\delta + 2\eta_{u} }}{{\delta \left( {4 - \delta } \right)^{2} }} > 0 \\ \frac{{d\widehat{\varPi }_{m}^{i - U} }}{{d\eta_{u} }} & = \frac{{\delta + 2\eta_{u} }}{{2\delta \left( {4 - \delta } \right)}} > 0 \\ \end{aligned} $$

In downstream subsidy model (\( {\text{i}} \in \left\{ {{\text{R}},{\text{RM}},{\text{RN}},{\text{RNM}}} \right\} \))

$$ \begin{aligned} \frac{{dw_{n}^{i - D} }}{{d\eta_{d} }} & = 0 \\ \frac{{dw_{r}^{i - D} }}{{d\eta_{d} }} & = - \frac{1}{2} > 0 \\ \frac{{dq_{n}^{i - D} }}{{d\eta_{d} }} & = \frac{ - 1}{{2\left( {4 - \delta } \right)}} < 0 \\ \frac{{dq_{r}^{i - D} }}{{d\eta_{d} }} & = \frac{1}{{\delta \left( {4 - \delta } \right)}} > 0 \\ \frac{{d\widehat{\varPi }_{n}^{i - D} }}{{d\eta_{d} }} & = - \frac{{2 - \delta - \eta_{d} }}{{2\left( {4 - \delta } \right)^{2} }} < 0 \\ \frac{{d\widehat{\varPi }_{r}^{i - D} }}{{d\eta_{d} }} & = \frac{{\delta + 2\eta_{d} }}{{\delta \left( {4 - \delta } \right)^{2} }} > 0 \\ \frac{{d\widehat{\varPi }_{m}^{i - D} }}{{d\eta_{d} }} & = \frac{{\delta + 2\eta_{d} }}{{2\delta \left( {4 - \delta } \right)}} > 0 \\ \end{aligned} $$

According to the sensitivity analysis, it is easy to obtain the results in Proposition 6.

Proof for Proposition 7

The first-order derivation of \( \widehat{\varPi }_{n}^{RN} \) with respect to \( \delta \) is as follows:

$$ \frac{{\partial \widehat{\varPi }_{n}^{RN} }}{\partial \delta } = \frac{2A - 2 + \delta }{{\left( {4 - \delta } \right)^{3} }} $$

Obviously, If \( A \in \left( {0,\frac{1}{2}} \right] \), \( \frac{{\partial \widehat{\varPi }_{n}^{RN} }}{\partial \delta } < 0 \); If \( A \in \left( {\frac{1}{2},1} \right) \), \( \frac{{\partial \widehat{\varPi }_{n}^{RN} }}{\partial \delta } \le 0 \) when \( \delta \in \left( {0,2 - 2A} \right] \), but \( \frac{{\partial \widehat{\varPi }_{n}^{RN} }}{\partial \delta } > 0 \) when \( \delta \in \left( {2 - 2{\text{A}},1} \right) \); If \( {\text{A}} \in \left[ {1, + \infty } \right) \), \( \frac{{\partial \widehat{\varPi }_{n}^{RN} }}{\partial \delta } > 0 \).

Thus, we obtain the result of Proposition 7.


Proof for Proposition 8

The first-order derivation of \( \widehat{\varPi }_{r}^{RN} \) with respect to \( \delta \) is as follows:

$$ \frac{{\partial \widehat{\varPi }_{r}^{RN} }}{\partial \delta } = \frac{{\delta^{3} + 4\delta^{2} + 48A\delta - 64A}}{{4\delta^{2} \left( {4 - \delta } \right)^{3} }} $$

We define a function \( f\left( \delta \right) = \delta^{3} + 4\delta^{2} + 48A\delta - 64A \). It is clear that, function \( f\left( \delta \right) \) is increasing in \( \delta \), and \( f\left( \delta \right)\left| {_{{\delta \to 0^{ + } }} } \right. < 0 \), \( f\left( \delta \right)\left| {_{{\delta \to 1^{ - } }} } \right. \approx 5 - 16A \). Therefore, we find that, if \( A \ge \frac{5}{16} \), then \( f\left( \delta \right) < 0 \) for \( \delta \in \left( {0,1} \right) \); if \( A < \frac{5}{16} \), there is a solution \( \hat{\delta } \in \left( {0,1} \right) \) to let \( f\left( {\hat{\delta }} \right) = 0.\) According to the monotonically increasing property, we have

$$ f\left( {\hat{\delta }} \right) = \left\{ {\begin{array}{*{20}l} { < 0,} \hfill & {0 < \delta < \hat{\delta }} \hfill \\ { = 0,} \hfill & {\delta = \hat{\delta }} \hfill \\ { > 0,} \hfill & {\hat{\delta } < \delta < 1} \hfill \\ \end{array} } \right. $$

.

Proof for Proposition 9

Revenue Sharing Contract-Equilibrium Analysis

Similar to that for Proposition 1 (in Sect. 3.2), we derive the outcomes in state R, RM, RN, and RNM as follows:

Equilibrium Outcomes in State R

$$ \begin{aligned} w_{n}^{R - R} & = \frac{1}{2} \\ w_{r}^{R - R} & = \frac{{\delta \left( { - 4 + 3r + \delta } \right)}}{{2\left( { - 4 + 2r + \delta } \right)}} \\ q_{n}^{R - R} & = \frac{ - 2 + r + \delta }{{2\left( { - 4 + 2r + \delta } \right)}} \\ q_{r}^{R - R} & = \frac{1}{2}\left( {\frac{1}{4 - 2r - \delta } + \frac{{\sigma^{2} \varGamma }}{{\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}} \right) \\ \widehat{\varPi }_{n}^{R - R} & = \frac{{\left( { - 2 + r + \delta } \right)^{2} }}{{4\left( { - 4 + 2r + \delta } \right)^{2} }} \\ \widehat{\varPi }_{r}^{R - R} & = \frac{{\left( { - 1 + r} \right)\left( { - \frac{{\delta^{2} }}{{\left( { - 4 + 2r + \delta } \right)^{2} }} - \frac{{\sigma^{4} }}{{\sigma^{2} + \sigma_{1}^{2} }}} \right)}}{4\delta } \\ \widehat{\varPi }_{m}^{R - R} & = \frac{1}{4}\left( {\frac{ - 2 + r}{ - 4 + 2r + \delta } - \frac{{r\sigma^{4} }}{{\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}} \right) \\ \end{aligned} $$

Equilibrium Outcomes in State RM

$$ \begin{aligned} w_{n}^{RM - R} & = \frac{1}{2} + \frac{{\sigma^{2} \varGamma }}{{4\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ w_{r}^{RM - R} & = \frac{{2\delta \left( { - 4 + 3r + \delta } \right)}}{{4\left( { - 4 + 2r + \delta } \right)}} + \frac{{\sigma^{2} \varGamma \left( { - 8 + 8r + 2\delta - r\delta } \right)}}{{4\left( { - 4 + 2r + \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ q_{n}^{RM - R} & = \frac{{2\left( { - 2 + \delta + r} \right)}}{{4\left( { - 4 + 2r + \delta } \right)}} + \frac{{r\sigma^{2} \varGamma }}{{4\left( { - 4 + 2r + \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ q_{r}^{RM - R} & = \frac{ - 2\delta }{{4\delta \left( { - 4 + 2r + \delta } \right)}} + \frac{{\varGamma \sigma^{2} \left( { - 4 + \delta } \right)}}{{4\delta \left( { - 4 + 2r + \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\varPi }_{n}^{RM - R} & = \frac{{4\left( { - 2 + r + \delta } \right)^{2} + \frac{{r\left( {8 - 3r - 2\delta } \right)\sigma^{4} }}{{\sigma^{2} + \sigma_{1}^{2} }}}}{{16\left( { - 4 + 2r + \delta } \right)^{2} }} \\ \widehat{\varPi }_{r}^{RM - R} & = \left( {1 - r} \right)\frac{{4\delta^{2} + \frac{{\left( { - 4 + \delta } \right)^{2} \sigma^{4} }}{{\sigma^{2} + \sigma_{1}^{2} }}}}{{16\delta \left( { - 4 + 2r + \delta } \right)^{2} }} \\ \widehat{\varPi }_{m}^{RM - R} & = \frac{{4\left( { - 2 + r} \right)^{2} - 4\delta + \frac{{\left( {4r\left( { - 4 + \delta } \right) + \left( { - 4 + \delta } \right)^{2} + r^{2} \delta } \right)\sigma^{4} }}{{\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}}}{{8\left( { - 4 + 2r + \delta } \right)^{2} }} \\ \end{aligned} $$

Equilibrium Outcomes in State RN

$$ \begin{aligned} w_{n}^{RN - R} & = \frac{1}{2} \\ w_{r}^{RN - R} & = \frac{{\delta \left( { - 4 + 3r + \delta } \right)}}{{2\left( { - 4 + 2r + \delta } \right)}} \\ q_{n}^{RN - R} & = \frac{ - 2 + r + \delta }{{2\left( { - 4 + 2r + \delta } \right)}} + \frac{{\sigma^{2} \varGamma }}{{\left( { - 4 + \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ q_{r}^{RN - R} & = \frac{1}{8 - 4r - 2\delta } - \frac{{2\sigma^{2} \varGamma }}{{\left( { - 4 + \delta } \right)\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\varPi }_{n}^{RN - R} & = \frac{{\left( { - 2 + r + \delta } \right)^{2} }}{{4\left( { - 4 + 2r + \delta } \right)^{2} }} + \frac{{\sigma^{4} }}{{\left( { - 4 + \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\varPi }_{r}^{RN - R} & = \frac{{\left( {1 - r} \right)\delta }}{{4\left( { - 4 + 2r + \delta } \right)^{2} }} + \frac{{4\left( {1 - r} \right)\sigma^{4} }}{{\left( { - 4 + \delta } \right)^{2} \delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\varPi }_{m}^{RN - R} & = \frac{ - 2 + r}{{4\left( { - 4 + 2r + \delta } \right)}} + \frac{{4r\sigma^{4} }}{{\left( { - 4 + \delta } \right)^{2} \delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \end{aligned} $$

Equilibrium Outcomes in State RNM

$$ \begin{aligned} w_{n}^{RNM - R} & = \frac{1}{2} \\ w_{r}^{RNM - R} & = \frac{{\delta \left( { - 4 + 3r + \delta } \right)}}{{2\left( { - 4 + 2r + \delta } \right)}} + \frac{{\sigma^{2} \varGamma \left( { - 4 + 4r + \delta } \right)}}{{2\left( { - 4 + 2r + \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ q_{n}^{RNM - R} & = \frac{ - 2 + r + \delta }{{2\left( { - 4 + 2r + \delta } \right)}} + \frac{{\sigma^{2} \varGamma }}{{2\left( { - 4 + 2r + \delta } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ q_{r}^{RNM - R} & = \frac{\delta }{{8\delta - 4r\delta - 2\delta^{2} }} + \frac{{\sigma^{2} \varGamma }}{{\left( {4\delta - 2r\delta - \delta^{2} } \right)\left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} \\ \widehat{\varPi }_{n}^{RNM - R} & = \frac{{\left( { - 2 + r + \delta } \right)^{2} + \frac{{\sigma^{4} }}{{\sigma^{2} + \sigma_{1}^{2} }}}}{{4\left( { - 4 + 2r + \delta } \right)^{2} }} \\ \widehat{\varPi }_{r}^{RNM - R} & = \left( {1 - r} \right)\frac{{\delta^{2} + \frac{{4\sigma^{4} }}{{\sigma^{2} + \sigma_{1}^{2} }}}}{{4\delta \left( { - 4 + 2r + \delta } \right)^{2} }} \\ \widehat{\varPi }_{m}^{RNM - R} & = \frac{{ - 2 + r - \frac{{2\sigma^{4} }}{{\delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}}}{{4\left( { - 4 + 2r + \delta } \right)}} \\ \end{aligned} $$

We then conduct the comparison and derive the results as follows:

$$ \begin{aligned} \widehat{\varPi }_{r}^{R - R} - \widehat{\varPi }_{r}^{RM - R} & = \frac{{\left( {1 - r} \right)\left( {4r + 3\left( { - 4 + \delta } \right)} \right)\left( { - 4 + 4r + \delta } \right)\sigma^{4} }}{{16\delta \left( { - 4 + 2r + \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}\left\{ {\begin{array}{*{20}c} { > 0,\;\;r < \frac{4 - \delta }{4}} \\ { \le 0,\;\;r \ge \frac{4 - \delta }{4}} \\ \end{array} } \right. \\ \widehat{\varPi }_{r}^{RN - R} - \widehat{\varPi }_{r}^{RNM - R} & = \frac{{\left( {1 - r} \right)\left( {4r + 3\left( { - 4 + \delta } \right)} \right)\left( { - 4 + 4r + \delta } \right)\sigma^{4} }}{{\left( { - 4 + \delta } \right)^{2} \delta \left( { - 4 + 2r + \delta } \right)^{2} \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}}\left\{ {\begin{array}{*{20}c} { > 0,\;\;r < \frac{4 - \delta }{4}} \\ { \le 0,\;\;r \ge \frac{4 - \delta }{4}} \\ \end{array} } \right. \\ \end{aligned} $$

Proof for Proposition 10

Based on equilibrium outcomes, we conduct the comparison and derive the results as follows:

$$ \widehat{\varPi }_{r}^{R} - \widehat{\varPi }_{r}^{RM} = \frac{{\left( { - 6 + \delta } \right)\left( { - 2 + \delta } \right)\sigma^{4} }}{{4\left( { - 4 + \delta } \right)^{2} \delta \left( {\sigma^{2} + \sigma_{1}^{2} } \right)}} > 0 $$

According to the comparison result, it is easy to obtain the results in Proposition 10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, B., Chen, L., Zou, Z. et al. Demand signal transmission in a certified refurbishing supply chain: rules and incentive analysis. Ann Oper Res 329, 1–46 (2023). https://doi.org/10.1007/s10479-019-03397-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03397-7

Keywords

Navigation