Aas, K., & Haff, I. H. (2006). The generalized hyperbolic skew student’s t-distribution. Journal of Financial Econometrics, 4, 275–309.
Google Scholar
Arellano-Valle, R. B., Gómez, H. W., & Quintana, F. A. (2005). Statistical inference for a general class of asymmetric distributions. Journal of Statistical Planning and Inference, 128(2), 427–443.
Google Scholar
Ausloos, M., & Ivanova, K. (2003). Dynamical model and nonextensive statistical mechanics of a market index on large time windows. Physical Review E, 68, 046122.
Google Scholar
Azzalini, A. (1986). Further results on a class of distributions which includes the normal ones. Statistica, 46, 199–208.
Google Scholar
Azzalini, A., & Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew-t distribution. Journal of the Royal Statistical Society B, 65, 367–389.
Google Scholar
Barndorff-Nielsen, O. E. (1997a). Normal inverse Gaussian distributions and stochastic volatility modelling. Scandinavian Journal of Statistics, 24, 1–13.
Google Scholar
Barndorff-Nielsen, O. E. (1997b). Processes of normal inverse Gaussian type. Finance and Stochastics, 2, 41–68.
Google Scholar
Barndorff-Nielsen, O. E. (1998). Probability and statistics: Self-decomposability, finance and turbulence. In L. Acccardi & C. C. Heyde (Eds.), Probability towards 2000. Proceedings of a symposium held 2–5 October 1995 at Columbia University. Springer: New York.
Barndorff-Nielsen, O. E., Kent, J., & Sørensen, M. (1982). Normal variance-mean mixtures and z distributions. International Statistical Review, 50, 145–159.
Google Scholar
Barndorff-Nielsen, O. E., & Prause, K. (1999). Apparent scaling. Finance and Stochastics, 5, 103–113.
Google Scholar
Bera, A. K., & Premaratne, G. (2001). Modeling asymmetry and excess kurtosis in stock return data. Working paper, Department of Economics, University of Illinois.
Birge, J. R., & Linetsky, V. (2007). Handbooks in operational research and management science: Financial engineering (Vol. 15, pp. 1–1014). Amsterdam: Elsevier.
Google Scholar
Borges, M. R. (2010). Efficient market hypothesis in European stock markets. European Journal of Finance, 16, 711–726.
Google Scholar
Castellano, R., Cerqueti, R., & Rotundo, G. (2018). Exploring the financial risk of a temperature index: A fractional integrated approach. Annals of Operations Research. https://doi.org/10.1007/s10479-018-3063-0.
Article
Google Scholar
Corcuera, J. M., Nualart, D., & Schoutens, W. (2005). Completion of a Lévy market by power-jump assets. Finance and Stochastics, 9(1), 109–127.
Google Scholar
Critchley, F., & Jones, M. C. (2008). Asymmetry and gradient asymmetry functions: Density-based skewness and kurtosis. Scandinavian Journal of Statistics, 35, 415–437.
Google Scholar
Dacorogna, M. M., Gençay, R., Müller, U. A., Olsen, R. B., & Pictet, O. V. (2001). An introduction to high-frequency finance. Amsterdam: Elsevier.
Google Scholar
Das, S., & Sundaram, R. (1999). Of smiles and smirks: A term structure perspective. Journal of Financial and Quantitative Analysis, 34, 211–239.
Google Scholar
Dhesi, G., & Ausloos, M. (2016). Modelling and measuring the irrational behaviour of agents in financial markets: Discovering the psychological soliton. Chaos, Solitons & Fractals, 88, 119–125.
Google Scholar
Dhesi, G., Emambocus, M. A. W., & Shakeel, M. B. (2011). Semi-closed simulated stock market: an investigation of its components. Paper presented at International Finance and Banking Society (2011). arXiv:1112.0342v1.
Dhesi, G., Shakeel, M., & Xiao, L. (2016). Modified Brownian motion approach to modelling returns distribution. Wilmott Magazine, 82, 74–77.
Google Scholar
Di Matteo, T., Aste, T., & Dacorogna, M. M. (2003). Scaling behaviours in differently developed markets. Physica A: Statistical Mechanics and Its Applications Physica A, 324, 183–188.
Google Scholar
Di Matteo, T., Aste, T., & Dacorogna, M. M. (2005). Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development. Journal of Banking & Finance, 29, 827–851.
Google Scholar
Elliott, R. J., & Siu, T. K. (2010). On risk minimizing portfolios under a Markovian regime-switching Black–Scholes economy. Annals of Operations Research, 176(1), 271–291.
Google Scholar
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987–1007.
Google Scholar
Fernandez, C., Osiewalski, J., & Steel, M. F. J. (1995). Modeling and inference with v-spherical distributions. Journal of the American Statistical Association, 90, 1331–1340.
Google Scholar
Fernandez, C., & Steel, M. F. (1998). On Bayesian modeling of fat tails and skewness. Journal of the American Statistical Association, 93(441), 359–371.
Google Scholar
Ferreira, J. T. A. S., & Steel, M. F. J. (2006). A constructive representation of univariate skewed distributions. Journal of the American Statistical Association, 101, 823–829.
Google Scholar
Fischer, M., & Klein, I. (2004). Kurtosis modelling by means of the J-transformation. Allgemeines Statistisches Archiv, 88, 35–50.
Google Scholar
Funahashi, H., & Higuchi, T. (2018). An analytical approximation for single barrier options under stochastic volatility models. Annals of Operations Research, 266(1–2), 129–157.
Google Scholar
Gardiner, C. W. (1985). Handbook of stochastic methods (Vol. 3, pp. 2–20). Berlin: Springer.
Google Scholar
Goerg, G. M. (2011). Lambert W random variables—a new generalized family of skewed distributions with applications to risk estimation. The Annals of Applied Statistics, 5, 2197–2230.
Google Scholar
Groeneveld, R. A., & Meeden, G. (1984). Measuring skewness and kurtosis. The Statistician, 33, 391–399.
Google Scholar
Guillaume, T. (2018). On the multidimensional Black–Scholes partial differential equation. Annals of Operations Research. https://doi.org/10.1007/s10479-018-3001-1.
Article
Google Scholar
Hansen, B. E. (1994). Autoregressive conditional density estimation. International Economic Review, 35(3), 705–730.
Google Scholar
Harrison, J. M., Sellke, T. M., & Taylor, A. J. (1983). Impulse control of Brownian motion. Mathematics of Operations Research, 8(3), 454–466.
Google Scholar
Harvey, C. R., & Siddique, A. (1999). Autoregressive conditional skewness. Journal of Financial and Quantitative Analysis, 34, 465–487.
Google Scholar
Harvey, C. R., & Siddique, A. (2000). Conditional skewness in asset pricing tests. The Journal of Finance, 55, 1263–1295.
Google Scholar
Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6(2), 327–343.
Google Scholar
Hirshleifer, D., Subrahmanyam, A., & Titman, S. (2006). Feedback and the success of irrational investors. Journal of Financial Economics, 81, 311–338.
Google Scholar
Hoaglin, D. C., Mosteller, F., & Tukey, J. W. (1985). Exploring data table, trends, and shapes. New York: Wiley.
Google Scholar
Hwang, S., & Satchell, S. E. (1999). Modelling emerging market risk premia using higher moments. International Journal of Finance and Economics, 4, 271–296.
Google Scholar
Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation. Biometrika, 36, 149–176.
Google Scholar
Jones, M. C. (2014). Generating distributions by transformation of scale. Statistica Sinica, 24(2), 749–771.
Google Scholar
Jones, M. C., & Faddy, M. J. (2003). A skew extension of the t-distribution, with applications. Journal of Royal Statistical Society, Series B, 65, 159–174.
Google Scholar
Jones, M. C., & Pewsey, A. (2009). Sinh–arcsinh distributions. Biometrika, 96, 761–780.
Google Scholar
Kloeden, P. E., Neuenkirch, A., & Pavani, R. (2011). Multilevel Monte Carlo for stochastic differential equations with additive fractional noise. Annals of Operations Research, 189(1), 255–276.
Google Scholar
Kürüm, E., Weber, G. W., & Iyigun, C. (2018). Early warning on stock market bubbles via methods of optimization, clustering and inverse problems. Annals of Operations Research, 260(1–2), 293–320.
Google Scholar
Leon, A., Rubio, G., Serna, G. (2004). Autoregressive conditional volatility, skewness and kurtosis. WP-AD 2004-13. Instituto Valenciano de Investigaciones Economicas.
Leon, J. A., Vives, J., Utzet, F., & Sole, J. L. (2002). On Levy processes, Malliavin calculus and market models with jumps. Finance and Stochastics, 6(2), 197–225.
Google Scholar
Ley, C. (2015). Flexible modelling in statistics: Past, present and future. Journal de la Société Française de Statistique, 156, 76–96.
Google Scholar
Ley, C., & Paindaveine, D. (2010). Multivariate skewing mechanisms: A unified perspective based on the transformation approach. Statistics and Probability Letters, 80, 1685–1694.
Google Scholar
Lucheroni, C., & Mari, C. (2018). Risk shaping of optimal electricity portfolios in the stochastic LCOE theory. Computers & Operations Research, 96, 374–385.
Google Scholar
Mandelbrot, B. B. (1963). The variation of certain speculative prices. Journal of Business, 36, 394–419.
Google Scholar
Mantegna, R. N. (1991). Levy walks and enhanced diffusion in Milan Stock-Exchange. Physica A: Statistical Mechanics and Its Applications, 179, 232–242.
Google Scholar
Merton, R. C. (1975). An asymptotic theory of growth under uncertainty. The Review of Economic Studies, 42(3), 375–393.
Google Scholar
Miao, D. W. C., Lin, X. C. S., & Chao, W. L. (2016). Computational analysis of a Markovian queueing system with geometric mean-reverting arrival process. Computers & Operations Research, 65, 111–124.
Google Scholar
Mills, T. C. (1995). Modelling skewness and kurtosis in the London Stock Exchange FT-SE index return distributions. The Statistician, 44(3), 323–332.
Google Scholar
Mills, T. C., & Markellos, R. N. (2008). The econometric modelling of financial time series. Cambridge: Cambridge University Press.
Google Scholar
Ormeci, M., Dai, J. G., & Vate, J. V. (2008). Impulse control of Brownian motion: The constrained average cost case. Operations Research, 56(3), 618–629.
Google Scholar
Peiró, A. (1999). Skewness in financial returns. Journal of Banking & Finance, 23, 847–862.
Google Scholar
Puu, T. (1992). Order and disorder in business cycles. Annals of Operations Research, 37(1), 169–183.
Google Scholar
Quintana, F. A., Steel, M. F. J., & Ferreira, J. T. A. S. (2009). Flexible univariate continuous distributions. Bayesian Analysis, 4, 497–522.
Google Scholar
Rachev, S. T., Menn, C., & Fabozzi, F. J. (2005). Fat-tailed and skewed asset return distributions: Implications for risk management, portfolio selection, and option pricing (Vol. 139). New York: Wiley.
Google Scholar
Rosco, J. F., Jones, M. C., & Pewsey, A. (2011). Skew t distributions via the sinh–arcsinh transformation. Test, 20(3), 630–652.
Google Scholar
Rubio, F. J., & Steel, M. F. (2015). Bayesian modelling of skewness and kurtosis with two-piece scale and shape transformations. Electronic Journal of Statistics, 9(2), 1884–1912.
Google Scholar
Schinckus, C., Jovanovic, F., & Ausloos, M. (2016). On the “usual” misunderstandings between econophysics and finance: Some clarifications on modelling approaches and efficient market hypothesis. International Review of Financial Analysis, 47, 7–14.
Google Scholar
Siu, T. K. (2012). A BSDE approach to risk-based asset allocation of pension funds with regime switching. Annals of Operations Research, 201(1), 449–473.
Google Scholar
Tapiero, C. S., & Vallois, P. (2018). Randomness and fractional stable distributions. Physica A: Statistical Mechanics and Its Applications, 511, 54–60.
Google Scholar
Zacharias, C., & Armony, M. (2016). Joint panel sizing and appointment scheduling in outpatient care. Management Science, 63(11), 3978–3997.
Google Scholar
Zheng, M., Wu, K., & Shu, Y. (2016). Newsvendor problems with demand forecast updating and supply constraints. Computers & Operations Research, 67, 193–206.
Google Scholar