Skip to main content
Log in

Markowitz portfolio optimization through pairs trading cointegrated strategy in long-term investment

  • S.I.: Recent Developments in Financial Modeling and Risk Management
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This work aimed to solve the problem of Markowitz portfolio optimization for a long-term horizon investment, through the pairs trading cointegrated strategy. Such a strategy allowed us to identify the prices and returns of each stock on the basis of a cointegration relationship estimated by means of the Vector Error Correction Model (VECM). Once the returns had been established, the Markowitz allocation problem among the pairs was solved by minimizing the portfolio risk. We proposed to determine the optimal allocation for each stock as a linear combination of the allocation coefficients calculated for each pair and the cointegration coefficients estimated by means of the VECM model. The proposed strategy was applied to three pairs of real cointegrated stocks belonging to the European financial sector. The results obtained were compared with those from five methods, proposed in the scientific literature, by means of a bootstrap simulation experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.

    Article  Google Scholar 

  • Alexander, G. (1976). The derivation of efficient sets. Journal of Financial and Quantitative Analysis, 11(5), 817–830.

    Google Scholar 

  • Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time series analysis: Forecasting and control. Englewood Cliff: Prentice Hall.

    Google Scholar 

  • Bradley, M. D., & Jansen, D. W. (2004). Forecasting with a nonlinear dynamic model of stock returns and industrial production. International Journal of Forecasting, 20(2), 321–342.

    Google Scholar 

  • Brandt, M. W., & Kang, Q. (2004). On the relationship between the conditional mean and volatility of stock returns: A latent VAR approach. Journal of Financial Economics, 72(2), 217–257.

    Google Scholar 

  • Broussard, J. P., & Vaihekoski, M. (2012). Profitability of pairs trading strategy in an illiquid market with multiple share classes. Journal of International Financial Markets, Institutions and Money, 22(5), 1188–1201.

    Google Scholar 

  • Burmeister, E., & McElroy, M. B. (1988). Joint estimation of factor sensitivities and risk premia for the arbitrage pricing theory. The Journal of Finance, 43(3), 721–733.

    Google Scholar 

  • Byrne, B., & Lee, S. (2004). Different risk measures: Different portfolio compositions? Journal of Property Investment & Finance, 22(6), 501–511.

    Google Scholar 

  • Caldeira, J. F., & Moura, G. V. (2013). Selection of a portfolio of pairs based on cointegration: A statistical arbitrage strategy. Review Brazilian Finance, 11(1), 49–80. as (Online), Rio de Janeiro,

    Google Scholar 

  • Calvo, C., Ivorra, C., & Liern, V. (2012). On the computation of the efficient frontier of the portfolio selection problem. Journal of Applied Mathematics, 2012(105616), 1–25.

    Google Scholar 

  • Campbell, J. Y. (1987). Stock returns and the term structure. Journal of Financial Economics, 18(2), 373–399.

    Google Scholar 

  • Campbell, J. Y., Grossman, S. J., & Wang, J. (1993). Trading volume and serial correlation in stock returns. The Quarterly Journal of Economics, 108(4), 905–939.

    Google Scholar 

  • Campbell, R., Huisman, R., & Koedijk, K. (2001). Optimal portfolio selection in a value-at-risk framework. Journal of Banking and Finance, 25(9), 1789–1804.

    Google Scholar 

  • Campbell, J. Y., & Viceira, L. M. (1999). Consumption and portfolio decisions when expected returns are time varying. The Quarterly Journal of Economics, 114(2), 433–492.

    Google Scholar 

  • Campbell, J. Y., & Viceira, L. M. (2001). Strategic assets allocation : Portfolio choice for long-term investors, Clarendon lectures in economics (p. 272). Oxford: Oxford University Press.

    Google Scholar 

  • Casella, R. L. (2002). Statistical inference (p. 660). Pacific Grove: Duxbury Advanced Series.

    Google Scholar 

  • Chen, N.-F., Roll, R., & Ross, S. A. (1986). Economic forces and stock market. The Journal of Business, 59(3), 383–403.

    Google Scholar 

  • Chiu, M. C., & Wong, H. Y. (2011). Mean-variance portfolio selection of cointegrated assets. Journal of Economic Dynamics and Control, 35(8), 1369–1385.

    Google Scholar 

  • Chiu, M. C., & Wong, H. Y. (2018). Robust dynamic pairs trading with cointegration. Operation Research Letters, 46(2), 225–232.

    Google Scholar 

  • Chung, P. J., & Liu, D. J. (1994). Common stochastic trends in Pacific Rim stock markets. The Quarterly Review of Economics and Finance, 34(3), 241–259.

    Google Scholar 

  • Connor, G. (1995). The three types of factor models: a comparison of their explanatory power. Financial Analysts Journal, 51(3), 42–46.

    Google Scholar 

  • Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of Statistics, 7(1), 1–26.

    Google Scholar 

  • Elliot, R. J., Van Der Hoek, J., & Malcolm, W. P. (2007). Pairs trading. Quantitative Finance, 5(3), 271–276.

    Google Scholar 

  • Elton, E., Gruber, M., & Rentzler, J. (1983). The arbitrage pricing model and returns on assets under uncertain inflation. The Journal of Finance, 38(2), 525–537.

    Google Scholar 

  • Engle, R. F., & Granger, C. W. J. (1987). Co-integration and error correction: representation, estimation and testing. Econometrica, 55(2), 258–276.

    Google Scholar 

  • Fama, E. F. (1998). Determining the number of priced state variables in the ICAPM. Journal of Financial and Quantitative Analysis, 33(2), 217–231.

    Google Scholar 

  • Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33(3), 3–56.

    Google Scholar 

  • Gârleanu, N., & Pedersen, L. H. (2013). Dynamic trading with predictable returns and transaction costs. The Journal of Finance, 68(6), 2309–2340.

    Google Scholar 

  • Gasser, S. M., Rammerstorfer, M., & Weinmayer, K. (2017). Markowitz revised: social portfolio engineering. European Journal of Operation Research, 258(3), 1181–1190.

    Google Scholar 

  • Gatev, E., Goetzmann, W. N., & Rouwenhorst, G. (2006). Pairs trading: performance of a relative-value arbitrage rule. The Review of Financial Studies, 19(3), 797–827.

    Google Scholar 

  • Green, R. C. (1986). Positively weighted portfolio on the minimum-variance frontier. The Journal of Finance, 41(5), 1051–1068.

    Google Scholar 

  • Griffin, J. M. (2002). Are the Fama and French factors global or country specific? Review of Financial Studies, 15(3), 783–803.

    Google Scholar 

  • Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman Filter (p. 572). Cambridge: Cambridge University Press.

    Google Scholar 

  • Hasuike, T., Katagiri, H., & Ishii, H. (2009). Portfolio selection problems with random fuzzy variable returns. Fuzzy Sets and Systems, 160(18), 2579–2596.

    Google Scholar 

  • Huang, X. (2007). Portfolio selection with fuzzy returns. Journal of Intelligent and Fuzzy Systems, 18(4), 383–390.

    Google Scholar 

  • Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econometrica, 59(6), 1551–1580.

    Google Scholar 

  • Johansen, S. (1995). Likelihood-based inference in cointegrated vector autoregressive models. Oxford: Oxford University Press.

    Google Scholar 

  • Leung, P.-L., Ng, H.-Y., & Wong, W.-K. (2012). An improved estimation to make Markowitz’s portfolio optimization theory users friendly and estimation accurate with application on the US stock market investment. European Journal of Operational Research, 222(1), 85–95.

    Google Scholar 

  • Levy, H. (1973). The demand for assets under conditions of risk. The Journal of Finance, 28(1), 79–96.

    Google Scholar 

  • Luenberger, D. G. (1998). Investment science (p. 494). New York: Oxford University Press.

    Google Scholar 

  • Lütkepohl, H. (2005). New introduction to multiple time series analysis. Berlin: Springer.

    Google Scholar 

  • Mangram, M. E. (2013). A simplified perspective of the Markowitz portfolio theory. Global Journal of Business Research, 7(1), 59–70.

    Google Scholar 

  • Markowitz, H. M. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.

    Google Scholar 

  • McCausland, W. J., Miller, S., & Pelletier, D. (2011). Simulation smoothing for state-space models: A computational efficiency analysis. Computational Statistics and Data Analysis, 55(1), 199–212.

    Google Scholar 

  • Mukherjee, T. K., & Naka, A. (1995). Dynamic relations between macroeconomic variables and the Japanese stock market: An application of a vector error correction model. The Journal of Financial Research, 18(2), 223–237.

    Google Scholar 

  • Naccarato, A., & Pierini, A. (2014). BEKK element-by-element estimation of a volatility matrix. A portfolio simulation. In P. Cira & S. Marilena (Eds.), Mathematical and statistical methods for actuarial sciences and finance (pp. 145–148). Cham: Springer.

    Google Scholar 

  • Perlin, M. S. (2009). Evaluation of pairs-trading strategy at the Brazilian financial market. Journal of Derivatives and Hedge Funds, 15(2), 122–136.

    Google Scholar 

  • Pla-Santamaria, D., & Bravo, M. (2013). Portfolio optimization based on downside risk: A mean-semivariance efficient frontier from Dow Jones blue chips. Annals of Operations Research, 205(1), 189–201.

    Google Scholar 

  • Pole, A. (2007). Statistical arbitrage. Hoboken: Wiley.

    Google Scholar 

  • Priestley, R. (1996). The arbitrage pricing theory, macroeconomic and financial factors, and expectations generating processes. Journal of Banking and Finance, 20(5), 869–890.

    Google Scholar 

  • Salah, H. B., Chaouch, M., Gannoun, A., & De Peretti, C. (2018). Mean and median-based nonparametric estimation of returns in mean-downside risk portfolio frontier. Annals of Operations Research, 262(2), 653–681.

    Google Scholar 

  • Sanei, M., Banihashemi, S., & Kaveh, M. (2016). Estimation of portfolio efficient frontier by different measures of risk via DEA. International Journal of Industrial Mathematics, 8(3), 10. Article ID IJIM-00460.

    Google Scholar 

  • Sharpe, W. F. (1992). Asset allocation: Management style and performance measurement. Journal of Portfolio Management, 30(10), 7–16.

    Google Scholar 

  • Sharpe, W. F. (1994). The Sharpe Ratio. Journal of Portfolio Management, 21(1), 49–58.

    Google Scholar 

  • Soleimani, H., Golmakani, H. R., & Salimi, M. H. (2009). Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm. Expert Systems with Applications, 36(3), 5058–5063.

    Google Scholar 

  • Tsay, R. S. (2010). Analysis of financial time series (p. 720). Hoboken: Wiley.

    Google Scholar 

  • Vidyamurthy, G. (2004). Pairs trading: quantitative methods and analysis. Hoboken: Wiley.

    Google Scholar 

  • Zhao, Z., & Palomar, D. P. (2018). Mean-reverting portfolio with budget constraint. IEEE Transactions on Signal Processing, 66(9), 2342–2357.

    Google Scholar 

  • Zopounidis, C., Doumpos, M., & Fabozzi, F. J. (2014). Preface to the special issue: 60 years following Harry Markowitz’s contributions in portfolio theory and operations research. European Journal of Operational Research, 234(2), 343–345.

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank the anonymous referees for their careful reviews of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Ferraro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naccarato, A., Pierini, A. & Ferraro, G. Markowitz portfolio optimization through pairs trading cointegrated strategy in long-term investment. Ann Oper Res 299, 81–99 (2021). https://doi.org/10.1007/s10479-019-03225-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03225-y

Keywords

JEL Classification

Navigation