Skip to main content
Log in

Optimal capacity allocation in a production–inventory system with base stock

  • Queueing Theory and Network Applications
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We address the optimal allocation of a given capacity in a multi-product inventory–production system with base stock. In the system, the base stock level is equal to the sum of the finished goods and work-in-process inventory. Each exogenous demand releases production of a new unit and increases the level of work-in-process. Unsatisfied demand is backordered. Using an open single-server queueing network, we model the behavior of the work-in-process in the manufacturing system in order to determine the cost-optimal base stock level. We focus on the utilizations in the network and compare balanced and unbalanced systems regarding their base stock level. In particular, we analyze the effect of capacity reallocation and show that a manufacturing system consisting of production stations with constant utilization rates, results in the lowest base stock level. With the combined application of queueing network theory and majorization theory, we are able to provide analytical explanations of the network’s behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arumugam, R., Mayorga, M. E., & Taaffe, K. M. (2009). Inventory based allocation policies for flexible servers in serial systems. Annals of Operations Research, 172(1), 1–23.

    Article  Google Scholar 

  • Bitran, G. R., & Tirupati, D. (1989). Capacity planning in manufacturing networks with discrete options. Annals of Operations Research, 17(1), 119–135.

    Article  Google Scholar 

  • Bradley, J. R., & Glynn, P. W. (2002). Managing capacity and inventory jointly in manufacturing systems. Management Science, 48(2), 273–288.

    Article  Google Scholar 

  • Buyukkaramikli, N. C., Bertrand, J. W. M., & van Ooijen, H. P. (2013). Flexible hiring in a make to order system with parallel processing units. Annals of Operations Research, 209(1), 159–178.

    Article  Google Scholar 

  • Buyukkaramikli, N. C., van Ooijen, H. P., & Bertrand, J. W. M. (2015). Integrating inventory control and capacity management at a maintenance service provider. Annals of Operations Research, 231(1), 185–206.

    Article  Google Scholar 

  • Buzen, J. P. (1973). Computational algorithms for closed queueing networks with exponential servers. Communications of the ACM, 16(9), 527–531.

    Article  Google Scholar 

  • Chao, X., Miyazawa, M., & Pinedo, M. (1999). Queueing networks: Customers, signals and product form solutions. Chichester: Wiley.

    Google Scholar 

  • Chen, H., & Yao, D. D. (2001). Fundamentals of queueing networks: Performance, asymptotics, and optimization (Vol. 46). Berlin: Springer.

    Book  Google Scholar 

  • de la Cruz, N. N., & Daduna, H. (2016). Monotonicity of base stock policies. Operations Research Letters, 44(2), 186–190.

    Article  Google Scholar 

  • Dharmadhikari, S., & Joag-Dev, K. (1988). Unimodality, convexity, and applications. Amsterdam: Elsevier.

    Google Scholar 

  • Duri, C., Frein, Y., & Di Mascolo, M. (2000). Comparison among three pull control policies: Kanban, base stock, and generalized kanban. Annals of Operations Research, 93(1), 41–69.

    Article  Google Scholar 

  • Krishnamoorthy, A., Lakshmy, B., & Manikandan, R. (2011). A survey on inventory models with positive service time. Opsearch, 48(2), 153–169.

    Article  Google Scholar 

  • Marshall, A. W., Olkin, I., & Arnold, B. C. (1979). Inequalities: Theory of majorization and its applications (Vol. 143). Berlin: Springer.

    Google Scholar 

  • Mayorga, M. E., Taaffe, K. M., & Arumugam, R. (2009). Allocating flexible servers in serial systems with switching costs. Annals of Operations Research, 172(1), 231–242.

    Article  Google Scholar 

  • Osorio, C., & Bierlaire, M. (2009). An analytic finite capacity queueing network model capturing the propagation of congestion and blocking. European Journal of Operational Research, 196(3), 996–1007.

    Article  Google Scholar 

  • Reed, J., & Zhang, B. (2017). Managing capacity and inventory jointly for multi-server make-to-stock queues. Queueing Systems, 86(1–2), 61–94.

    Article  Google Scholar 

  • Rubio, R., & Wein, L. M. (1996). Setting base stock levels using product-form queueing networks. Management Science, 42(2), 259–268.

    Article  Google Scholar 

  • Shaked, M., & Shanthikumar, J. G. (1994). Stochastic orders and their applications., Probability and mathematical statistics Boston: Academic Press.

    Google Scholar 

  • Spearman, M. L., & Zazanis, M. A. (1992). Push and pull production systems: Issues and comparisons. Operations Research, 40(3), 521–532.

    Article  Google Scholar 

  • Stecke, K. E., & Morin, T. L. (1985). The optimality of balancing workloads in certain types of flexible manufacturing systems. European Journal of Operational Research, 20(1), 68–82.

    Article  Google Scholar 

  • Stecke, K. E., & Solberg, J. J. (1985). The optimality of unbalancing both workloads and machine group sizes in closed queueing networks of multiserver queues. Operations Research, 33(4), 882–910.

    Article  Google Scholar 

  • Toktay, L. B., Wein, L. M., & Zenios, S. A. (2000). Inventory management of remanufacturable products. Management Science, 46(11), 1412–1426.

    Article  Google Scholar 

  • Zazanis, M. A. (1994) Push and pull systems with external demands. In Proceedings of 32nd Allerton conference on communication, control and computing, Allerton, IL (pp 691–698).

Download references

Acknowledgements

We would like to thank the reviewers for their helpful suggestions and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nha-Nghi de la Cruz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Proof of Proposition 1

Proof of Proposition 1

In the proof, we use

Lemma 1

For \(j \in \overline{J}\) the jth partial derivative (of order 1) is

$$\begin{aligned} \frac{\partial }{\partial \rho _j} G(n,\overline{J})(\rho _1,...,\rho _J)=G(n-1,\overline{J})(\rho _1,...,\rho _J)+\rho _j \frac{\partial }{\partial \rho _j}G(n-1,\overline{J})(\rho _1,...,\rho _J). \end{aligned}$$

Proof of Proposition 1

From the definition of \(G(n,\overline{J})(\rho _1,...,\rho _J)\), the functions \(\phi ^{(z)}\) are symmetric on \(A=(0,1)^J\). Thus, we have to show

$$\begin{aligned} \frac{\frac{\partial }{\partial \rho _1}\phi ^{(z)}\left( \rho _1,...,\rho _J\right) -\frac{\partial }{\partial \rho _2}\phi ^{(z)}\left( \rho _1,...,\rho _J\right) }{\rho _1 - \rho _2} \overset{!}{\le } 0. \end{aligned}$$
(10)

Using Lemma 1, we firstly calculate the numerator of the fraction. (For shorthand notation we abbreviate \(G(n,\overline{J})(\rho _1,...,\rho _J) =G(n,\overline{J})\) whenever the argument \((\rho _1,...,\rho _J)\) is obvious.)

$$\begin{aligned}&\frac{\partial }{\partial \rho _1} \phi ^{(z)}(\rho _1,...,\rho _J) - \frac{\partial }{\partial \rho _2}\phi ^{(z)}(\rho _1,...,\rho _J)\\&\quad =\left( \prod _{i \in \overline{J}-\left\{ 1\right\} }(1-\rho _i)\right) \left[ (-1)\sum ^z_{n=0}\sum _{k_1+...+k_J=n}\prod _{j\in \overline{J}}\rho _j^{k_j}\right. \\&\qquad +\left. (1-\rho _1)\sum ^z_{n=0}\frac{\partial }{\partial \rho _1}\left\{ \sum _{k_1+...+k_J=n}\prod _{j\in \overline{J}}\rho _j^{k_j}\right\} \right] \\&\qquad -\left( \prod _{i \in \overline{J}-\left\{ 2\right\} }(1-\rho _i)\right) \left[ (-1)\sum ^z_{n=0}\sum _{k_1+...+k_J=n}\prod _{j\in \overline{J}}\rho _j^{k_j}\right. \\&\qquad +\left. (1-\rho _2)\sum ^z_{n=0}\frac{\partial }{\partial \rho _2}\left\{ \sum _{k_1+...+k_J=n}\prod _{j\in \overline{J}}\rho _j^{k_j}\right\} \right] \\&\quad =\left( \prod _{i \in \overline{J}-\left\{ 1,2\right\} }(1-\rho _i)\right) \left[ (\rho _2-1)\sum ^z_{n=0}\sum _{k_1+...+k_J=n}\prod _{j\in \overline{J}}\rho _j^{k_j}\right. \\&\qquad +\left. (1-\rho _1)\sum ^z_{n=0}\sum _{k_1+...+k_J=n}\prod _{j\in \overline{J}}\rho _j^{k_j}\right. \\&\qquad +\left. (1-\rho _1)(1-\rho _2)\left( \sum ^z_{n=0}\frac{\partial }{\partial \rho _1}\left\{ \sum _{k_1+...+k_J=n}\prod _{j\in \overline{J}}\rho _j^{k_j}\right\} \right. \right. \\&\qquad -\left. \left. \sum ^z_{n=0}\frac{\partial }{\partial \rho _2}\left\{ \sum _{k_1+...+k_J=n}\prod _{j\in \overline{J}}\rho _j^{k_j}\right\} \right) \right] \\ \end{aligned}$$
$$\begin{aligned}&\quad =\left( \prod _{i \in \overline{J}-\left\{ 1,2\right\} }(1-\rho _i)\right) \left[ (\rho _2-\rho _1)\sum ^z_{n=0}\sum _{k_1+...+k_J=n}\prod _{j\in \overline{J}}\rho _j^{k_j}\right. \\&\quad \quad +\left. (1-\rho _1)(1-\rho _2)\left( \sum ^z_{n=1}\left( \frac{\partial }{\partial \rho _1}\left\{ \sum _{k_1+...+k_J=n}\prod _{j\in \overline{J}}\rho _j^{k_j}\right\} \right. \right. \right. \\&\quad \quad -\left. \left. \left. \frac{\partial }{\partial \rho _2}\left\{ \sum _{k_1+...+k_J=n}\prod _{j\in \overline{J}}\rho _j^{k_j}\right\} \right) \right) \right] \\&\quad {\overset{\text {Lemma 1}}{=}}\left( \prod _{i \in \overline{J}-\left\{ 1,2\right\} }(1-\rho _i)\right) \left[ (\rho _2-\rho _1)\sum ^z_{n=0}\sum _{k_1+...+k_J=n}\prod _{j\in \overline{J}}\rho _j^{k_j}\right. \\&\quad \quad +\left. (1-\rho _1)(1-\rho _2)\left( \sum ^{z-1}_{n=1}\left( \rho _1\frac{\partial }{\partial \rho _1}\left\{ \sum _{k_1+...+k_J=n}\prod _{j\in \overline{J}}\rho _j^{k_j}\right\} \right. \right. \right. \\&\quad \quad -\left. \left. \left. \rho _2\frac{\partial }{\partial \rho _2}\left\{ \sum _{k_1+...+k_J=n}\prod _{j\in \overline{J}}\rho _j^{k_j}\right\} \right) \right) \right] \\&\quad = \left( \prod _{i \in \overline{J}-\left\{ 1,2\right\} }(1-\rho _i)\right) \left[ (\rho _2-\rho _1)\sum ^z_{n=0} \sum _{k_1+...+k_J=n} \prod _{j\in \overline{J}}\rho _j^{k_j} \right. \\&\quad \quad +\left. (1-\rho _1)(1-\rho _2)\sum ^{z-1}_{n=1}\left( \rho _1 \sum _{\begin{array}{c} k_1+...+k_J=n \\ k_1>0 \end{array}}k_1\prod _{j\in \overline{J}- \left\{ 1\right\} }\rho _j^{k_j}\rho _1^{k_1-1}\right. \right. \\&\quad \quad -\left. \left. \rho _2 \sum _{\begin{array}{c} k_1+...+k_J=n \\ k_2>0 \end{array}}k_2\prod _{j\in \overline{J}-\left\{ 2\right\} }\rho _j^{k_j}\rho _2^{k_2-1}\right) \right] \\ \end{aligned}$$
$$\begin{aligned}&\quad = \left( \prod _{i \in \overline{J}-\left\{ 1,2\right\} }(1-\rho _i)\right) \left[ (\rho _2-\rho _1)\sum ^z_{n=0} \sum _{k_1+...+k_J=n} \prod _{j\in \overline{J}}\rho _j^{k_j} \right. \\&\quad \quad +\left. (1-\rho _1)(1-\rho _2)\sum ^{z-1}_{n=1}\left( \sum _{\begin{array}{c} k_1+...+k_J=n \\ k_1\ge 0 \end{array}}k_1\prod _{j\in \overline{J}}\rho _j^{k_j}\right. \right. \\&\quad \quad -\left. \left. \sum _{\begin{array}{c} k_1+...+k_J=n \\ k_2\ge 0 \end{array}}k_2\prod _{j\in \overline{J}}\rho _j^{k_j}\right) \right] \\&\quad = \left( \prod _{i \in \overline{J}-\left\{ 1,2\right\} }(1-\rho _i)\right) \left[ (\rho _2-\rho _1)\sum ^z_{n=0} \sum _{k_1+...+k_J=n} \prod _{j\in \overline{J}}\rho _j^{k_j} \right. \\&\quad \quad +\left. (1-\rho _1)(1-\rho _2)\sum ^{z-1}_{n=1}\left( \sum _{k_1+...+k_J=n}k_1\left( \prod _{j\in \overline{J}}\rho _j^{k_j}\right) G(n,J)^{-1}\right. \right. \\&\quad \quad -\left. \left. \sum _{k_1+...+k_J=n}k_2\left( \prod _{j\in \overline{J}}\rho _j^{k_j}\right) G(n,J)^{-1}\right) G(n,J)\right] \\&\quad = \left( \prod _{i \in \overline{J}-\left\{ 1,2\right\} }(1-\rho _i)\right) \left[ (\rho _2-\rho _1)\sum ^z_{n=0} \sum _{k_1+...+k_J=n} \prod _{j\in \overline{J}}\rho _j^{k_j} \right. \\&\quad \quad +\left. (1-\rho _1)(1-\rho _2)\sum ^{z-1}_{n=1}\left( \sum _{k_1=1}^n \rho _1^{k_1}G(n-k_1,\overline{J})G(n,J)^{-1}\right. \right. \\&\quad \quad -\left. \left. \sum _{k_2=1}^n \rho _2^{k_2}G(n-k_2,\overline{J})G(n,J)^{-1}\right) G(n,J)\right] \\&\quad = \left( \prod _{i \in \overline{J}-\left\{ 1,2\right\} }(1-\rho _i)\right) \left[ (\rho _2-\rho _1)\sum ^z_{n=0} \sum _{k_1+...+k_J=n} \prod _{j\in \overline{J}}\rho _j^{k_j} \right. \\&\quad \quad +\left. (1-\rho _1)(1-\rho _2)\sum ^{z-1}_{n=1}\left( \sum _{k=1}^n G(n-k,J)G(n,J)^{-1}\left( \rho _1^{k}-\rho _2^{k}\right) \right) G(n,J)\right] \\&\quad = \left( \prod _{i \in \overline{J}-\left\{ 1,2\right\} }(1-\rho _i)\right) \left[ (\rho _2-\rho _1)\sum ^z_{n=0} \sum _{k_1+...+k_J=n} \prod _{j\in \overline{J}}\rho _j^{k_j} \right. \\&\quad \quad +\left. (1-\rho _1)(1-\rho _2)\sum ^{z-1}_{n=1}\left( \sum _{k=1}^n G(n-k,J)G(n,J)^{-1}\right. \right. \\&\quad \qquad \left. \left. \left( \sum ^{k-1}_{l=0}\rho _1^{l}\rho _2^{k-1-l}\right) (\rho _1-\rho _2)\right) G(n,J)\right] \\ \end{aligned}$$

Consequently, we have

$$\begin{aligned}&\frac{\frac{\partial }{\partial \rho _1} \phi ^{(z)}(\rho _1,...,\rho _J) - \frac{\partial }{\partial \rho _2}\phi ^{(z)}(\rho _1,...,\rho _J)}{\rho _1-\rho _2}\\= & {} \left( \prod _{i \in \overline{J}-\left\{ 1,2\right\} }(1-\rho _i)\right) \left[ -\sum ^z_{n=0} \sum _{k_1+...+k_J=n} \prod _{j\in \overline{J}}\rho _j^{k_j} \right. \\&+\left. (1-\rho _1)(1-\rho _2)\sum ^{z-1}_{n=1}\left( \sum _{k=1}^n G(n-k,J)\left( \sum ^{k-1}_{l=0}\rho _1^{l}\rho _2^{k-1-l}\right) \right) \right] . \end{aligned}$$

Since we started from an ergodic Jackson network, we have \(\rho _i \in (0,1)\), \(\forall i \in \overline{J}\). So \(\phi ^{(z)}\) is Schur-concave if

$$\begin{aligned} \sum ^z_{n=0}G(n,\overline{J})&\ge (1-\rho _1)(1-\rho _2)\sum ^{z-1}_{n=1}\left( \sum _{k=1}^n G(n-k,\overline{J})\left( \sum ^{k-1}_{l=0}\rho _1^{l}\rho _2^{k-1-l}\right) \right) \\ \sum ^z_{n=0}G(n,\overline{J})\left( \sum ^\infty _{k_1=0}\rho _1^{k_1}\right) \left( \sum ^\infty _{k_2=0}\rho _2^{k_2}\right)&\ge \sum ^{z-1}_{n=1}\left( \sum _{k=1}^n G(n-k,\overline{J})G(k-1,\left\{ 1,2\right\} )\right) \\ \sum ^z_{n=0}G(n,\overline{J})\left( \sum ^\infty _{k=0}\sum _{k_1+k_2=k}\rho _1^{k_1}\rho _2^{k_2}\right)&\ge \sum ^{z-1}_{n=1}\left( \sum _{k=1}^n G(n-1-(k-1),\overline{J})G(k-1,\left\{ 1,2\right\} )\right) \\ \sum ^z_{n=0}G(n,\overline{J})\left( \sum ^\infty _{k=0}G(k,\left\{ 1,2\right\} \right)&\ge \sum ^{z-1}_{n=1}\left( \sum _{k=0}^{n-1} G(n-1-k,\overline{J})G(k,\left\{ 1,2\right\} )\right) \\ \sum ^z_{n=0}G(n,\overline{J})\left( \sum ^\infty _{k=0}G(k,\left\{ 1,2\right\} \right)&\ge \sum ^{z-2}_{n=0}\left( \sum _{k=0}^{n} G(n-k,\overline{J})G(k,\left\{ 1,2\right\} )\right) .\\ \end{aligned}$$

For the right side of the inequality, we have

$$\begin{aligned}&\sum ^{z-2}_{n=0}\left( \sum _{k=0}^{n} G(n-k,\overline{J})G(k,\left\{ 1,2\right\} )\right) =\sum ^{z-2}_{k=0}\sum _{n=k}^{z-2} G(n-k,\overline{J})G(k,\left\{ 1,2\right\} )\\&=\sum ^{z-2}_{k=0}G(k,\left\{ 1,2\right\} )\sum _{n=0}^{z-2-k} G(n,\overline{J}).\\ \end{aligned}$$

With the last equation, we can complete our proof with

$$\begin{aligned}&\sum ^{z-2}_{k=0}G(k,\left\{ 1,2\right\} )\sum _{n=0}^{z-2-k} G(n,\overline{J})\le \sum ^{z-2}_{k=0}G(k,\left\{ 1,2\right\} )\sum _{n=0}^{z-2} G(n,\overline{J}) \\&\le \left( \sum ^{z}_{n=0}G(n,\overline{J})\right) \left( \sum _{k=0}^\infty G(k,\left\{ 1,2\right\} )\right) . \end{aligned}$$

Thus, \(\phi ^{(z)}\) is Schur-concave on A. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Cruz, NN., Daduna, H. Optimal capacity allocation in a production–inventory system with base stock. Ann Oper Res 277, 329–344 (2019). https://doi.org/10.1007/s10479-017-2687-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2687-9

Keywords

Navigation