Skip to main content

Advertisement

Log in

Clustering of short time-course gene expression data with dissimilar replicates

  • Data Mining and Analytics
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Microarrays are used in genetics and medicine to examine large numbers of genes simultaneously through their expression levels under any condition such as a disease of interest. The information from these experiments can be enriched by following the expression levels through time and biological replicates. The purpose of this study is to propose an algorithm which clusters the genes with respect to the similarities between their behaviors through time. The algorithm is also aimed at highlighting the genes which show different behaviors between the replicates and separating the constant genes that keep their baseline expression levels throughout the study. Finally, we aim to feature cluster validation techniques to suggest a sensible number of clusters when it is not known a priori. The illustrations show that the proposed algorithm in this study offers a fast approach to clustering the genes with respect to their behavior similarities, and also separates the constant genes and the genes with dissimilar replicates without any need for pre-processing. Moreover, it is also successful at suggesting the correct number of clusters when that is not known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alonso, A., Berrendero, J., Hernandez, A., & Justel, A. (2006). Time series clustering based on forecast densities. Computational Statistics and Data Analysis, 51, 762–776.

    Article  Google Scholar 

  • Bar-Joseph, Z. (2004). Analyzing time series gene expression data. Bioinformatics, 20(16), 2493–2503.

    Article  Google Scholar 

  • Bar-Joseph, Z., Gerber, G. K., Gifford, D. K., Jaakkola, T. S., & Simon, I. (2003). Continuous representations of time-series gene expression data. Journal of Computational Biology, 10(3–4), 341–356.

    Article  Google Scholar 

  • Caiado, J., Crato, N., & Pena, D. (2006). A periodogram-based metric for time series classification. Computational Statistics and Data Analysis, 50, 2668–2684.

    Article  Google Scholar 

  • Celeux, G., Martin, O., & Lavergne, C. (2005). Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments. Statistical Modelling, 5(3), 243–267.

    Article  Google Scholar 

  • Cho, R. J., Campbell, M. J., Winzeler, E. A., Steinmetz, L., Wodicka, A. C. L., Wolfsberg, T. G., et al. (1998). A genome-wide transcriptioanal analysis of the mitotic cell cycle. Molecular Cell, 2(1), 65–73.

    Article  Google Scholar 

  • Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., & Brown, P. O. (1998). The transcriptional program of sporulation in budding yeast. Science, 282(5389), 699–705.

    Article  Google Scholar 

  • Corduas, M., & Piccolo, D. (2008). Time series clustering and classification by the autoregressive metric. Computational Statistics and Data Analysis, 52, 1860–1872.

    Article  Google Scholar 

  • Díaz, S. P., & Vilar, J. A. (2010). Comparing several parametric and nonparametric approaches to time series clustering: A simulation study. Journal of Classification, 27, 333–362.

    Article  Google Scholar 

  • Do, J. H., & Choi, D. (2008). Clustering approaches to identfying gene expression patterns from dna microarray data. Molecules and Cells, 25(2), 279.

    Google Scholar 

  • Eisen, M. B., Spellman, P. T., Brown, P. O., & Boltstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences, 95(25), 14,863–14,868.

    Article  Google Scholar 

  • Ernst, J., Nau, G. J., & Bar-Joseph, Z. (2005). Clustering short time series gene expression data. Bioinformatics, 21(suppl 1), i159–i168.

    Article  Google Scholar 

  • Galbraith, J., & Jiaqing, L. (1999). Cluster and discriminant analysis on time series as a research tool UTIP Working Paper Number 6, The University of Texas at Austin, Austin: Lyndon B

  • Hackstadt, A. J., & Hess, A. M. (2009). Filtering for increased power for microarray data analysis. BMC Bioinformatics, 10(1), 1.

    Article  Google Scholar 

  • Hakamada, K., Okamoto, M., & Hanai, T. (2006). Novel technique for preprocessing high dimensional time-course data from dna microarray: Mathematical model-based clustering. Bioinformatics, 22(7), 843–848.

    Article  Google Scholar 

  • Heard, N. A., Holmes, C. C., Stephens, D. A., Hand, D. J., & Dimopoulos, G. (2005). Bayesian coclustering of anopheles gene expression time series: Study of immune defense response to multiple experimental challenges. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 16,939–16,944.

    Article  Google Scholar 

  • Heyer, L. J., Kruglyak, S., & Yooseph, S. (1999). Exploring expression data: Identification and analysis of coexpressed genes. Genome Research, 9(11), 1106–1115.

    Article  Google Scholar 

  • Irigoien, I., Vives, S., & Arenas, C. (2011). Microarray time course experiments: Finding profiles. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(2), 464–475.

    Article  Google Scholar 

  • Kakizawa, Y., Shumway, R. H., & Taniguchi, M. (1998). Discrimation and clustering for multivariate time series. Journal of the American Statistical Association, 93, 328–340.

    Article  Google Scholar 

  • Khan, J., Simon, R., Bittner, M., Chen, Y., Leighton, S. B., Pohida, T., et al. (1998). Gene expression profiling of alveolar rhabdomyosarcoma with cdna microarrays. Cancer Research, 58(22), 5009–5013.

    Google Scholar 

  • Kim, B. R., Zhang, L., Berg, A., Fan, J., & Wu, R. (2008). A computational approach to the functional clustering of periodic gene-expression profiles. Genetics, 180(2), 821–834.

    Article  Google Scholar 

  • Liao, T. W. (2005). Clustering of time series data: A survey. Pattern Recognition, 38(11), 1857–1874.

    Article  Google Scholar 

  • Luan, Y., & Li, H. (2004). Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data. Bioinformatics, 20(3), 332–339.

    Article  Google Scholar 

  • Maulik, U., & Bandyopadhyay, S. (2002). Performance evaluation of some clustering algorithms and validity indices. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(12), 1650–1654.

    Article  Google Scholar 

  • McLachlan, G. J., Peel, D., Basford, K. E., & Adams, P. (1999). The emmix software for the fitting of mixture of normal and t-components. Journal of Statistical Software, 4(2), 1–14.

    Article  Google Scholar 

  • Möller-Levet, C. S., Klawonn, F., Cho, K. H., Yin, H., & Wolkenhauer, O. (2005). Clustering of unevenly sampled gene expression time-series data. Fuzzy Sets and Systems, 152(1), 49–66.

    Article  Google Scholar 

  • Ng, S. K., McLachlan, G. J., Wang, K., Jones, L. B. T., & Ng, S. W. (2006). A mixture of model with random effect components for clustering correlated gene-expression profiles. Bioinformatics, 22(14), 1745–1752.

    Article  Google Scholar 

  • Peddada, S., Harris, S., Zajd, J., & Harvey, E. (2005). Oriogen: Order restricted inference for ordered gene expression data. Bioinformatics, 21(20), 3933–3934.

    Article  Google Scholar 

  • Ramoni, M. F., Sebastiani, P., & Kohane, I. S. (2002). Cluster analysis of gene expression dynamics. Proceedings of the National Academy of Sciences, 99(14), 9121–9126.

    Article  Google Scholar 

  • Schliep, A., Schönhuth, A., & Steinhoff, C. (2003). Using hidden markov models to analyze gene expression time course data. Bioinformatics, 19(suppl 1), i255–i263.

    Article  Google Scholar 

  • Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., et al. (1998). Comprehensive identification of cell cycle-regulated of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9(12), 3273–3297.

    Article  Google Scholar 

  • Storey, J. D., Xiao, W., Leef, J. T., Tompkins, R. G., & Davis, R. W. (2005). Significance analysis of time course microarray experiments. Proceedings of the National Academy of Sciences of the America, 102(36), 12,837–12,842.

    Article  Google Scholar 

  • Szekely, G. J., & Rizzo, M. L. (2005). Hierarchical clustering via joint between-within distances: Extending ward’s minimum variance method. Journal of Classification, 22(2), 151–183.

    Article  Google Scholar 

  • Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., et al. (1999). Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proceedings of the National Academy of Sciences, 96(6), 2907–2912.

    Article  Google Scholar 

  • Vilar, J. A., Alonso, A., & Vilar, J. M. (2010). Non-linear time series clustering based on non-parametric forecast densities. Computational Statistics and Data Analysis, 54, 2850–2865.

    Article  Google Scholar 

  • Vilar, J. M., Vilar, J. A., & Pertega, S. (2009). Classifying time series data: A nonparametric approach. Journal of Classification, 26, 3–28.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Academic Writing Center at Middle East Technical University for their writing consultation and editorial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Cinar.

Appendix

Appendix

Irigoien et al. (2011) proposed a method to cluster the time-course gene expression levels. This procedure involves several steps, where the gene profiles are first standardized, and then the genes are filtered out if they have dissimilar replicates or constant patterns. The distances are measured with Procrustes statistics. The default Irigoien procedure is their methodology with Procrustes statistics. Furthermore, they embed their Procrustes statistics in k-means and compare this method with usual k-means algorithms with Euclidean and correlation distances.

ORIOGEN is a Java-based software package used to cluster time-course gene expression profiles (Peddada et al. 2005). ORIOGEN requires candidate gene profiles such as increasing or cyclical profiles. Next, each individual gene is tested against each profile by obtaining a goodness-of-fit statistic. According to the goodness-of-fit statistics each gene is assigned to one pattern which constitutes the clusters at the end of the algorithm.

EMMIX is another piece of software proposed by McLachlan et al. (1999) to fit a mixture model of multivariate normal or t-distributed components. This process is done with the Maximum Likelihood method and the optimum likelihood is obtained using an Expectation-Maximization (EM) algorithm. Two parameters for random effects and mixture effects can be used to specify the initial step of the EM algorithm. These two parameters can also be specified such that they can determine the clusters in which the subjects are assigned.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cinar, O., Ilk, O. & Iyigun, C. Clustering of short time-course gene expression data with dissimilar replicates. Ann Oper Res 263, 405–428 (2018). https://doi.org/10.1007/s10479-017-2583-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2583-3

Keywords

Navigation