Skip to main content
Log in

On \(M^{X}/G(M/H)/1\) retrial system with vacation: service helpline performance measurement

  • Original Paper
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper analyzes an unreliable \(M^{X}/G(M/H)/1\) retrial system with vacation. We present closed-form expressions for the important performance indicators of the system, and derive the optimal vacation policies for minimizing the average waiting time of orbiting customers. The performance metrics relevant for helpline services are developed. Numerical experiments are conducted to examine the effect of vacation policy on the queue length and busy period of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. MAV policies are based on the number of vacations taken before the first caller arrives. The server takes vacation consecutively until at least one caller is found waiting in the system at the vacation completion instant given a maximum number of vacations allowed. If no caller is found in the system after the end of the last allowable vacation, server goes into idling and waits until one caller arrives. MAV policy is first proposed by Takagi (1991) and later by Ke and Chu (2006) and Ke (2007) who refer it as “modified vacation policy”.

References

  • Aissani, A. (2000). An \(M^{(x)}/G/1\) retrial queue with exhaustive vacations. Journal of Statistics and Management Systems, 3, 269–286.

    Article  Google Scholar 

  • Artalejo, J. R. (1997). Analysis of an \(M/G/1\) retrial queue with constant rate of repeated attempts and server vacations. Computers and Operations Research, 24, 493–504.

    Article  Google Scholar 

  • Artalejo, J. R. (1999a). A classified bibliography of research on retrial queues: progress in 1990–1999. TOP, 7(2), 187–211.

  • Artalejo, J. R. (1999b). Accessible biblography on retrial queues. Mathematical and Computer Modelling, 30, 1–6.

    Article  Google Scholar 

  • Artalejo, J. R., Falin, G. I., & Lopez-Herrero, M. J. (2002). A second order analysis of the waiting time in the \(M/G/1\) retrial queue. Asia-Pacific Journal of Operational Research, 19(2), 131–148.

    Google Scholar 

  • Artalejo, J. R., & Gomez-Corral, A. (2008). Retrial queueing systems: A computational approach. New York: Springer.

    Book  Google Scholar 

  • Atencia, I., Bouza, G., & Moreno, P. (2008). An \(M^{(x)}/G/1\) retrial queue with server breakdowns and constant rate of repeated attempts. Annals of Operations Research, 157, 225–243.

    Article  Google Scholar 

  • Chang, F. M., & Ke, J. C. (2009). On a batch retrial model with \(J\) vacation. Journal of Computational and Applied Mathematics, 232, 402–414.

    Article  Google Scholar 

  • Choi, B. D., Shin, Y. W., & Ahn, W. C. (1992). Retrial queues with collision arising from unslooted CSMA/CD Protocols. Queueing Systems, 11, 335–356.

    Article  Google Scholar 

  • Falin, G. (1990). A survey of retrial queues. Queueing Systems, 7, 127–168.

    Article  Google Scholar 

  • Falin, G. (2008). An \(M/M/1\) retrial queue with retrial due to server failures. Queueing Systems, 58(3), 155–160.

    Article  Google Scholar 

  • Falin, G. (2010). An \(M/G/1\) retrial queue with an unreliable server and general repair times. Performance Evaluation, 67(7), 569–582.

    Article  Google Scholar 

  • Falin, G., & Templeton, J. G. C. (1997). Retrial queues, monographs on statistics and applied probability. London: Chapman and Hall.

    Google Scholar 

  • Farahmand, K. (1990). Single line queue with repeated demands. Queueing Systems, 6, 223–228.

    Article  Google Scholar 

  • Fayolle, G. (1986) A simple telephone exchange with delayed feedbacks. In Teletraffic analysis and computer performance evaluation (pp. 245–253) Amsterdam: North Holland.

  • Ke, J. C. (2003). Optimal strategy policy in batch arrival queue with server breakdowns and multiple vacations. Mathematical Methods of Operations Research, 58, 41–56.

    Article  Google Scholar 

  • Ke, J. C. (2006). An \(M/G/1\) queue under hysteretic vacation policy with an early startup and unreliable server. Mathematical Methods of Operations Research, 63, 357–369.

    Article  Google Scholar 

  • Ke, J. C. (2007). Batch arrival queues under vacation policies with server breakdowns and startup/closedown times. Applied Mathematical Modelling, 31, 1282–1292.

    Article  Google Scholar 

  • Ke, J. C., & Chu, Y. K. (2006). A modified vacation model \(M^{(x)}/G/1\) system. Applied Stochastic Models in Business and Industry, 22, 1–16.

    Article  Google Scholar 

  • Krishna Kumar, B., Arivudainambi, D., & Vijayakumar, A. (2002). On the \(M^{(x)}/G/1\) retrial queue with Bernoulli schedules and general retrial times. Asia-Pacific Journal of Operational Research, 19(2), 177–194.

    Google Scholar 

  • Kulkarni, V. G., & Choi, B. D. (1990). Retrial queues with server subject to breakdowns and repairs. Queueing Systems, 7, 191–208.

    Article  Google Scholar 

  • Li, Q., Ying, Y., & Zhao, Y. Q. (2006). A \(BMAP/G/1\) retrial queue with a server subject to breakdowns and repairs. Annals of Operations Research, 141, 233–270.

    Article  Google Scholar 

  • Li, H., & Zhao, Y. Q. (2005). A retrial queue with constant retrial rate, server downs and impatient customers. Stochastic Models, 21, 531–550.

    Article  Google Scholar 

  • Senott, L. I., Humblet, R. L., & Tweedie, R. L. (1983). Mean drifts and non-ergodicity of Markov chain. Operations Research, 31, 783–789.

    Article  Google Scholar 

  • Senthilkumar, M., & Arumuganathan, R. (2008). On the single server batch arrival retrial queue with general vacation time under Bernoulli schedule and two phases of heterogeneous service. Quality Technology and Quantitative Management, 5(2), 145–160.

    Article  Google Scholar 

  • Song, J. S. (1994). The effect of leadtime uncertainty in a simple stochastic inventory model. Management Science, 40(5), 603–613.

    Article  Google Scholar 

  • Takagi, H. (1991). Queueing analysis: Vacation and priority systems. Amsterdam: North-Holland, Elsevier.

    Google Scholar 

  • Tang, Y. H. (1997). A single server \(M/G/1\) queueing system subject to breakdowns—some reliability and queueing problem. Microelectronics and Reliability, 37, 315–321.

    Article  Google Scholar 

  • Tian, N. S., & Zhang, Z. G. (2006). Vacation queueing models. New York: Springer.

    Google Scholar 

  • Wang, J., Cao, J., & Li, Q. (2001). Reliability analysis of the retrial queue with server breakdowns and repairs. Queueing Systems, 38(4), 363–380.

    Article  Google Scholar 

  • Yang, T., & Li, H. (1994). The M/G/1 retrial queue with the server subject to starting failures. Queueing Systems, 16, 83–96.

    Article  Google Scholar 

  • Yang, T., & Templeton, J. G. C. (1987). A survey of retrial queues. Queueing Systems, 2, 201–233.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wee Meng Yeo.

Appendix

Appendix

Notations

Meaning

\(\mathcal {P}\)

Vacation policy

\(M^{X}/G/1\)

Batch-arrival, general service-time queue

\(M^{X}/G(M/H)/1\)

Unreliable batch-arrival, general service and repair-time after Markovian breakdown

\(\mathcal {F}_j\)

Maximum allowable vacations to be taken is j

\(\mathcal {S}\)

Single-vacation policy, i.e., \(j=1\)

\(\mathcal {M}\)

Multiple-vacation policy, i.e., \(j\rightarrow \infty \)

\(Q^{\mathcal {P}}(t)\)

Transient number of callers both in service and in orbit under \(\mathcal {P}\) and at t

\(O^{\mathcal {P}}(t)\)

Transient number of callers in orbit under \(\mathcal {P}\) and at t

\(I^{\mathcal {P}}(t)\)

Transient number of callers in service under \(\mathcal {P}\) and at t

\(Q^{\mathcal {F}_j}(z)\)

p.g.f of the system size at arbitrary epoch

\(V^i_{-}(t)\)

Elapsed \(i^{\text {th}}\) vacation time at t

\(X^i_{-}(t)\)

Elapsed \(i^{\text {th}}\) service time at t

\(R^i_{-}(t)\)

Elapsed \(i^{\text {th}}\) repair time at t

\(C(t)(=\nu , 0,1,2)\)

State of the server at t, i.e., vacation, idle, busy or repair

\(L^{(k)}\)

k-busy period for the \(M^X/G(M/H)/1\) retrial system without vacation

\(L^{\mathcal {P}}\)

Busy period of \(M^X/G(M/H)/1\) under \(\mathcal {P}\) and \(L^{\mathcal {P}}=L_0^{\mathcal {P}}+L_w^{\mathcal {P}}+L_r^{\mathcal {P}}\), where

\(L_0^{\mathcal {P}}\)

Server-waiting time for the next busy epoch under \(L^{\mathcal {P}}\)

\(L_1^{\mathcal {P}}\)

Generalized working length under \(\mathcal {P}\) (\(L_1^{\mathcal {P}}=L_w^{\mathcal {P}}+L_r^{\mathcal {P}}\))

\(L_w^{\mathcal {P}}\)

Value-adding or working length under \(L^{\mathcal {P}}\)

\(L_r^{\mathcal {P}}\)

Repair length during \(L^{\mathcal {P}}\)

\(L_0^{(k)}\)

Server-waiting time for the next busy epoch under \(L^{(k)}\)

\(L_1^{(k)}\)

Generalized working length under k-busy period (\(L_1^{(k)}=L_w^{(k)}+L_r^{(k)}\))

\(L_w^{(k)}\)

Value-adding or working length under \(L^{(k)}\)

\(L_r^{(k)}\)

Repair length during \(L^{(k)}\)

I(t)

Number of services completed at time t

\(\omega (t)\)

The elapsed service time of the work at time t

Proof of Lemma 1

(i) The first part is to compute the p.g.f left by a departing caller. We divide our proofs into two cases.

Case 1 Given that \(Q_n=0\), the server goes into vacation immediately at \(S_n\) because it finds that the orbit is empty. Two events may happen, \(\{Q_n=0,\overline{\nu }=0\}\) and \(\{Q_n=0,\overline{\nu }>0\}\). On the event \(\{Q_n=0,\overline{\nu }=0\}\), we must have \(Q_{n+1}=X-1+M_{n+1}\). On the other hand, for the event \(\{Q_n=0,\overline{\nu }=i\}\) for \(i\ge 1\), we have

$$\begin{aligned} Q_{n+1}= & {} \left\{ \begin{array}{ll} i+M_{n+1}-1 &{}\quad \text{ w.p }\,\frac{\theta }{\lambda +\theta } \\ i+M_{n+1}-1+X &{}\quad \text{ w.p }\,\frac{\lambda }{\lambda +\theta }. \end{array} \right. \\ P\{Q_{n+1}= & {} k|Q_n=0,\overline{\nu }=i\} {=} \left\{ \begin{array}{ll} \sum _{l=1}^{k+1}c_l m_{n+1,k-l+1} &{}\quad \text{ if }\,i=0 \\ \frac{\lambda }{\lambda +\theta }\sum _{j=1}^{k-i+1}m_{n+1,k-j-i+1}c_j {+}\frac{\theta }{\lambda +\theta }m_{n+1,k-i+1}&{} \quad \text{ if }\,i\!\ge \! 1. \end{array} \right. \end{aligned}$$

Thus, we have

$$\begin{aligned} p_{0k}&=\sum _{i=0}^{\infty }P\{Q_{n+1}=k|Q_n=0,\overline{\nu }=i\} P\{\overline{\nu }=i|Q_n=0\}\nonumber \\&=\widetilde{V}(\lambda )^j\sum _{l=1}^{k+1}c_l m_{n+1,k-l+1}\nonumber \\&\quad +\sum _{i=1}^{k+1}\left\{ \frac{\lambda }{\lambda +\theta } \sum _{j=1}^{k-i+1}m_{n+1,k-j-i+1}c_j+\frac{\theta }{\lambda +\theta } m_{n+1,k-i+1}\right\} \overline{\nu }_i. \end{aligned}$$
(16)

Case 2 For \(Q_n\ge 1\), then we have similar argument. There are two types of customers that competes when \(Q_n\ge 1\). One is the arrival of a new batch of customer, while the other is the random customer from the orbit. On \(\{Q_n=i\}\), where \(i\ge 1\), we have

$$\begin{aligned} Q_{n+1} = \left\{ \begin{array}{ll} i+M_{n+1}+X-1 &{} \quad \text{ w.p }\,\frac{\lambda }{\lambda +\theta } \\ i+M_{n+1}-1 &{} \quad \text{ w.p }\,\frac{\theta }{\lambda +\theta }. \end{array} \right. \end{aligned}$$

Thus, we have for \(k\ge i\),

$$\begin{aligned} p_{ik}=\frac{\lambda }{\lambda +\theta } \sum _{j=1}^{k-i+1} c_j m_{n+1,k-i+1-j} +\frac{\theta }{\lambda +\theta }m_{n+1,k-i+1}. \end{aligned}$$
(17)

We want to compute the steady state distribution of the system size immediately after departure epoches. Since \(\{Q_n:n\in \mathbf N \}\) constitutes a Markov chain, we can compute its steady state by using \(\pi \mathbf P =\pi \) and \(\pi 1=1\). \(\mathbf P =[p_{ij}]\) is the transition matrix of the embedded Markov Chain \(\{Q_n\}\) and \(\pi =(\pi _0,\pi _1 \pi _2\ldots )\), where \(\pi _k\) is the long run fraction when a departing customer leaves behind k customers in the system. Let \(Q^{\mathcal {F}_j}_{+}(z)\) be the p.g.f of the system size that is left behind by a departing customer, then \(Q^{\mathcal {F}_j}_{+}(z)=\sum _{k=0}^{\infty }\pi _kz^k\). Using (2), (3) and definition of \(Q^{\mathcal {F}_j}_{+}(z)\), we have after some tedious algebraic manipulation,

$$\begin{aligned} Q^{\mathcal {F}_j}_{+}(z)=\pi _0 \frac{\{(1-\zeta _j(z))(\lambda X(z)+\theta )+\theta \widetilde{V}(\lambda )^j(1-X(z))\}\widetilde{H}(\lambda -\lambda X(z))}{(\lambda X(z)+\theta )\widetilde{H}(\lambda -\lambda X(z))-(\lambda +\theta )z}. \end{aligned}$$
(18)

From the normalization condition, \(Q^{\mathcal {F}_j}_{+}(1)=1\), we can find the constant \(\pi _0\). Using (18) and L’Hospital rule, we obtain

$$\begin{aligned}&\lim _{z\rightarrow 1^-}\Pi (z)=\pi _0\left\{ \frac{\lambda \gamma _1\left[ \frac{1-\widetilde{V}(\lambda )^j}{1-\widetilde{V}(\lambda )}{} { EV}+\frac{\theta V(\lambda )^j}{\lambda (\lambda +\theta )}\right] }{1-\kappa (\theta )}\right\} =1\\&\Leftrightarrow \pi _0= \frac{1-\kappa (\theta )}{\lambda \gamma _1\left[ \frac{1-\widetilde{V}(\lambda )^j}{1-\widetilde{V}(\lambda )}{} { EV}+\frac{\theta V(\lambda )^j}{\lambda (\lambda +\theta )}\right] }. \end{aligned}$$

Using (1) and (18), we obtain the p.g.f of the queue length left by a departing customer is given in the main paper.

(ii) (Sufficiency) The sufficiency of the ergodicity result can be shown using Pake’s Lemma which is the statement as follows. If we have \(Q(x)\ge 0\), and for all x, there exist \(\epsilon >0\) such that \(E(Q_{t+1}-Q_t|Q_t=x)\le -\epsilon <0\) for all x except on a finite set C, then \(\{Q_n\}\) is positive recurrent. To show sufficiency of our ergodicity result given any i and \(\kappa (\theta )<1\), we choose \(\epsilon =\frac{1}{2}(1-\kappa (\theta ))>0\). Due to the recursive structure of the embedded sequence \(\{Q_n:n\in \mathbf N \}\), we apply Pake’s lemma as follows. The mean drift \(y_i=E[Q_{n+1}-Q_n|Q_n=i]\) is calculated as follows.

$$\begin{aligned} y_i= & {} \frac{\theta }{\theta +\lambda } E[M_{n+1}-1]+\frac{\lambda }{\theta +\lambda }E [X+M_{n+1}-1]\\= & {} EM_{n+1}-1+\frac{\lambda }{\theta +\lambda }\gamma _1=\lambda \gamma _1 EH-1+\frac{\lambda }{\theta +\lambda }\gamma _1. \end{aligned}$$

Then, we have \(y_i=-2\epsilon \), implying \(y_i<-\epsilon \) for all states except for a finite number of states. Therefore, \(\kappa (\theta )<1\) is sufficient for the embedded chain to be ergodic. The necessary condition readily follows from Kaplan’s condition [see Senott et al. (1983)], namely \(y_i<\infty \) for all \(i\ge 0\) and there exists \(i_0\in \mathbf Z ^+\) such that \(y_i\ge 0\) for all \(i\ge i_0\). \(\square \)

Proof of Theorem 1

We define the generating functions

$$\begin{aligned}&\omega _{\nu ,i}(z,x)=\sum _{k=0}^{\infty } \omega _{\nu ,k,i}(x)z^k;\omega _{0}(z)=\sum _{k=0}^{\infty } \omega _{0,k}(x)z^k;\\&\omega _{1}(z,x)=\sum _{k=0}^{\infty } \omega _{1,k}(x)z^k; \omega _{0}(z,y,x)=\sum _{k=0}^{\infty } \omega _{2,k}(x,y)z^k. \end{aligned}$$

For notational parsimony, we omit the superscript \(\mathcal {F}_j\) in the following discussion. Using the technique of supplementary variables, we obtain the following system of equations for \(x\ge 0, y\ge 0, k\ge 0\):

$$\begin{aligned}&\displaystyle \left[ \frac{d}{dx}+\lambda +\overline{\nu }(x)\right] \omega _{\nu ,k,i}(x)=\lambda \sum _{l=1}^kc_j\omega _{\nu ,k-l,i}(x),\quad 1\le i\le j\end{aligned}$$
(19)
$$\begin{aligned}&\displaystyle \left[ \frac{d}{dx}+\lambda +\overline{b}(x)+\alpha \right] \omega _{1,k}(x)=\lambda \sum _{l=1}^k c_j\omega _{1,k-l}(x)+\int _0^{\infty }\omega _{2,k}(x,y)\overline{r}(y)dy\end{aligned}$$
(20)
$$\begin{aligned}&\displaystyle \left[ \frac{d}{dx}+\lambda +\overline{r}(x)\right] \omega _{2,k}(x,y)=\lambda \sum _{l=1}^k c_j\omega _{2,k-l}(x,y). \end{aligned}$$
(21)

For \(k\ge 1\), we have

$$\begin{aligned}&\displaystyle (\lambda +\theta )\omega _{0,k}=\int _0^{\infty } \omega _{1,k}(x)\overline{b}(x)dx+\sum _{i=1}^j\int _0^{\infty } \omega _{\nu ,k,i}(x)\overline{\nu }(x)dx \end{aligned}$$
(22)
$$\begin{aligned}&\displaystyle \lambda \omega _{0,0}=\int _0^{\infty }\overline{\nu }(x)\omega _{\nu ,0,j}(x)dx. \end{aligned}$$
(23)

These equations are to be solved under the boundary conditions:

$$\begin{aligned}&\displaystyle \omega _{\nu ,0,1}(0)=\int _{0}^{\infty }\omega _{1,0}(x)\overline{b}(x)dx \end{aligned}$$
(24)
$$\begin{aligned}&\displaystyle \omega _{\nu ,0,i}(0)=\int _{0}^{\infty }\omega _{\nu ,0,i-1}(x)\overline{\nu }(x)dx, 2\le i\le j \end{aligned}$$
(25)
$$\begin{aligned}&\displaystyle \omega _{\nu ,k,i}(0)=0, \quad k\ge 1, 1\le i\le j \end{aligned}$$
(26)
$$\begin{aligned}&\displaystyle \omega _{1,k}(0)=\lambda \sum _{j=1}^{k+1}c_j \omega _{0,k-j+1}+\theta \omega _{0,k+1}, \quad k\ge 0 \end{aligned}$$
(27)
$$\begin{aligned}&\displaystyle \omega _{2,k}(x,0)=\alpha \omega _{1,k}(x),\quad k\ge 0. \end{aligned}$$
(28)

The normalizing condition is

$$\begin{aligned} \sum _{k=0}^{\infty }\left[ \sum _{i=1}^{j} \int _0^{\infty } \omega _{\nu ,k,i}(x) dx +\omega _{0,k}+\int _0^{\infty }\omega _{1,k}(x)dx +\int _0^{\infty }\int _0^{\infty }\omega _{2,k}(x,y)dydx\right] =1. \end{aligned}$$
(29)

Using generating functions, we can express system of equations to be

$$\begin{aligned}&\left[ \frac{d}{dx}+\lambda -\lambda X(z)+\overline{\nu }(x)\right] \omega _{\nu ,i}(z,x)=0, \quad 1\le i\le j \end{aligned}$$
(30)
$$\begin{aligned}&\left[ \frac{d}{dx}+\lambda -\lambda X(z)+\overline{b}(x)+\alpha \right] \omega _{1}(z,x)=\int _0^{\infty }\omega _{2}(z,y,x)\overline{r}(y)dy \end{aligned}$$
(31)
$$\begin{aligned}&\left[ \frac{d}{dy}+\lambda -\lambda X(z)+\overline{r}(y)\right] \omega _{2}(z,y,x)=0. \end{aligned}$$
(32)
$$\begin{aligned}&\sum _{i=1}^j \omega _{\nu ,0,i}(0)+(\lambda +\theta )\omega _{0}(z)-\theta \omega _{0,0}\nonumber \\&\quad =\int _0^{\infty }\omega _1(z,x)\overline{b}(x)dx+\sum _{i=1}^j\int _0^{\infty }\overline{\nu }(x)\omega _{\nu ,i}(z,x)dx. \end{aligned}$$
(33)

The boundary conditions can be expressed as

$$\begin{aligned}&\displaystyle \omega _{\nu ,i}(z,0)=\omega _{\nu ,0,i}(0), \quad 1\le i\le j\end{aligned}$$
(34)
$$\begin{aligned}&\displaystyle z\omega _{1}(z,0)=(\lambda X(z)+\theta )\omega _0(z)-\theta \omega _{0,0}\end{aligned}$$
(35)
$$\begin{aligned}&\displaystyle \omega _2(z,0,x)=\alpha \omega _1(z,x). \end{aligned}$$
(36)

To show \(\omega ^{\mathcal {F}_j}_{\nu ,i}(z,x)\), (30) implies that

$$\begin{aligned} \omega _{\nu ,i}(z,x)=\omega _{\nu ,i}(z,0)[1-V(x)]e^{-(\lambda -\lambda X(z))x}. \end{aligned}$$

Next, (26), we have \(\omega _{\nu ,i}(z,0)=\omega _{\nu ,0,i}(0)\). Using this, we have \(\omega _{\nu ,0,i}(x)=\omega _{i}(0,x)=\omega _{\nu ,0,i}(0)[1-V(x)]e^{-\lambda x}\). Combining it with (25), we have \(\omega _{\nu ,0,i}(0)=\omega _{\nu ,0,i-1}(0)\widetilde{V}(\lambda )\). Recursively, we obtain for \(1\le i\le j\),

$$\begin{aligned} \omega _{\nu ,i}(z,x)=\omega _{\nu ,0,1}(0)\widetilde{V}(\lambda )^{i-1}[1-V(x)] e^{-(\lambda -\lambda X(z))x}. \end{aligned}$$
(37)

In particular, we get

$$\begin{aligned} \sum _{i=0}^j \omega _{\nu ,0,i}(0)=g_j(\lambda ) \omega _{\nu ,0,1}(0); \lambda \omega _{0,0}=\omega _{\nu ,0,1}(0)\widetilde{V}(\lambda )^j. \end{aligned}$$
(38)

Next, (32) implies

$$\begin{aligned} \omega _{2}(z,y,x)=\omega _2(z,0,x)[1-R(y)]e^{-(\lambda -\lambda X(z))y}. \end{aligned}$$
(39)

Using both (39) and (36), we get the expression in (6). Substituting (39) into (31), we obtain the following:

$$\begin{aligned} \left[ \frac{d}{dx}+\lambda -\lambda X(z)+\overline{b}(x)+\alpha -\alpha \widetilde{R}(\lambda -\lambda X(z))\right] \omega _{1}(z,x)&=0. \end{aligned}$$
(40)

From (40), we get \(\omega _1(z,x)=\omega _1(z,0)[1-B(x)]e^{(\lambda -\lambda X(z)+\alpha -\alpha \widetilde{R}(\lambda -\lambda X(z)))x}\). We substitute \(\omega _1(z,x)\),(35), (37), and (38) into (33), we get

$$\begin{aligned} \omega _{\nu ,0,1}(0)g_j(\lambda )+(\lambda +\theta )\omega _0(z)&=\frac{\theta }{\lambda }\widetilde{V}(\lambda )^j\omega _{\nu ,0,1}(0)\nonumber \\&\quad +\frac{1}{z}[(\lambda X(z)+\theta )\omega _0(z)-\frac{\theta }{\lambda } \widetilde{V}(\lambda )^j\omega _{\nu ,0,1}(0)] \end{aligned}$$
(41)

After some re-arranging, we obtain

$$\begin{aligned} \omega ^{\mathcal {F}_j}_0(z)&=\omega _{\nu ,0,1}(0)\frac{ \{\frac{\theta \widetilde{V}(\lambda )^j}{\lambda }[\widetilde{H} (\lambda -\lambda X(z))-z]+z[1-\widetilde{V}(\lambda -\lambda X(z))]g_j(\lambda )\}}{[(\lambda X(z)+\theta )\widetilde{H} (\lambda -\lambda X(z))-(\lambda +\theta )z]} \end{aligned}$$
(42)

Next using (35) and (42), we have

$$\begin{aligned} \omega _1(z,x)&=\omega _{\nu ,0,1}(0)\left( \frac{[1-\widetilde{V}(\lambda -\lambda X(z))](\lambda X(z)+\theta )g_j(y) +\theta \widetilde{V}(\lambda )^j [1-X(z)]}{(\lambda X(z)+\theta )\widetilde{H}(\lambda X(z)+\theta )-(\lambda +\theta )z}\right) \nonumber \\&\quad \times [1-B(x)]e^{(\lambda -\lambda X(z)+\alpha -\alpha \widetilde{R}(\lambda -\lambda X(z)))x}. \end{aligned}$$
(43)

Integrating (43) w.r.t x, we obtain

$$\begin{aligned} \omega _1(z)&=\omega _{\nu ,0,1}(0)\left( \frac{[1-\widetilde{V}(\lambda -\lambda X(z))](\lambda X(z)+\theta )g_j(y) +\theta \widetilde{V}(\lambda )^j [1-X(z)]}{(\lambda X(z)+\theta )\widetilde{H}(\lambda X(z)+\theta )-(\lambda +\theta )z}\right) \nonumber \\&\quad \times \frac{1-\widetilde{H} (\lambda -\lambda X(z))}{\lambda -\lambda X(z)}. \end{aligned}$$
(44)

Thus, we can obtain \(\omega _2(z)=\alpha \omega _1(z)\frac{1-\widetilde{R}(\lambda -\lambda X(z))}{\lambda -\lambda X(z)}\). From the normalizing condition in (29), we have \(\sum _{i=1}^j\omega _{\nu ,i}(1)+\omega _{0}(1)+\omega _1(1)+\omega _2(1)=1\), and after some tedious algebra, we get \(\omega _{\nu ,0,1}(0)=C_j(\theta )\). \(\square \)

Proof of Corollary 1

We only show (i) as the rest are similar. From Theorem 1, we consider \(\omega ^{\mathcal {F}_j}_{\nu }(1)=\lim _{z\rightarrow 1^-}C_j(\theta )g_j(\lambda )\left( \frac{1-\widetilde{V}(\lambda -\lambda X(z))}{\lambda -\lambda X(z)}\right) \) and applying L’Hospital rule, we obtain \(\omega ^{\mathcal {F}_j}_{\nu }(1)=C_j(\theta )g_j(\lambda ){ EV} =\frac{[1-\kappa (\theta )]g_j(\lambda ){ EV}}{g_j(\lambda ){ EV}+\frac{\theta \widetilde{V}(\lambda )^j}{\lambda (\lambda +\theta )}}< 1\). It is ready to verify that \(\omega ^{\mathcal {F}_j}_{\nu }(1)+\omega ^{\mathcal {F}_j}_0(1)+\omega ^{\mathcal {F}_j}_1(1)+\omega ^{\mathcal {F}_j}_2(1)=1\). \(\square \)

Proof of Corollary 2

Let \(O^{\mathcal {F}_j}(z)\) and \(Q^{\mathcal {F}_j}(z)\) be the p.g.f for the number of callers in orbit and system respectively. In order to prove the results for (i) and (ii), they follow easily from the fact that \(O^{\mathcal {F}_j}(z)=\omega ^{\mathcal {F}_j}_{\nu }(z)+\omega ^{\mathcal {F}_j}_0(z)+\omega ^{\mathcal {F}_j}_1(z)+\omega ^{\mathcal {F}_j}_2(z)\) and \(Q^{\mathcal {F}_j}(z)=\omega ^{\mathcal {F}_j}_{\nu }(z)+\omega ^{\mathcal {F}_j}_0(z)+z(\omega ^{\mathcal {F}_j}_1(z)+\omega ^{\mathcal {F}_j}_2(z))\). \(\square \)

Proof of Theorem 2

We want to show that the p.g.f for the number of customers in the orbit can be written as the sum of three random variables. Let M be the orbit size of the system based on constant retrial policy. First, we observe that Atencia et al. (2008, Theorem 3) has shown that \(N_R=N_0+M\). Finally the p.g.f for \(N^{\mathcal {F}_j}(z)\) allows us to conclude that \(N_{\nu }^{\mathcal {F}_j}=N^{\mathcal {F}_j}+N_0+M\). \(\square \)

Proof of Corollary 7

We have \(EC^{\mathcal {P}}_{\nu }=EL^{\mathcal {P}}+E\zeta _{\nu }^{\mathcal {P}}\) and using results in Theorem 4 and Corollary 6, we have the required result. \(\square \)

Proof of Lemma 2

To show Lemma 2, we consider the following. Denote \(m_n(s)=P\{M=n,\tau _s>H\}\). For any \(k\ge 1\), we have \(\pi _{n,1}^{(k)}(s)=m_{n-k+1}(s)\) and for \(i\ge 2\),

$$\begin{aligned} \pi _{n,i}^{(k)}(s)\!=\!\sum _{j=1}^n \pi _{n,i-1}^{(k)}(s)\sum _{l=1}^{n-j+1}\frac{\lambda c_l}{s+\lambda +\theta }m_{n-j-l+1}(s)\!+\!\sum _{j=1}^{n+1}\pi ^{(k)}_{j,i-1}(s) \frac{\theta }{s+\lambda +\theta }m_{n-j+1}(s). \end{aligned}$$

Finally, the proof is completed by showing that \(\sum _{n=0}^{\infty }m_n(s)z^n=\widetilde{H}(s+\lambda -\lambda X(z))\). \(\square \)

For ease of exposition, we define \(F(s,z,y,x)=(s+\lambda +\theta )-\frac{y}{z}(\lambda X(z)+\theta )\widetilde{H}(s+\lambda -\lambda X(z))\).

1.1 Proof of Theorem 3

The proof of Theorem 3 requires two further lemmas, i.e., Lemma 5 and Lemma 6. These results allow us to compute the working and server-waiting length of the k-busy period. Finally, we obtain \(EL^{(k)}\) which agrees with Atencia et al. (2008) who use the technique of supplementary variables.

Lemma 5

The generating function \(\varphi _0^{(k)}(s,z,y)\) satisfies the functional equation

$$\begin{aligned} F(s,z,y,x)\varphi _0^{(k)}(s,z,y)=yz^{k-1}\widetilde{H}(s+\lambda -\lambda X(z)). \end{aligned}$$
(45)

Proof

Using the fact that \(s\varphi ^{(k)}_{0ni}(s)=P\{L^{(k)}>\tau _s,C(\tau _s)=0,Q(\tau _s)=n,I(\tau _s)=i\}=\frac{s}{s+\lambda +\theta }\pi _{ni}^{(k)}(s).\) Thus, we have \(\varphi ^{(k)}_{0ni}(s)= \frac{\pi _{ni}^{(k)}(s)}{s+\lambda +\theta }\). The result follows from (9) since \(\varphi _{0}^{(k)}(s,z,y)=\frac{f^{(k)}(s,z,y)}{s+\lambda +\theta }\). \(\square \)

Lemma 6

The generating function \(\varphi _1^{(k)}(s,z,y,x)\) satisfies the functional equation

$$\begin{aligned} \varphi _1^{(k)}(s,z,y,x)&=(1-H(x))e^{-(s+\lambda -\lambda X(z))x}\nonumber \\&\quad \times \left[ z^{k-1}+\frac{1}{z}(\lambda X(z)+\theta )\varphi _0^{(k)}(s,z,y)\right] . \end{aligned}$$
(46)

In addition, we have

$$\begin{aligned} \int _0^{\infty } \varphi _1^{(k)}(s,z,y,x)dx&=\frac{1-\widetilde{H}(s+\lambda -\lambda X(z))}{s+\lambda -\lambda X(z)}\nonumber \\&\quad \times \left[ z^{k-1}+\frac{1}{z}(\lambda X(z)+\theta )\varphi _0^{(k)}(s,z,y)\right] . \end{aligned}$$
(47)

Proof

Observe that \(s\varphi _{1ni}^{(k)}(s,x)=P\{L^{(k)}>\tau _s,C(\tau _s)=1,\omega (\tau _s)\in (x,x+dx),Q(\tau _s)=n,I(\tau _s)=i\}\). Following the arguments in Falin and Templeton (1997) or Artalejo et al. (2002), we obtain

$$\begin{aligned} \varphi _{1n0}^{(k)}(s,x)&=[1-H(x)]e^{-sx}\sum _{r=1}^{n-k+1}e^{-\lambda x}\frac{(\lambda x)^r}{r!}P\{X_1+\cdots +X_r=n-k+1\}\\ \varphi ^{(k)}_{1ni}(s,x)&=[1-H(x)]e^{-sx}\\&\quad \times \left\{ \sum _{j=1}^n\pi _{ji}^{(k)}(s)\sum _{l=1}^{n-j+1}\frac{\lambda c_l}{s+\lambda +\theta }\sum _{r=1}^{n-j+1-l}e^{-\lambda x}\frac{(\lambda x)^r}{r!}P\left( \sum _{t=1}^r X_t{=}n-j{+}1{-}l\right) \right. \\&\quad \left. +\sum _{j=1}^{n+1}\pi _{ji}^{(k)}(s)\frac{\theta }{s+\lambda +\theta }\sum _{r=1}^{n-j+1}e^{-\lambda x}\frac{(\lambda x)^r}{r!}P\left( \sum _{t=1}^r X_t=n-j+1\right) \right\} . \end{aligned}$$

The result follows from the definition of \(\varphi _1^{(k)}(s,z,y,x)\) after tedious algebraic manipulations. Finally, (47) follows from integrating (46) w.r.t x. \(\square \)

Proof of Theorem 3

In order to compute \(L_0^{(k)}\), we need to compute \(\lim _{z\rightarrow 1^-}\varphi (0,z,1)\). Let \(s=0, y=1\) into (45), we obtain

$$\begin{aligned} \left[ (\lambda +\theta )-\frac{1}{z}(\lambda X(z)+\theta )\widetilde{H}(\lambda -\lambda X(z))\right] \varphi _0^{(k)}(0,z,1)=z^{k-1}\widetilde{H}(\lambda -\lambda X(z)). \end{aligned}$$

Differentiating the above equation w.r.t z and letting \(z\rightarrow 1\), we obtain the desired result for \(L^{(k)}_0\). The expected generalized working length of the k-busy period is given by \(\lim _{z\rightarrow 1-}\int _0^{\infty }\varphi _1^{(k)}(0,z,1,x)dx\). Note that \(\lim _{z\rightarrow 1^-}\frac{1-\widetilde{H}(\lambda -\lambda X(z))}{\lambda -\lambda X(z)}=EH\). \(\square \)

Proof of Corollary 4

The proof is immediate from Theorem 3 and the fact that \(EH=EB(1+\alpha ER)\). \(\square \)

1.2 Proof of Theorem 4

To prove Theorem 4, we shall begin with a preliminary lemma.

Lemma 7

The generating functions \(\psi _0(s,z,y)\) and \(\psi _1(s,z,y,x)\) satisfy the functional equations

$$\begin{aligned} F(s,z,y,x)\psi _0(s,z,y)&=\frac{y}{z}\left\{ \zeta _j(z)\left( \frac{\lambda X(z)+\theta }{\lambda +\theta }\right) +\frac{\theta }{\lambda +\theta } \widetilde{V}(\lambda )^j[X(z)-1]\right\} \\&\quad \times \widetilde{H}(s+\lambda -\lambda X(z)). \end{aligned}$$
$$\begin{aligned} \psi _1(s,z,y,x)&=(1-H(x))e^{-(s+\lambda -\lambda X(z))x}\frac{1}{z}\nonumber \\&\quad \times \left( \left\{ \zeta _j(z)\left( \frac{\lambda X(z)+\theta }{\lambda +\theta }\right) +\frac{\theta }{\lambda +\theta }\widetilde{V}(\lambda )^j[X(z)-1]\right\} \nonumber \right. \\&\quad \left. +\,\,(\lambda X(z)+\theta )\psi _0(s,z,y)\right) . \end{aligned}$$
(48)

Proof

The results follow from applying Lemmas 5 and 6.

Proof of Theorem 4

From Lemma 48, we let \(s=0, y=1\), we have

$$\begin{aligned}&\left[ (\lambda +\theta )-\frac{1}{z}(\lambda X(z)+\theta )\widetilde{H}(\lambda -\lambda X(z))\right] \varphi _0(0,z,1)\\&\quad =\frac{\zeta (z)}{z}\left( \frac{\lambda X(z)+\theta }{\lambda +\theta }\right) \widetilde{H}(\lambda -\lambda X(z)). \end{aligned}$$

Differentiate the above equation w.r.t z and let z approach 1, we obtain \(L_0^{\mathcal {F}_j}\). Combining with (1), \(L_1^{\mathcal {F}_j}\) is obtained by using \(\lim _{z\rightarrow 1^-}\int _0^{\infty }\varphi (0,z,1,x)dx\). Finally, \(EL^{\mathcal {M}}=\varphi (0,1,1)+\lim _{z\rightarrow 1^-}\int _0^{\infty }\varphi (0,z,1,x)dx\).

Proof of Lemma 4

To see this, we apply Theorem 4 and after some re-arranging, we have

$$\begin{aligned} { EL}^{\mathcal {F}_j}=-\frac{1}{\lambda +\theta }+\left[ \widetilde{V}(\lambda )^j \left( \frac{\theta }{\lambda (\lambda +\theta )} -\frac{{ EV}}{1-\widetilde{V}(\lambda )}\right) + \frac{{ EV}}{1-\widetilde{V}(\lambda )}\right] \frac{\kappa (\theta )}{1-\kappa (\theta )}. \end{aligned}$$

Given that \(\widetilde{V}(\lambda )\ge 0\), \(\widetilde{V}(\lambda )^j\) is always increasing function in j. It is easy to see that the sign of \(\frac{\theta }{\lambda (\lambda +\theta )}-\frac{{ EV}}{1-\widetilde{V}(\lambda )}\) determines the if \(EL^{\mathcal {F}_j}\) is increasing or decreasing. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeo, W.M., Yuan, XM. & Low, J.M.W. On \(M^{X}/G(M/H)/1\) retrial system with vacation: service helpline performance measurement. Ann Oper Res 248, 553–578 (2017). https://doi.org/10.1007/s10479-016-2207-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2207-3

Keywords

Navigation