Skip to main content
Log in

Risk-pooling strategy, lead time, delivery reliability and inventory control decisions in a stochastic multi-objective supply chain network design

  • Original Paper
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A three-echelon supply chain network design is considered and a multi-objective mixed integer non-linear problem is modeled. Risk-pooling, lead time between facilities and the concept of the reliability are used to modeling. The objectives of the model are minimization of the supply chain’s total cost and maximization the delivery reliability, which can be equal to minimize the risk of not delivering the products with regard to stochastic demand. To solve the model a heuristic hierarchical algorithm is presented. Numerical examples are considered to test and verify the Pareto front. The results show the effectiveness and efficiency of the heuristic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aarts, E. H. L., & Laarhoven, P. J. M. V. (1985). Statistical cooling: A general approach to combinatorial optimization problems. Philips Journal of Research, 40(4), 193–226.

  • Azaron, A., Brown, K. N., Tarim, S. A., & Modarres, M. (2008). A multi-objective stochastic programming approach for supply chain design considering risk. International Journal of Production Economics, 116(1), 129–138. doi:10.1016/j.ijpe.2008.08.002.

    Article  Google Scholar 

  • Baghalian, A., Rezapour, S., & Farahani, R. Z. (2013). Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case. European Journal of Operational Research, 227(1), 199–215. doi:10.1016/j.ejor.2012.12.017.

    Article  Google Scholar 

  • Barzinpour, F., & Taki, P. (2016). A dual-channel network design model in a green supply chain considering pricing and transportation mode choice. Journal of Intelligent Manufacturing,. doi:10.1007/s10845-015-1190-x.

    Google Scholar 

  • Bassett, M., & Gardner, L. (2013). Designing optimal global supply chains at Dow AgroSciences. Annals of Operations Research, 203(1), 187–216. doi:10.1007/s10479-010-0802-2.

    Article  Google Scholar 

  • Cardona-Valdés, Y., Álvarez, A., & Ozdemir, D. (2011). A bi-objective supply chain design problem with uncertainty. Transportation Research Part C: Emerging Technologies, 19(5), 821–832. doi:10.1016/j.trc.2010.04.003.

    Article  Google Scholar 

  • Chen, M.-S., & Lin, C.-T. (1989). Effects of centralization on expected costs in a multi-location newsboy problem. Journal of the Operational Research Society, 40(6), 597–602.

    Article  Google Scholar 

  • Diabat, A., Richard, J.-P., & Codrington, C. (2013). A Lagrangian relaxation approach to simultaneous strategic and tactical planning in supply chain design. Annals of Operations Research, 203(1), 55–80. doi:10.1007/s10479-011-0915-2.

    Article  Google Scholar 

  • El-Sayed, M., Afia, N., & El-Kharbotly, A. (2010). A stochastic model for forward–reverse logistics network design under risk. Computers & Industrial Engineering, 58(3), 423–431. doi:10.1016/j.cie.2008.09.040.

    Article  Google Scholar 

  • Eppen, G. D. (1979). Effects of centralization on expected costs in a multi-location newsboy problem. Management Science, 25, 498–501.

    Article  Google Scholar 

  • Eppen, G. D., & Martin, R. K. (1988). Determining safety stock in the presence of stochastic lead time and demand. Management Science, 34(11), 1380–1390. doi:10.1287/mnsc.34.11.1380.

    Article  Google Scholar 

  • Farahani, R. Z., SteadieSeifi, M., & Asgari, N. (2010). Multiple criteria facility location problems: A survey. Applied Mathematical Modelling, 34(7), 1689–1709. doi:10.1016/j.apm.2009.10.005.

    Article  Google Scholar 

  • Guillén, G., Mele, F. D., Bagajewicz, M. J., Espuña, A., & Puigjaner, L. (2005). Multiobjective supply chain design under uncertainty. Chemical Engineering Science, 60(6), 1535–1553. doi:10.1016/j.ces.2004.10.023.

    Article  Google Scholar 

  • Guiffrida, A. L., & Jaber, M. Y. (2008). Managerial and economic impacts of reducing delivery variance in the supply chain. Applied Mathematical Modelling, 32(10), 2149–2161. doi:10.1016/j.apm.2007.07.006.

    Article  Google Scholar 

  • Hajek, B., & Sasaki, G. (1989). Simulated annealing: To cool or not. Systems & Control Letters, 12(5), 443–447. doi:10.1016/0167-6911(89)90081-9.

    Article  Google Scholar 

  • Karmarkar, U. S. (1993). Chapter 6, Manufacturing lead times, order release and capacity loading. In A. H. G. R. K. S. C. Graves & P. H. Zipkin (Eds.), Handbooks in operations research and management science (Vol. 4, pp. 287–329). Amsterdam: Elsevier.

    Google Scholar 

  • Karpak, B., Kumcu, E., & Kasuganti, R. (1999). An application of visual interactive goal programming: a case in vendor selection decisions. Journal of Multi-Criteria Decision Analysis, 8(2), 93–105.

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. doi:10.1126/science.220.4598.671.

    Article  Google Scholar 

  • Korpela, J., Kyläheiko, K., Lehmusvaara, A., & Tuominen, M. (2002). An analytic approach to production capacity allocation and supply chain design. International Journal of Production Economics, 78(2), 187–195. doi:10.1016/S0925-5273(01)00101-3.

    Article  Google Scholar 

  • Kumar, S. K., & Tiwari, M. K. (2013). Supply chain system design integrated with risk pooling. Computers & Industrial Engineering, 64(2), 580–588. doi:10.1016/j.cie.2012.11.013.

    Article  Google Scholar 

  • Liao, S.-H., Hsieh, C.-L., & Lin, Y.-S. (2011). A multi-objective evolutionary optimization approach for an integrated location-inventory distribution network problem under vendor-managed inventory systems. Annals of Operations Research, 186(1), 213–229. doi:10.1007/s10479-010-0801-3.

    Article  Google Scholar 

  • Miranda, P. A., & Garrido, R. A. (2004). Incorporating inventory control decisions into a strategic distribution network design model with stochastic demand. Transportation Research Part E: Logistics and Transportation Review, 40(3), 183–207. doi:10.1016/j.tre.2003.08.006.

    Article  Google Scholar 

  • Park, S., Lee, T.-E., & Sung, C. S. (2010). A three-level supply chain network design model with risk-pooling and lead times. Transportation Research Part E: Logistics and Transportation Review, 46(5), 563–581. doi:10.1016/j.tre.2009.12.004.

    Article  Google Scholar 

  • Peng, P., Snyder, L. V., Lim, A., & Liu, Z. (2011). Reliable logistics networks design with facility disruptions. Transportation Research Part B: Methodological, 45(8), 1190–1211. doi:10.1016/j.trb.2011.05.022.

    Article  Google Scholar 

  • Petridis, K. (2015). Optimal design of multi-echelon supply chain networks under normally distributed demand. Annals of Operations Research, 227(1), 63–91. doi:10.1007/s10479-013-1420-6.

    Article  Google Scholar 

  • Pishvaee, M. S., Rabbani, M., & Torabi, S. A. (2011). A robust optimization approach to closed-loop supply chain network design under uncertainty. Applied Mathematical Modelling, 35(2), 637–649. doi:10.1016/j.apm.2010.07.013.

    Article  Google Scholar 

  • Ramezani, M., Bashiri, M., & Tavakkoli-Moghaddam, R. (2013). A new multi-objective stochastic model for a forward/reverse logistic network design with responsiveness and quality level. Applied Mathematical Modelling, 37(1–2), 328–344. doi:10.1016/j.apm.2012.02.032.

    Article  Google Scholar 

  • Rezaee, A., Dehghanian, F., Fahimnia, B., & Beamon, B. (2015). Green supply chain network design with stochastic demand and carbon price. Annals of Operations Research,. doi:10.1007/s10479-015-1936-z.

    Google Scholar 

  • Serafini, P. (1994). Simulated annealing for multi objective optimization problems. In G. H. Tzeng, H. F. Wang, U. P. Wen, & P. L. Yu (Eds.), Multiple Criteria Decision Making (pp. 283–292). New York: Springer.

    Chapter  Google Scholar 

  • Shen, Z.-J. M. (2006). A profit-maximizing supply chain network design model with demand choice flexibility. Operations Research Letters, 34(6), 673–682. doi:10.1016/j.orl.2005.10.006.

    Article  Google Scholar 

  • Shu, J., Ma, Q., & Li, S. (2010). Integrated location and two-echelon inventory network design under uncertainty. Annals of Operations Research, 181(1), 233–247. doi:10.1007/s10479-010-0732-z.

    Article  Google Scholar 

  • Soleimani, H., Seyyed-Esfahani, M., & Shirazi, M. (2013). A new multi-criteria scenario-based solution approach for stochastic forward/reverse supply chain network design. Annals of Operations Research,. doi:10.1007/s10479-013-1435-z.

    Google Scholar 

  • Suman, B., & Kumar, P. (2005). A survey of simulated annealing as a tool for single and multiobjective optimization. Journal of the Operational Research Society, 57(10), 1143–1160.

    Article  Google Scholar 

  • Ulungu, E. L., Teghem, J., Fortemps, P. H., & Tuyttens, D. (1999). MOSA method: A tool for solving multiobjective combinatorial optimization problems. Journal of Multi-Criteria Decision Analysis, 8(4), 221–236. doi:10.1002/(SICI)1099-1360(199907)8:4<221:AID-MCDA247>3.0.CO;2-O.

  • Vahdani, B., Tavakkoli-Moghaddam, R., Modarres, M., & Baboli, A. (2012). Reliable design of a forward/reverse logistics network under uncertainty: A robust-M/M/c queuing model. Transportation Research Part E: Logistics and Transportation Review, 48(6), 1152–1168. doi:10.1016/j.tre.2012.06.002.

    Article  Google Scholar 

  • Wu, T., Blackhurst, J., & Chidambaram, V. (2006). A model for inbound supply risk analysis. Computers in Industry, 57(4), 350–365. doi:10.1016/j.compind.2005.11.001.

    Article  Google Scholar 

  • Xu, N., & Nozick, L. (2009). Modeling supplier selection and the use of option contracts for global supply chain design. Computers & Operations Research, 36(10), 2786–2800. doi:10.1016/j.cor.2008.12.013.

    Article  Google Scholar 

  • Yang, B., & Geunes, J. (2007). Inventory and lead time planning with lead-time-sensitive demand. IIE Transactions, 39(5), 439–452. doi:10.1080/07408170600838456.

    Article  Google Scholar 

  • You, F., & Grossmann, I. E. (2009a). MINLP model and algorithms for optimal design of large-scale supply chain with multi-echelon inventory and risk pooling under demand uncertainty. In C. A. O. D. N. Rita Maria de Brito Alves & B. EvaristoChalbaud (Eds.), Computer aided chemical engineering (Vol. 27, pp. 1983–1988). Amsterdam: Elsevier.

    Google Scholar 

  • You, F., & Grossmann, I. E. (2009b). Optimal design of large-scale supply chain with multi-echelon inventory and risk pooling under demand uncertainty. In J. Jacek & T. Jan (Eds.), Computer aided chemical engineering (Vol. 26, pp. 991–996). Amsterdam: Elsevier.

    Google Scholar 

  • Zokaee, S., Jabbarzadeh, A., Fahimnia, B., & Sadjadi, S. (2014). Robust supply chain network design: An optimization model with real world application. Annals of Operations Research,. doi:10.1007/s10479-014-1756-6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peyman Taki.

Appendix

Appendix

Here, Eq. (3.10) is proved which is used in the first objective function of the model and shows the annual inventory cost at each manufacturer, \(H_i\) based on the economic production quantity (EPQ).

Equation (8.1) implies the optimal order quantity for each manufacturer based on the EPQ procedure where, \(D_i\) is the daily demand and \(Q_i^*\) is the optimal order quantity at manufacturer i.

$$\begin{aligned}&Q_i^*=\sqrt{\frac{2{ ND }_i A_i }{h_i }}\times \sqrt{\frac{1}{1-\frac{{ ND }_i }{{ NM }_i }}},\quad \forall i \end{aligned}$$
(8.1)
$$\begin{aligned}&D_i =\sum _{j=1}^n {\sum _{k=1}^l {X_{ij} Y_{jk} \mu _k } } ,\quad \forall i \end{aligned}$$
(8.2)
$$\begin{aligned}&\sum _{i=1}^n {X_{ij} Y_{jk} } =Z_{ik} ,\quad \forall i,k \end{aligned}$$
(8.3)

According to Eqs. (8.1), (8.2) and (8.3) we can compute the value of the \(H_i\) as a closed-form as follows.

$$\begin{aligned} H_i= & {} \frac{Q_i^*}{2}h_i \left( {1-\frac{ ND _i }{{ NM }_i }} \right) =\sqrt{\frac{2 ND _i A_i }{h_i }}\times \sqrt{\frac{1}{1-\frac{{ ND }_i }{{ NM }_i }}}\times \frac{h_i }{2}\left( {1-\frac{{ ND }_i }{{ NM }_i }} \right) \nonumber \\= & {} \sqrt{2{ ND }_i A_i }\times \frac{\sqrt{h_i \left( {1-\frac{D_i }{M_i }} \right) }}{2}\nonumber \\= & {} \frac{\sqrt{2{ ND }_i A_i h_i \left( {1-\frac{D_i }{M_i }} \right) }}{2}=\frac{\sqrt{2{ ND }_i A_i h_i -\frac{2{ ND }_i^2 A_i h_i }{M_i }}}{2} \nonumber \\= & {} \frac{\sqrt{2N{\mathop {\sum }\nolimits _{j=1}^n} {{\mathop {\sum }\nolimits _{k=1}^l} {X_{ij} Y_{jk} \mu _k A_i h_i } } -2N\frac{\left( {{\mathop {\sum }\nolimits _{j=1}^n} {{\mathop {\sum }\nolimits _{k=1}^l} {X_{ij} Y_{jk} \mu _k } } } \right) ^{2}A_i h_i }{M_i }}}{2} \nonumber \\= & {} \frac{\sqrt{2N\sum _{k=1}^l {Z_{ik} \mu _k A_i h_i } -2N\frac{\left( {{\mathop {\sum }\nolimits _{k=1}^l} {Z_{ik} \mu _k } } \right) ^{2}A_i h_i }{M_i }}}{2} \nonumber \\&\frac{\sqrt{2N{\mathop {\sum }\nolimits _{k=1}^l} {Z_{ik} \mu _k A_i h_i } -2N\frac{\left( {{\mathop {\sum }\nolimits _{k=1}^l} {Z_{ik} \mu _k^2 } +2{\mathop {\sum }\nolimits _{k=1}^{l-1}} {{\mathop {\sum }\nolimits _{t=k+1}^l} {Z_{ik} Z_{it} \mu _k \mu _t } } } \right) A_i h_i }{M_i }}}{2} \nonumber \\= & {} \frac{\sqrt{2NA_i h_i \left( {\sum _{k=1}^l {Z_{ik} \mu _k -\frac{\left( {{\mathop {\sum }\nolimits _{k=1}^l} {Z_{ik} \mu _k^2 } +2{\mathop {\sum }\nolimits _{k=1}^{l-1}} {{\mathop {\sum }\nolimits _{t=k+1}^l} {Z_{ik} Z_{it} \mu _k \mu _t } } } \right) }{M_i }} } \right) }}{2},\quad \forall i \end{aligned}$$
(8.4)

Therefore, based on Eq. (8.4), the annual inventory cost at each manufacturer is derived from Eq. (8.5).

$$\begin{aligned} H_i =\frac{\sqrt{2NA_i h_i \left( {{\mathop {\sum }\nolimits _{k=1}^l} {Z_{ik} \mu _k } -\frac{\left( {{\mathop {\sum }\nolimits _{k=1}^l} {Z_{ik} \mu _k^2 } +2{\mathop {\sum }\nolimits _{k=1}^{l-1}} {{\mathop {\sum }\nolimits _{t=k+1}^l} {Z_{ik} Z_{it} \mu _k \mu _t } } } \right) }{M_i }} \right) }}{2},\quad \forall i \end{aligned}$$
(8.5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taki, P., Barzinpour, F. & Teimoury, E. Risk-pooling strategy, lead time, delivery reliability and inventory control decisions in a stochastic multi-objective supply chain network design. Ann Oper Res 244, 619–646 (2016). https://doi.org/10.1007/s10479-016-2115-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2115-6

Keywords

Navigation