Skip to main content
Log in

Dealing with interaction between bipolar multiple criteria preferences in PROMETHEE methods

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we extend the PROMETHEE methods to the case of interacting criteria on a bipolar scale, introducing the bipolar PROMETHEE method based on the bipolar Choquet integral. In order to elicit parameters compatible with preference information provided by the Decision Maker (DM), we propose to apply the Robust Ordinal Regression (ROR). ROR takes into account simultaneously all the sets of parameters compatible with the preference information provided by the DM considering a necessary and a possible preference relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angilella, S., Greco, S., Lamantia, F., Matarazzo, B. (2004). Assessing non-additive utility for multicriteria decision aid. European Journal of Operational Research, 158(3), 734–744.

    Article  Google Scholar 

  • Angilella, S., Greco, S., Matarazzo, B. (2010). Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral. European Journal of Operational Research, 201(1), 277–288.

    Article  Google Scholar 

  • Bana e Costa, C., Vansnick, J.-C. (1994). MACBETH: An interactive path towards the construction of cardinal value functions. International Transactions in Operational Research, 1(4), 489–500.

    Article  Google Scholar 

  • Brans, J., & Mareschal, B. (2005). PROMETHEE methods. In J. Figueira, S. Greco, and M. Ehrgott, (Eds.), Multiple criteria decision analysis: State of the art surveys. Berlin: Springer.

    Google Scholar 

  • Brans, J., & Vincke, Ph. (1985). A preference ranking organisation method: The PROMETHEE method for MCDM. Management Science, 31(6), 647–656.

    Article  Google Scholar 

  • Choquet, G. (1953). Theory of capacities. Annales de l’Institut Fourier, 5, 131–295.

    Article  Google Scholar 

  • Corrente, S., Figueira, J. R., & Greco, S. (2012). Interaction of criteria and robust ordinal regression in bi-polar PROMETHEE methods. In S. Greco et al. (Ed.) IPMU 2012, Part IV, CCIS 300 (pp. 469–479). Berlin: Springer.

  • Debreu, G. (1979). Topological methods in cardinal utility theory. Operations Research, 27, 810–822.

    Article  Google Scholar 

  • Dyer, J. S., & Sarin, R. K. (1979). Measurable multiattribute value functions. Operations Research, 27, 810–822.

    Article  Google Scholar 

  • Figueira, J., Mousseau, V., & Roy, B. (2005). ELECTRE methods. In J. Figueira, S. Greco, & M. Ehrgott (Eds.) Multiple criteria decision analysis: State of the art surveys (pp. 133–153). Berlin: Springer.

    Google Scholar 

  • Figueira, J. R., Greco, S., & Ehrgott, M. (2005). Multiple criteria decision analysis: State of the art surveys. Berlin: Springer.

    Google Scholar 

  • Figueira, J. R., Greco, S., & Roy, B. (2009). ELECTRE methods with interaction between criteria: An extension of the concordance index. European Journal of Operational Research, 199(2), 478–495.

    Article  Google Scholar 

  • Figueira, J. R., Greco, S., & Słowiński, R. (2009). Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method. European Journal of Operational Research, 195(2), 460–486.

    Article  Google Scholar 

  • Fujimoto, K. (2004). New characterizations of k-additivity and k-monotonicity of bi-capacities. In SCIS-ISIS 2004, 2nd International Conference on Soft Computing and Intelligent Systems and 5th International Symposium on Advanced Intelligent Systems.

  • Fujimoto, K., & Murofushi, T. (2005). Some characterizations of k-monotonicity through the bipolar Möbius transform in bi-capacities. Journal of Advanced Computational Intelligence and Intelligent Informatics, 9(5), 484–495.

    Google Scholar 

  • Fujimoto, K., Murofushi, T., & Sugeno, M. (2007). k-Additivity and C-decomposability of bi-capacities and its integral. Fuzzy Sets and Systems, 158(15), 1698–1712.

    Article  Google Scholar 

  • Grabisch, M. (1996). The application of fuzzy integrals in multicriteria decision making. European Journal of Operational Research, 89(3), 445–456.

    Article  Google Scholar 

  • Grabisch, M., & Labreuche, C. (2005). Bi-capacities-I: Definition, Möbius transform and interaction. Fuzzy Sets and Systems, 151(2), 211–236.

    Article  Google Scholar 

  • Grabisch, M., & Labreuche, C. (2005). Bi-capacities-II: The Choquet integral. Fuzzy Sets and Systems, 151(2), 237–259.

    Article  Google Scholar 

  • Grabisch, M., & Labreuche, C. (2005c). Fuzzy measures and integrals in MCDA. In J. Figueira, S. Greco, & M. Ehrgott (Eds.) Multiple criteria decision analysis: State of the art surveys (pp. 563–604). Berlin: Springer.

  • Grabisch, M., & Labreuche, C. (2010). A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. Annals of Operations Research, 175(1), 247–290.

    Article  Google Scholar 

  • Greco, S., & Figueira, J. R. (2003). Dealing with interaction between bi-polar multiple criteria preferences in outranking methods. Research Report 11-2003, INESC-Coimbra, Portugal. http://www.uc.pt/en/org/inescc/res_reports_docs/research_reports.

  • Greco, S., Matarazzo, B., & Słowiński, R. (2001). Rough sets theory for multicriteria decision analysis. European Journal of Operational Research, 129(1), 1–47.

    Article  Google Scholar 

  • Greco, S., Matarazzo, B., & Slowinski, R. (2002). Bipolar Sugeno and Choquet integrals. In Proceedings of the EUROFUSE 02 Workshop on Information Systems, pp. 191–196.

  • Greco, S., Matarazzo, B., & Słowiński, R. (2005). Decision Rule Approach. In J. Figueira, S. Greco, & M. Ehrgott (Eds.) Multiple criteria decision analysis: State of the art surveys (pp. 507–562). Berlin: Springer.

  • Greco, S., Mousseau, V., & Słowiński, R. (2008). Ordinal regression revisited: multiple criteria ranking using a set of additive value functions. European Journal of Operational Research, 191(2), 416–436.

    Article  Google Scholar 

  • Greco, S., Słowiński, R., Figueira, J. R., & Mousseau, V. (2010). Robust ordinal regression. In M. Ehrgott, J. Figueira, & S. Greco (Eds.), Trends in multiple criteria decision analysis (pp. 273–320). Berlin: Springer.

    Google Scholar 

  • Keeney, R. L., & Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value tradeoffs. New York: Wiley.

    Google Scholar 

  • Marichal, J., & Roubens, M. (2000). Determination of weights of interacting criteria from a reference set. European Journal of Operational Research, 124(3), 641–650.

    Article  Google Scholar 

  • Mousseau, V., Figueira, J., Dias, L., Gomes da Silva, C., & Clímaco, J. (2003). Resolving inconsistencies among constraints on the parameters of an MCDA model. European Journal of Operational Research, 147, 72–93.

    Article  Google Scholar 

  • Roy, B., & Mousseau, V. (1996). A theoretical framework for analysing the notion of relative importance of criteria. Journal of Multi-Criteria Decision Analysis, 5, 145–159.

    Article  Google Scholar 

  • Šipoš, J. (1979). Integral with respect to a pre-measure. Mathematica Slovaca, 29(2), 141–155.

    Google Scholar 

  • Sugeno, M. (1974). Theory of fuzzy integrals and its applications. Ph.D. Thesis, Tokyo Institute of Technology.

  • Tervonen, T., & Figueira, J. (2008). A survey on stochastic multicriteria acceptability analysis methods. Journal of Multi-Criteria Decision Analysis, 15(1–2), 1–14.

    Article  Google Scholar 

  • Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and uncertainty, 5(4), 297–323.

    Article  Google Scholar 

  • Wakker, P. P. (1989). Additive representations of preferences: A new foundation of decision analysis, vol. 4 Berlin: Springer.

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers whose comments and suggestions helped to improve considerably the manuscript. Besides, the authors would like to acknowledge Dr. Fabio Rindone for his valuable support in proving Proposition 3.1 and in revising the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Greco.

Appendix

Appendix

Proof of Proposition 3.2

Let us prove that if \(\hat{\mu}(C,D)= -\hat{\mu}(D,C)\) for each \({(C, D) \in P({\mathcal{J}})},\) then \(Ch^B(P^B(a,b), \hat{\mu})= - Ch^B(P^B(b,a), \hat{\mu}).\) As noticed, P B j (ab) =  − P B j (ba) for all \(j \in \mathcal{J},\) and consequently \(\vert P_{(j)}^{B}(a,b) \vert = \vert -P_{(j)}^{B}(b,a) \vert = \vert P_{(j)}^{B}(b,a) \vert\) for all \({j\in{\mathcal J}}.\)

By this, it follows that:

$$ \begin{aligned} (\alpha)\quad\quad C_{(j)}(a,b) &= \{ i \in {{\mathcal{J}}}^{>} \, : \, P_{i}^{B}(a,b) \geq \vert P_{(j)}^{B}(a,b) \vert \} = \{ i \in {{\mathcal{J}}}^{>} \, : \, -P_{i}^{B}(b,a) \geq \vert P_{(j)}^{B}(b,a) \vert \}\\ &= D_{(j)}(b,a);\\ (\beta) \quad\quad D_{(j)}(a,b) &= \{ i \in {{\mathcal{J}}}^{>} \, : \, - P_{i}^{B}(a,b) \geq \vert P_{(j)}^{B}(a,b) \vert \} = \{ i \in {{\mathcal{J}}}^{>} \, : \, P_{i}^{B}(b,a) \geq \vert P_{(j)}^{B}(b,a) \vert \}\\ &= C_{(j)}(b,a). \end{aligned} $$

By (α) and (β) we have that

$$ \begin{aligned} (\gamma)\quad\quad { Ch^B(P^B(a,b), \hat{\mu})}&={ \sum_{j \in {{\mathcal{J}}}^{>}} \vert P_{(j)}^{B}(a,b) \vert \Big[\hat{\mu}(C_{(j)}(a,b), D_{(j)}(a,b)) - \hat{\mu}(C_{(j+1)}(a,b), D_{(j+1)}(a,b))\Big]}\\ &= \sum_{j \in {{\mathcal{J}}}^{>}} \vert P_{(j)}^{B}(b,a) \vert \Big[\hat{\mu}(D_{(j)}(b,a), C_{(j)}(b,a)) - \hat{\mu}(D_{(j+1)}(b,a), C_{(j+1)}(b,a)) \Big]. \end{aligned} $$

Since \({\hat{\mu}(C,D) =- \hat{\mu}(D,C), \forall (C,D)\in P({\mathcal J})},\) by (γ) we have that,

$$ \begin{aligned} (\delta)\quad\quad { Ch^B(P^B(b,a), \hat{\mu})} &= \sum_{j \in {{\mathcal{J}}}^{>}} \vert P_{(j)}^{B}(b,a) \vert \Big[\hat{\mu}(C_{(j)}(b,a), D_{(j)}(b,a)) - \hat{\mu}(C_{(j+1)}(b,a), D_{(j+1)}(b,a))\Big] \\ &= \sum_{j \in {{\mathcal{J}}}^{>}} \vert P_{(j)}^{B}(b,a) \vert \Big[ - \hat{\mu}(D_{(j)}(b,a), C_{(j)}(b,a)) + \hat{\mu}(D_{(j+1)}(b,a), C_{(j+1)}(b,a)) \Big] \\ &= -Ch^B(P^B(a, b), \hat{\mu}). \end{aligned} $$

Let us now prove that if \(Ch^B(P^B(a,b), \hat{\mu})= - Ch^B(P^B(b,a), \hat{\mu}),\) then \(\hat{\mu}(C,D) = - \hat{\mu}(D,C).\) Let us consider the pair (ab) such that,

$$ P_{j}^{B}(a,b)= \left\{ \begin{array}{lll} 1& \hbox{if} & j\in C\\ -1 & \hbox{if} & j\in D\\ 0 & & \hbox{otherwise} \\ \end{array} \right. $$
(19)

In this case we have that \(Ch^B(P^B(a,b), \hat{\mu})= \hat{\mu}(C,D)\) and \(Ch^B(P^B(b,a), \hat{\mu})= \hat{\mu}(D,C).\) Thus if \(Ch^B(P^B(a,b), \hat{\mu})=-Ch^B(P^B(b,a), \hat{\mu}),\) by (iv) we obtain that \(\hat{\mu}(C,D) = - \hat{\mu}(D,C)\) and the proof is concluded. □

Proof of Corollary 3.1

This can be seen as a Corollary both of Propositions 3.2 and 3.3. In fact,

  • μ+(CD) =  μ(DC) for each \({(C, D) \in P({\mathcal{J}})}\) implies that \(\hat{\mu}(C,D)=-\hat{\mu}(D,C)\) for each \({(C, D) \in P({\mathcal{J}})},\) and by Proposition 3.2, it follows the thesis.

  • μ+(CD) =  μ(DC) for each \({(C, D) \in P({\mathcal{J}})}\) implies that \(Ch^{B+}(P^{B}(a, b),\hat{\mu}) = Ch^{B-}(P^{B}(b, a),\hat{\mu})\) (by Proposition 3.3) and from this it follows obviously the thesis by Eq. (10). □

Proof of Proposition 3.4

We shall prove only part 1 Proof of part 2 can be obtained analogously.

If the bicapacity \(\hat{\mu}\) is 2-additive decomposable, then

$$ \begin{aligned} { Ch^{B+}(x, \hat{\mu})} &= \sum_{j \in {{\mathcal{J}}}^>}\vert x_{(j)}\vert \big[{\mu}^{+}(C_{(j)}, D_{(j)}) - {\mu}^{+}(C_{(j+1)}, D_{(j+1)}) \Big] \\ & = \sum_{j \in {{\mathcal{J}}}^>}\vert x_{(j)} \vert \Big[\Big( \sum_{k \in {{\mathcal{J}}}^>, x_k \geq \vert x_{(j)} \vert} a^{+}_{k} - \sum_{k \in {{\mathcal{J}}}^>, x_k \geq \vert x_{(j+1)} \vert} a^{+}_{k}\Big) \\ & \quad+ \Big(\sum_{h, k \in {{\mathcal{J}}}^>, h \neq k, x_h, x_k \geq \vert x_{(j)} \vert} a^{+}_{hk} - \sum_{h, k \in {{\mathcal{J}}}^>, h \neq k, x_h, x_k \geq \vert x_{(j+1)} \vert} a^{+}_{hk}\Big)\\ & { \quad+\Big(\sum_{h, k \in {{\mathcal{J}}}^>, h\neq k, x_h, -x_k \geq \vert x_{(j)} \vert} a^{+}_{h \vert k} - \sum_{h, k \in {{\mathcal{J}}}^>, h\neq k, x_h, -x_k \geq \vert x_{(j+1)} \vert} a^{+}_{h \vert k} \Big)\Big] } \\ \end{aligned} $$

Let us remark that,

$$ \begin{aligned} &a) \quad\quad \Big( \sum_{k \in {{\mathcal{J}}}^>, x_k \geq \vert x_{(j)} \vert} a^{+}_{k} - \sum_{k \in {{\mathcal{J}}}^>, x_k \geq \vert x_{(j+1)} \vert} a^{+}_{k}\Big) = \left\{ {\begin{array}{ll} \sum\limits_{k\in{\mathcal J}^{>}, x_{k}=|x_{(j)}|} a^{+}_{k} & \hbox{if}\,\,|x_{(j)}| < |x_{(j+1)}| \\ 0 & \hbox{otherwise} \end{array}} \right. \\ &b) \quad\quad \Big( \sum\limits_{\substack{h,k \in {{\mathcal{J}^{>}}}, {h\neq k}, \\ {x_{h}},{x_{k}} \geq {\vert {x_{(j)}} \vert} }} a^{+}_{hk} - \sum\limits_{\substack{h,k \in {{\mathcal{J}^{>}}}, {{h}\neq {k}}, \\ {x_{h}},{x_{k}} \geq {\vert {x_{(j+1)}} \vert}}} a^{+}_{hk} \Big) = \left\{ {\begin{array}{ll} {\sum\limits_{\substack{{h,k} \in {{\mathcal{J}^{>}}}, {{h}\neq {k}}, \\ \min\{{x_{h}},{x_{k}}\} = {\vert {x_{(j)}} \vert} }}} a^{+}_{hk}&\hbox{if} \,\, |x_{(j)}| < |x_{(j+1)}| \\ 0 & \hbox{otherwise} \end{array}} \right. \\ &c) \quad\quad \Big( \sum\limits_{\substack{{h,k} \in {{\mathcal{J}^{>}}}, {{h}\neq {k}}, \\ {x_{h}},{{-x}_{k}} \geq {\vert {x_{(j)}} \vert} }} {a^{+}_{{h} \vert {k}}} - \sum\limits_{\substack{{h,k} \in {{\mathcal{J}^{>}}}, {{h}\neq {k}}, \\ {x_{h}},-{x_{k}} \geq {\vert {x_{(j+1)}} \vert} }} a^{+}_{{h} \vert {k}}\Big) = \left\{{\begin{array}{ll} { \sum\limits_{\substack{{h,k} \in {{\mathcal{J}^{>}}}, {{h}\neq {k}}, \\ \min\{{x_{h}},-{x_{k}}\} = {\vert {x_{(j)}} \vert} }}} a^{+}_{{h} \vert {k}} &\hbox{if} \,\, |x_{(j)}| < |x_{(j+1)}| \\ 0& \hbox{otherwise} \end{array}} \right. \end{aligned} $$

Considering a) − c) we get that:

$$ \chi) = \sum_{\substack{j \in {{\mathcal{J}}}^>,\\ |x_{(j)}|<|x_{(j+1)}|}}\vert x_{(j)} \vert \Big[ \sum_{k\in{\mathcal J}^{>}, x_{k}=|x_{(j)}|} a^{+}_{k} + \sum_{\substack{h,k \in {{\mathcal{J}}}^>, h\neq k, \\ \min\{x_h,x_k\} = \vert x_{(j)} \vert }} a^{+}_{hk} + \sum_{\substack{h,k \in {{\mathcal{J}}}^>, h\neq k, \\ \min\{x_h,-x_k\} = \vert x_{(j)} \vert }} a^{+}_{h \vert k} \Big]\\ $$

and from this it follows the thesis. □

Proof of Proposition 3.5

First, let us prove that

$$ (a) \quad \hat{\mu}(C,D) = - \hat{\mu}(D,C) $$

implies 1, 2 and 3 For each \(j \in \mathcal{J},\)

$$ (b)\quad \hat{\mu}(\{j\}, \emptyset)= a^{+}_{j}\,\,\hbox{and}\,\, \hat{\mu}(\emptyset,\{j\})= -a^{-}_{j}. $$

From (a) and (b) we have,

$$ a^{+}_{j}= \hat{\mu}(\{j\}, \emptyset )= - \hat{\mu}(\emptyset ,\{j\})=a^{-}_{j} $$

which is 1.

For each \(\{ j,k \} \subseteq \mathcal{J}\) we have that,

$$ (c)\quad \hat{\mu}(\{j,k\}, \emptyset) = a^{+}_{j} + a^{+}_{k} + a^{+}_{jk}\,\hbox{and}\,\hat{\mu}(\emptyset, \{j,k\}) = -a^{-}_{j} - a^{-}_{k} - a^{-}_{jk} $$

Being \(\hat{\mu}(\{j,k\}, \emptyset)=-\hat{\mu}(\emptyset,\{j,k\}),\) and being a + j  = a j and a + k  = a k by 1, we have that for each \(\{j,k\} \subseteq \mathcal{J},\) a + jk  = a jk , i.e. 2.

For all \({j,k\in {\mathcal J}}\) with j ≠ k, we have:

$$ \begin{aligned} \hat{\mu}(\{j\}, \{k\})&=a_{j}^{+}-a_{k}^{-}+a^{+}_{j \vert k}-a^{-}_{j \vert k}\\ \hat{\mu}(\{k\}, \{j\})&=a_{k}^{+}-a_{j}^{-}+a^{+}_{k \vert j}-a^{-}_{k \vert j} \end{aligned} $$

Being \(\hat{\mu}(\{j\}, \{k\})=-\hat{\mu}(\{k\}, \{j\})\) and having proved that a + j  = a j , ∀ j, we obtain that \(a^{+}_{j \vert k}-a^{-}_{j \vert k}=-a^{+}_{k \vert j}+a^{-}_{k \vert j}\) i.e. 3.

It is straightforward to prove that 1, 2, and 3 imply \(\hat{\mu}(C,D)=-\hat{\mu}(D,C).\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corrente, S., Figueira, J.R. & Greco, S. Dealing with interaction between bipolar multiple criteria preferences in PROMETHEE methods. Ann Oper Res 217, 137–164 (2014). https://doi.org/10.1007/s10479-014-1554-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1554-1

Keywords

Navigation