Skip to main content
Log in

Fairness in academic course timetabling

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We consider the problem of creating fair course timetables in the setting of a university. The central idea is that undesirable arrangements in the course timetable, i.e., violations of soft constraints, should be distributed in a fair way among the stakeholders. We propose and discuss in detail two fair versions of the popular curriculum-based course timetabling (CB-CTT) problem, the MMF-CB-CTT problem and the JFI-CB-CTT problem, which are based on max–min fairness (MMF) and Jain’s fairness index (JFI), respectively. For solving the MMF-CB-CTT problem, we present and experimentally evaluate an optimization algorithm based on simulated annealing. We introduce three different energy difference measures and evaluate their impact on the overall algorithm performance. The proposed algorithm improves the fairness on 20 out of 32 standard instances compared to the known best timetables. The JFI-CB-CTT problem formulation focuses on the trade-off between fairness and the aggregated soft constraint violations. Here, our experimental evaluation shows that the known best solutions to 32 CB-CTT standard instances are quite fair with respect to JFI. Our experiments show that the fairness can often be improved at the cost of only a small increase in the overall amount of penalty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Very recently, Antony Philips managed to further improve the total penalty by one for comp21 . This solution matches the known lower bound and is thus optimal, see (Di Gaspero and Schaerf 2012).

References

  • Abdullah, S., Burke, E. K., & McCollum, B. (2007). A hybrid evolutionary approach to the university course timetabling problem. In IEEE congress on evolutionary computation (CEC) (pp. 1764–1768). doi:10.1109/CEC.2007.4424686.

  • Asín Acha, R., & Nieuwenhuis, R. (2010). Curriculum-based course timetabling with SAT and MaxSAT. In Proceedings of the 8th international conference on the practice and theory of automated timetabling (PATAT) (pp. 42–56).

  • Bandyopadhyay, S., Saha, S., Maulik, U., & Deb, K. (2008). A simulated annealing-based multiobjective optimization algorithm: AMOSA. IEEE Transactions on Evolutionary Computation, 12, 269–283. doi:10.1109/TEVC.2007.900837.

    Article  Google Scholar 

  • Bartal, Y., Farach-Colton, M., Yooseph, S., & Zhang, L. (2002). Fast, fair and frugal bandwidth allocation in ATM networks. Algorithmica, 33(3), 272–286. doi:10.1007/s00453-001-0119-2.

    Article  Google Scholar 

  • Bellio, R., DiGaspero, L., & Schaerf, A. (2012). Design and statistical analysis of a hybrid local search algorithm for course timetabling. Journal of Scheduling, 15, 49–61. doi:10.1007/s10951-011-0224-2.

    Article  Google Scholar 

  • Bertsekas, D. P., & Gallager, R. (1992). Data networks (2nd ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Bertsimas, D., Farias, V. F., & Trichakis, N. (2011). The price of fairness. Operations Research, 59(1), 17–31. doi:10.1287/opre.1100.0865.

    Article  Google Scholar 

  • Bullnheimer, B. (1998). An examination scheduling model to maximize students study time. In Proceedings of the 2nd international conference on the practice and theory of automated timetabling (PATAT) (pp. 78–91). doi:10.1007/BFb0055882.

  • Burke, E. K., Eckersley, A. J., McCollum, B., Petrovic, S., & Qu, R. (2010). Hybrid variable neighbourhood approaches to university exam timetabling. European Journal of Operational Research, 206(1), 46–53. doi:10.1016/j.ejor.2010.01.044.

    Article  Google Scholar 

  • Burke, E. K., Mareček, J., Parkes, A. J., & Rudová, H. (2011). A branch-and-cut procedure for the Udine Course Timetabling problem. Annals of Operations Research, 194(1), 71–87. doi:10.1007/s10479-010-0828-5.

    Article  Google Scholar 

  • Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., & Qu, R. (2007). A graph-based hyper-heuristic for educational timetabling problems. European Journal of Operational Research, 176(1), 177–192. doi:10.1016/j.ejor.2005.08.012.

    Article  Google Scholar 

  • Chiu, D. M., & Jain, R. (1989). Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Computer Networks and ISDN Systems, 17, 1–14. doi:10.1016/0169-7552(89)90019-6.

    Article  Google Scholar 

  • Constantino, A. A., de Melo, E. L., Romao, W., & Landa-Silva, D. (2011). A heuristic algorithm for nurse scheduling with balanced preference satisfaction. In Proceedings of the IEEE symposium on computational intelligence in scheduling (CISched) (pp. 39–45). doi:10.1109/SCIS.2011.5976549.

  • Di Gaspero, L., McCollum, B., Schaerf, A. (2007). The second international timetabling competition (ITC-2007): Curriculum-based course timetabling (Track 3). Tech. Rep. QUB/IEEE/Tech/ITC2007/CurriculumCTT/v1.0/1, School of Electronics, Electrical Engineering and Computer Science, Queens University, Belfast (UK).

  • Di Gaspero, L., & Schaerf, A. (2006). Neighborhood portfolio approach for local search applied to timetabling problems. Journal of Mathematical Modelling and Algorithms, 5, 65–89. doi:10.1007/s10852-005-9032-z.

    Article  Google Scholar 

  • Di Gaspero, L., & Schaerf, A. (2008). Hybrid local search techniques for the generalized balanced academic curriculum problem. In Proceedings of the 5th international workshop on hybrid metaheuristics (HM) (pp. 146–157). doi:10.1007/978-3-540-88439-2_11.

  • Di Gaspero, L., & Schaerf, A. (2012). Curriculum-based course timetabling site. http://satt.diegm.uniud.it/ctt/.

  • Edmonds, J., & Fulkerson, D. (1970). Bottleneck extrema. Journal of Combinatorial Theory, 8(3), 299–306. doi:10.1016/S0021-9800(70)80083-7.

    Article  Google Scholar 

  • Feldman, A., & Serrano, R. (2006). Welfare economics and social choice theory (2nd ed.). New York, NY: Springer. doi:10.1007/0-387-29368-X.

  • Gini, C. (1921). Measurement of inequality of incomes. The Economic Journal, 31(121), 124–126. doi:10.2307/2223319.

    Article  Google Scholar 

  • Jain, R. K., Chiu, D. M. W., & Hawe, W. R. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer systems. Tech. Rep. DEC-TR-301, Digital Equipment Corporation.

  • Kelly, F., Maulloo, A., & Tan, D. (1998). Rate control in communication networks: shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 49, 237–252. doi:10.1057/palgrave.jors.2600523.

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. doi:10.1126/science.220.4598.671.

    Article  Google Scholar 

  • Kleinberg, J., Rabani, Y., & Tardos, É. (2001). Fairness in routing and load balancing. Journal of Computer and System Sciences, 63(1), 2–20. doi:10.1006/jcss.2001.1752.

    Article  Google Scholar 

  • Kostuch, P. (2004). The university course timetabling problem with a three-phase approach. In Proceedings of the 5th international conference on the practice and theory of automated timetabling (PATAT) (pp. 109–125). doi:10.1007/11593577_7.

  • Koulamas, C., Antony, S., & Jaen, R. (1994). A survey of simulated annealing applications to operations research problems. Omega, 22(1), 41–56. doi:10.1016/0305-0483(94)90006-X.

    Article  Google Scholar 

  • Laarhoven, P. J. M. V., & Aarts, E. H. L. (1987). Simulated annealing: Theory and applications. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Lach, G., & Lübbecke, M. E. (2010). Curriculum based course timetabling: New solutions to Udine benchmark instances. Annals of Operations Research, 194, 1–18. doi:10.1007/s10479-010-0700-7.

    Google Scholar 

  • Lapin, L. (1990). Probability and statistics for modern engineering. Long Grove: Waveland Press.

    Google Scholar 

  • Lü, Z., & Hao, J. K. (2010). Adaptive tabu search for course timetabling. European Journal of Operational Research, 200(1), 235–244. doi:10.1016/j.ejor.2008.12.007.

    Article  Google Scholar 

  • Martin, S., Ouelhadj, D., Smet, P., & Vanden Berghe, G., & Özcan, E. (2013). Cooperative search for fair nurse rosters. Expert Systems with Applications, 40(16), 6674–6683, doi:10.1016/j.eswa.2013.06.019.

    Article  Google Scholar 

  • McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A. J., Di Gaspero, L., Qu, R., & Burke, E. K. (2010). Setting the research agenda in automated timetabling: The second international timetabling competition. INFORMS Journal on Computing, 22, 120–130. doi:10.1287/ijoc.1090.0320.

    Article  Google Scholar 

  • Merlot, L. T. G., Boland, N., Hughes, B. D., & Stuckey, P. J. (2002). A hybrid algorithm for the examination timetabling problem. In Proceedings of the 4th international conference on the practice and theory of automated timetabling (PATAT) (pp. 207–231). doi:10.1007/978-3-540-45157-0_14.

  • Mühlenthaler, M., & Wanka, R. (2012). Fairness in academic timetabling. In Proceedings of the 9th international conference on the practice and theory of automated timetabling (PATAT) (pp. 114–130).

  • Muklason, A., Parkes, A. J., McCollum, B., & Özcan, E. (2013). Initial results on fairness in examination timetabling. In Proceedings of the 6th multidisciplinary international conference on scheduling: Theory and applications (MISTA) (pp. 777–780).

  • Müller, T. (2009). ITC2007 solver description: A hybrid approach. Annals of Operations Research, 172(1), 429–446. doi:10.1007/s10479-009-0644-y.

    Article  Google Scholar 

  • Ogryczak, W. (2010). Bicriteria models for fair and efficient resource allocation. In Proceedings of the 2nd international conference on social informatics (SocInfo) (pp. 140–159). doi:10.1007/978-3-642-16567-2_11.

  • Ogryczak, W., & Wierzbicki, A. (2004). On multi-criteria approaches to bandwidth allocation. Control and Cybernetics, 33, 427–448.

    Google Scholar 

  • Punnen, A. P., & Zhang, R. (2011). Quadratic bottleneck problems. Naval Research Logistics (NRL), 58(2), 153–164. doi:10.1002/nav.20446.

    Article  Google Scholar 

  • Rawls, J. (1999). A theory of justice, revised edn. Cambridge: Belknap Press of Harvard University Press.

    Google Scholar 

  • Salles, R. M., & Barria, J. A. (2008). Lexicographic maximin optimisation for fair bandwidth allocation in computer networks. European Journal of Operational Research, 185(2), 778–794. doi:10.1016/j.ejor.2006.12.047.

    Article  Google Scholar 

  • Smet, P., Martin, S., & Ouelhadj, D., Özcan, E., & Vanden Berghe, G. (2012). Investigation of fairness measures for nurse rostering. In Proceedings of the 9th international conference on the practice and theory of automated timetabling (PATAT) (pp. 369–372).

  • Soomer, M. J., & Koole, G. M. (2008). Fairness in the aircraft landing problem. In Proceedings of the Anna Valicek competition 2008.

  • Thompson, J., & Dowsland, K. A. (1996). General cooling schedules for a simulated annealing based timetabling system. In Proceedings of the 1st international confernce on the practice and theory of automated timetabling (PATAT) (pp. 345–363). doi:10.1007/3-540-61794-9_70.

  • Thompson, J. M., & Dowsland, K. A. (1998). A robust simulated annealing based examination timetabling system. Computers & Operations Research, 25(7–8), 637–648. doi:10.1016/S0305-0548(97)00101-9.

    Article  Google Scholar 

  • Tuga, M., Berretta, R., & Mendes, A. (2007). A hybrid simulated annealing with Kempe chain neighborhood for the university timetabling problem. In Proceedings of the 6th ACIS international conference on computer and information science (ACIS-ICIS) (pp. 400–405). doi:10.1109/ICIS.2007.25.

  • Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80–83.

    Article  Google Scholar 

  • Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on Systems, Man and Cybernetics, 18(1), 183–190, doi:10.1109/21.87068.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their constructive comments and valuable remarks on this paper. Research funded in parts by the School of Engineering of the University of Erlangen-Nuremberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Mühlenthaler.

Additional information

This is the extended version of Mühlenthaler and Wanka (2012) presented on PATAT 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mühlenthaler, M., Wanka, R. Fairness in academic course timetabling. Ann Oper Res 239, 171–188 (2016). https://doi.org/10.1007/s10479-014-1553-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1553-2

Keywords

Navigation